1 | /* $Id$ $Revision$ */ |
2 | /* vim:set shiftwidth=4 ts=8: */ |
3 | |
4 | /************************************************************************* |
5 | * Copyright (c) 2011 AT&T Intellectual Property |
6 | * All rights reserved. This program and the accompanying materials |
7 | * are made available under the terms of the Eclipse Public License v1.0 |
8 | * which accompanies this distribution, and is available at |
9 | * http://www.eclipse.org/legal/epl-v10.html |
10 | * |
11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
12 | *************************************************************************/ |
13 | |
14 | |
15 | #include "neato.h" |
16 | #include "dijkstra.h" |
17 | #include "bfs.h" |
18 | #include "pca.h" |
19 | #include "matrix_ops.h" |
20 | #include "conjgrad.h" |
21 | #include "embed_graph.h" |
22 | #include "kkutils.h" |
23 | #include "stress.h" |
24 | #include <math.h> |
25 | #include <stdlib.h> |
26 | #include <time.h> |
27 | |
28 | |
29 | #ifndef HAVE_DRAND48 |
30 | extern double drand48(void); |
31 | #endif |
32 | |
33 | #define Dij2 /* If defined, the terms in the stress energy are normalized |
34 | by d_{ij}^{-2} otherwise, they are normalized by d_{ij}^{-1} |
35 | */ |
36 | |
37 | #ifdef NONCORE |
38 | /* Set 'max_nodes_in_mem' so that |
39 | * 4*(max_nodes_in_mem^2) is smaller than the available memory (in bytes) |
40 | * 4 = sizeof(float) |
41 | */ |
42 | #define max_nodes_in_mem 18000 |
43 | #endif |
44 | |
45 | /* relevant when using sparse distance matrix not within subspace */ |
46 | #define smooth_pivots true |
47 | |
48 | /* dimensionality of subspace; relevant |
49 | * when optimizing within subspace) |
50 | */ |
51 | #define stress_pca_dim 50 |
52 | |
53 | /* a structure used for storing sparse distance matrix */ |
54 | typedef struct { |
55 | int nedges; |
56 | int *edges; |
57 | DistType *edist; |
58 | boolean free_mem; |
59 | } dist_data; |
60 | |
61 | static double compute_stressf(float **coords, float *lap, int dim, int n, int exp) |
62 | { |
63 | /* compute the overall stress */ |
64 | |
65 | int i, j, l, neighbor, count; |
66 | double sum, dist, Dij; |
67 | sum = 0; |
68 | for (count = 0, i = 0; i < n - 1; i++) { |
69 | count++; /* skip diagonal entry */ |
70 | for (j = 1; j < n - i; j++, count++) { |
71 | dist = 0; |
72 | neighbor = i + j; |
73 | for (l = 0; l < dim; l++) { |
74 | dist += |
75 | (coords[l][i] - coords[l][neighbor]) * (coords[l][i] - |
76 | coords[l] |
77 | [neighbor]); |
78 | } |
79 | dist = sqrt(dist); |
80 | if (exp == 2) { |
81 | #ifdef Dij2 |
82 | Dij = 1.0 / sqrt(lap[count]); |
83 | sum += (Dij - dist) * (Dij - dist) * (lap[count]); |
84 | #else |
85 | Dij = 1.0 / lap[count]; |
86 | sum += (Dij - dist) * (Dij - dist) * (lap[count]); |
87 | #endif |
88 | } else { |
89 | Dij = 1.0 / lap[count]; |
90 | sum += (Dij - dist) * (Dij - dist) * (lap[count]); |
91 | } |
92 | } |
93 | } |
94 | |
95 | return sum; |
96 | } |
97 | |
98 | static double |
99 | compute_stress1(double **coords, dist_data * distances, int dim, int n, int exp) |
100 | { |
101 | /* compute the overall stress */ |
102 | |
103 | int i, j, l, node; |
104 | double sum, dist, Dij; |
105 | sum = 0; |
106 | if (exp == 2) { |
107 | for (i = 0; i < n; i++) { |
108 | for (j = 0; j < distances[i].nedges; j++) { |
109 | node = distances[i].edges[j]; |
110 | if (node <= i) { |
111 | continue; |
112 | } |
113 | dist = 0; |
114 | for (l = 0; l < dim; l++) { |
115 | dist += |
116 | (coords[l][i] - coords[l][node]) * (coords[l][i] - |
117 | coords[l] |
118 | [node]); |
119 | } |
120 | dist = sqrt(dist); |
121 | Dij = distances[i].edist[j]; |
122 | #ifdef Dij2 |
123 | sum += (Dij - dist) * (Dij - dist) / (Dij * Dij); |
124 | #else |
125 | sum += (Dij - dist) * (Dij - dist) / Dij; |
126 | #endif |
127 | } |
128 | } |
129 | } else { |
130 | for (i = 0; i < n; i++) { |
131 | for (j = 0; j < distances[i].nedges; j++) { |
132 | node = distances[i].edges[j]; |
133 | if (node <= i) { |
134 | continue; |
135 | } |
136 | dist = 0; |
137 | for (l = 0; l < dim; l++) { |
138 | dist += |
139 | (coords[l][i] - coords[l][node]) * (coords[l][i] - |
140 | coords[l] |
141 | [node]); |
142 | } |
143 | dist = sqrt(dist); |
144 | Dij = distances[i].edist[j]; |
145 | sum += (Dij - dist) * (Dij - dist) / Dij; |
146 | } |
147 | } |
148 | } |
149 | |
150 | return sum; |
151 | } |
152 | |
153 | /* initLayout: |
154 | * Initialize node coordinates. If the node already has |
155 | * a position, use it. |
156 | * Return true if some node is fixed. |
157 | */ |
158 | int |
159 | initLayout(vtx_data * graph, int n, int dim, double **coords, |
160 | node_t ** nodes) |
161 | { |
162 | node_t *np; |
163 | double *xp; |
164 | double *yp; |
165 | double *pt; |
166 | int i, d; |
167 | int pinned = 0; |
168 | |
169 | xp = coords[0]; |
170 | yp = coords[1]; |
171 | for (i = 0; i < n; i++) { |
172 | np = nodes[i]; |
173 | if (hasPos(np)) { |
174 | pt = ND_pos(np); |
175 | *xp++ = *pt++; |
176 | *yp++ = *pt++; |
177 | if (dim > 2) { |
178 | for (d = 2; d < dim; d++) |
179 | coords[d][i] = *pt++; |
180 | } |
181 | if (isFixed(np)) |
182 | pinned = 1; |
183 | } else { |
184 | *xp++ = drand48(); |
185 | *yp++ = drand48(); |
186 | if (dim > 2) { |
187 | for (d = 2; d < dim; d++) |
188 | coords[d][i] = drand48(); |
189 | } |
190 | } |
191 | } |
192 | |
193 | for (d = 0; d < dim; d++) |
194 | orthog1(n, coords[d]); |
195 | |
196 | return pinned; |
197 | } |
198 | |
199 | float *circuitModel(vtx_data * graph, int nG) |
200 | { |
201 | int i, j, e, rv, count; |
202 | float *Dij = N_NEW(nG * (nG + 1) / 2, float); |
203 | double **Gm; |
204 | double **Gm_inv; |
205 | |
206 | Gm = new_array(nG, nG, 0.0); |
207 | Gm_inv = new_array(nG, nG, 0.0); |
208 | |
209 | /* set non-diagonal entries */ |
210 | if (graph->ewgts) { |
211 | for (i = 0; i < nG; i++) { |
212 | for (e = 1; e < graph[i].nedges; e++) { |
213 | j = graph[i].edges[e]; |
214 | /* conductance is 1/resistance */ |
215 | Gm[i][j] = Gm[j][i] = -1.0 / graph[i].ewgts[e]; /* negate */ |
216 | } |
217 | } |
218 | } else { |
219 | for (i = 0; i < nG; i++) { |
220 | for (e = 1; e < graph[i].nedges; e++) { |
221 | j = graph[i].edges[e]; |
222 | /* conductance is 1/resistance */ |
223 | Gm[i][j] = Gm[j][i] = -1.0; /* ewgts are all 1 */ |
224 | } |
225 | } |
226 | } |
227 | |
228 | rv = solveCircuit(nG, Gm, Gm_inv); |
229 | |
230 | if (rv) { |
231 | float v; |
232 | count = 0; |
233 | for (i = 0; i < nG; i++) { |
234 | for (j = i; j < nG; j++) { |
235 | if (i == j) |
236 | v = 0.0; |
237 | else |
238 | v = (float) (Gm_inv[i][i] + Gm_inv[j][j] - |
239 | 2.0 * Gm_inv[i][j]); |
240 | Dij[count++] = v; |
241 | } |
242 | } |
243 | } else { |
244 | free(Dij); |
245 | Dij = NULL; |
246 | } |
247 | free_array(Gm); |
248 | free_array(Gm_inv); |
249 | return Dij; |
250 | } |
251 | |
252 | /* sparse_stress_subspace_majorization_kD: |
253 | * Optimization of the stress function using sparse distance matrix, within a vector-space |
254 | * Fastest and least accurate method |
255 | * |
256 | * NOTE: We use integral shortest path values here, assuming |
257 | * this is only to get an initial layout. In general, if edge lengths |
258 | * are involved, we may end up with 0 length edges. |
259 | */ |
260 | static int sparse_stress_subspace_majorization_kD(vtx_data * graph, /* Input graph in sparse representation */ |
261 | int n, /* Number of nodes */ |
262 | int nedges_graph, /* Number of edges */ |
263 | double **coords, /* coordinates of nodes (output layout) */ |
264 | int dim, /* dimemsionality of layout */ |
265 | int smart_ini, /* smart initialization */ |
266 | int exp, /* scale exponent */ |
267 | int reweight_graph, /* difference model */ |
268 | int n_iterations, /* max #iterations */ |
269 | int dist_bound, /* neighborhood size in sparse distance matrix */ |
270 | int num_centers /* #pivots in sparse distance matrix */ |
271 | ) |
272 | { |
273 | int iterations; /* output: number of iteration of the process */ |
274 | |
275 | double conj_tol = tolerance_cg; /* tolerance of Conjugate Gradient */ |
276 | |
277 | /************************************************* |
278 | ** Computation of pivot-based, sparse, subspace-restricted ** |
279 | ** k-D stress minimization by majorization ** |
280 | *************************************************/ |
281 | |
282 | int i, j, k, node; |
283 | |
284 | /************************************************* |
285 | ** First compute the subspace in which we optimize ** |
286 | ** The subspace is the high-dimensional embedding ** |
287 | *************************************************/ |
288 | |
289 | int subspace_dim = MIN(stress_pca_dim, n); /* overall dimensionality of subspace */ |
290 | double **subspace = N_GNEW(subspace_dim, double *); |
291 | double *d_storage = N_GNEW(subspace_dim * n, double); |
292 | int num_centers_local; |
293 | DistType **full_coords; |
294 | /* if i is a pivot than CenterIndex[i] is its index, otherwise CenterIndex[i]= -1 */ |
295 | int *CenterIndex; |
296 | int *invCenterIndex; /* list the pivot nodes */ |
297 | Queue Q; |
298 | float *old_weights; |
299 | /* this matrix stores the distance between each node and each "center" */ |
300 | DistType **Dij; |
301 | /* this vector stores the distances of each node to the selected "centers" */ |
302 | DistType *dist; |
303 | DistType max_dist; |
304 | DistType *storage; |
305 | int *visited_nodes; |
306 | dist_data *distances; |
307 | int available_space; |
308 | int *storage1 = NULL; |
309 | DistType *storage2 = NULL; |
310 | int num_visited_nodes; |
311 | int num_neighbors; |
312 | int index; |
313 | int nedges; |
314 | DistType *dist_list; |
315 | vtx_data *lap; |
316 | int *edges; |
317 | float *ewgts; |
318 | double degree; |
319 | double **directions; |
320 | float **tmp_mat; |
321 | float **matrix; |
322 | double dist_ij; |
323 | double *b; |
324 | double *b_restricted; |
325 | double L_ij; |
326 | double old_stress, new_stress; |
327 | boolean converged; |
328 | |
329 | for (i = 0; i < subspace_dim; i++) { |
330 | subspace[i] = d_storage + i * n; |
331 | } |
332 | |
333 | /* compute PHDE: */ |
334 | num_centers_local = MIN(n, MAX(2 * subspace_dim, 50)); |
335 | full_coords = NULL; |
336 | /* High dimensional embedding */ |
337 | embed_graph(graph, n, num_centers_local, &full_coords, reweight_graph); |
338 | /* Centering coordinates */ |
339 | center_coordinate(full_coords, n, num_centers_local); |
340 | /* PCA */ |
341 | PCA_alloc(full_coords, num_centers_local, n, subspace, subspace_dim); |
342 | |
343 | free(full_coords[0]); |
344 | free(full_coords); |
345 | |
346 | /************************************************* |
347 | ** Compute the sparse-shortest-distances matrix 'distances' ** |
348 | *************************************************/ |
349 | |
350 | CenterIndex = N_GNEW(n, int); |
351 | for (i = 0; i < n; i++) { |
352 | CenterIndex[i] = -1; |
353 | } |
354 | invCenterIndex = NULL; |
355 | |
356 | mkQueue(&Q, n); |
357 | old_weights = graph[0].ewgts; |
358 | |
359 | if (reweight_graph) { |
360 | /* weight graph to separate high-degree nodes */ |
361 | /* in the future, perform slower Dijkstra-based computation */ |
362 | compute_new_weights(graph, n); |
363 | } |
364 | |
365 | /* compute sparse distance matrix */ |
366 | /* first select 'num_centers' pivots from which we compute distance */ |
367 | /* to all other nodes */ |
368 | |
369 | Dij = NULL; |
370 | dist = N_GNEW(n, DistType); |
371 | if (num_centers == 0) { /* no pivots, skip pivots-to-nodes distance calculation */ |
372 | goto after_pivots_selection; |
373 | } |
374 | |
375 | invCenterIndex = N_GNEW(num_centers, int); |
376 | |
377 | storage = N_GNEW(n * num_centers, DistType); |
378 | Dij = N_GNEW(num_centers, DistType *); |
379 | for (i = 0; i < num_centers; i++) |
380 | Dij[i] = storage + i * n; |
381 | |
382 | /* select 'num_centers' pivots that are uniformaly spread over the graph */ |
383 | |
384 | /* the first pivots is selected randomly */ |
385 | node = rand() % n; |
386 | CenterIndex[node] = 0; |
387 | invCenterIndex[0] = node; |
388 | |
389 | if (reweight_graph) { |
390 | dijkstra(node, graph, n, Dij[0]); |
391 | } else { |
392 | bfs(node, graph, n, Dij[0], &Q); |
393 | } |
394 | |
395 | /* find the most distant node from first pivot */ |
396 | max_dist = 0; |
397 | for (i = 0; i < n; i++) { |
398 | dist[i] = Dij[0][i]; |
399 | if (dist[i] > max_dist) { |
400 | node = i; |
401 | max_dist = dist[i]; |
402 | } |
403 | } |
404 | /* select other dim-1 nodes as pivots */ |
405 | for (i = 1; i < num_centers; i++) { |
406 | CenterIndex[node] = i; |
407 | invCenterIndex[i] = node; |
408 | if (reweight_graph) { |
409 | dijkstra(node, graph, n, Dij[i]); |
410 | } else { |
411 | bfs(node, graph, n, Dij[i], &Q); |
412 | } |
413 | max_dist = 0; |
414 | for (j = 0; j < n; j++) { |
415 | dist[j] = MIN(dist[j], Dij[i][j]); |
416 | if (dist[j] > max_dist |
417 | || (dist[j] == max_dist && rand() % (j + 1) == 0)) { |
418 | node = j; |
419 | max_dist = dist[j]; |
420 | } |
421 | } |
422 | } |
423 | |
424 | after_pivots_selection: |
425 | |
426 | /* Construct a sparse distance matrix 'distances' */ |
427 | |
428 | /* initialize dist to -1, important for 'bfs_bounded(..)' */ |
429 | for (i = 0; i < n; i++) { |
430 | dist[i] = -1; |
431 | } |
432 | |
433 | visited_nodes = N_GNEW(n, int); |
434 | distances = N_GNEW(n, dist_data); |
435 | available_space = 0; |
436 | nedges = 0; |
437 | for (i = 0; i < n; i++) { |
438 | if (CenterIndex[i] >= 0) { /* a pivot node */ |
439 | distances[i].edges = N_GNEW(n - 1, int); |
440 | distances[i].edist = N_GNEW(n - 1, DistType); |
441 | distances[i].nedges = n - 1; |
442 | nedges += n - 1; |
443 | distances[i].free_mem = TRUE; |
444 | index = CenterIndex[i]; |
445 | for (j = 0; j < i; j++) { |
446 | distances[i].edges[j] = j; |
447 | distances[i].edist[j] = Dij[index][j]; |
448 | } |
449 | for (j = i + 1; j < n; j++) { |
450 | distances[i].edges[j - 1] = j; |
451 | distances[i].edist[j - 1] = Dij[index][j]; |
452 | } |
453 | continue; |
454 | } |
455 | |
456 | /* a non pivot node */ |
457 | |
458 | if (dist_bound > 0) { |
459 | if (reweight_graph) { |
460 | num_visited_nodes = |
461 | dijkstra_bounded(i, graph, n, dist, dist_bound, |
462 | visited_nodes); |
463 | } else { |
464 | num_visited_nodes = |
465 | bfs_bounded(i, graph, n, dist, &Q, dist_bound, |
466 | visited_nodes); |
467 | } |
468 | /* filter the pivots out of the visited nodes list, and the self loop: */ |
469 | for (j = 0; j < num_visited_nodes;) { |
470 | if (CenterIndex[visited_nodes[j]] < 0 |
471 | && visited_nodes[j] != i) { |
472 | /* not a pivot or self loop */ |
473 | j++; |
474 | } else { |
475 | dist[visited_nodes[j]] = -1; |
476 | visited_nodes[j] = visited_nodes[--num_visited_nodes]; |
477 | } |
478 | } |
479 | } else { |
480 | num_visited_nodes = 0; |
481 | } |
482 | num_neighbors = num_visited_nodes + num_centers; |
483 | if (num_neighbors > available_space) { |
484 | available_space = (dist_bound + 1) * n; |
485 | storage1 = N_GNEW(available_space, int); |
486 | storage2 = N_GNEW(available_space, DistType); |
487 | distances[i].free_mem = TRUE; |
488 | } else { |
489 | distances[i].free_mem = FALSE; |
490 | } |
491 | distances[i].edges = storage1; |
492 | distances[i].edist = storage2; |
493 | distances[i].nedges = num_neighbors; |
494 | nedges += num_neighbors; |
495 | for (j = 0; j < num_visited_nodes; j++) { |
496 | storage1[j] = visited_nodes[j]; |
497 | storage2[j] = dist[visited_nodes[j]]; |
498 | dist[visited_nodes[j]] = -1; |
499 | } |
500 | /* add all pivots: */ |
501 | for (j = num_visited_nodes; j < num_neighbors; j++) { |
502 | index = j - num_visited_nodes; |
503 | storage1[j] = invCenterIndex[index]; |
504 | storage2[j] = Dij[index][i]; |
505 | } |
506 | |
507 | storage1 += num_neighbors; |
508 | storage2 += num_neighbors; |
509 | available_space -= num_neighbors; |
510 | } |
511 | |
512 | free(dist); |
513 | free(visited_nodes); |
514 | |
515 | if (Dij != NULL) { |
516 | free(Dij[0]); |
517 | free(Dij); |
518 | } |
519 | |
520 | /************************************************* |
521 | ** Laplacian computation ** |
522 | *************************************************/ |
523 | |
524 | lap = N_GNEW(n, vtx_data); |
525 | edges = N_GNEW(nedges + n, int); |
526 | ewgts = N_GNEW(nedges + n, float); |
527 | for (i = 0; i < n; i++) { |
528 | lap[i].edges = edges; |
529 | lap[i].ewgts = ewgts; |
530 | lap[i].nedges = distances[i].nedges + 1; /*add the self loop */ |
531 | dist_list = distances[i].edist - 1; /* '-1' since edist[0] goes for number '1' entry in the lap */ |
532 | degree = 0; |
533 | if (exp == 2) { |
534 | for (j = 1; j < lap[i].nedges; j++) { |
535 | edges[j] = distances[i].edges[j - 1]; |
536 | #ifdef Dij2 |
537 | ewgts[j] = (float) -1.0 / ((float) dist_list[j] * (float) dist_list[j]); /* cast to float to prevent overflow */ |
538 | #else |
539 | ewgts[j] = -1.0 / (float) dist_list[j]; |
540 | #endif |
541 | degree -= ewgts[j]; |
542 | } |
543 | } else { |
544 | for (j = 1; j < lap[i].nedges; j++) { |
545 | edges[j] = distances[i].edges[j - 1]; |
546 | ewgts[j] = -1.0 / (float) dist_list[j]; |
547 | degree -= ewgts[j]; |
548 | } |
549 | } |
550 | edges[0] = i; |
551 | ewgts[0] = (float) degree; |
552 | edges += lap[i].nedges; |
553 | ewgts += lap[i].nedges; |
554 | } |
555 | |
556 | /************************************************* |
557 | ** initialize direction vectors ** |
558 | ** to get an initial layout ** |
559 | *************************************************/ |
560 | |
561 | /* the layout is subspace*directions */ |
562 | directions = N_GNEW(dim, double *); |
563 | directions[0] = N_GNEW(dim * subspace_dim, double); |
564 | for (i = 1; i < dim; i++) { |
565 | directions[i] = directions[0] + i * subspace_dim; |
566 | } |
567 | |
568 | if (smart_ini) { |
569 | /* smart initialization */ |
570 | for (k = 0; k < dim; k++) { |
571 | for (i = 0; i < subspace_dim; i++) { |
572 | directions[k][i] = 0; |
573 | } |
574 | } |
575 | if (dim != 2) { |
576 | /* use the first vectors in the eigenspace */ |
577 | /* each direction points to its "principal axes" */ |
578 | for (k = 0; k < dim; k++) { |
579 | directions[k][k] = 1; |
580 | } |
581 | } else { |
582 | /* for the frequent 2-D case we prefer iterative-PCA over PCA */ |
583 | /* Note that we don't want to mix the Lap's eigenspace with the HDE */ |
584 | /* in the computation since they have different scales */ |
585 | |
586 | directions[0][0] = 1; /* first pca projection vector */ |
587 | if (!iterativePCA_1D(subspace, subspace_dim, n, directions[1])) { |
588 | for (k = 0; k < subspace_dim; k++) { |
589 | directions[1][k] = 0; |
590 | } |
591 | directions[1][1] = 1; |
592 | } |
593 | } |
594 | |
595 | } else { |
596 | /* random initialization */ |
597 | for (k = 0; k < dim; k++) { |
598 | for (i = 0; i < subspace_dim; i++) { |
599 | directions[k][i] = (double) (rand()) / RAND_MAX; |
600 | } |
601 | } |
602 | } |
603 | |
604 | /* compute initial k-D layout */ |
605 | |
606 | for (k = 0; k < dim; k++) { |
607 | right_mult_with_vector_transpose(subspace, n, subspace_dim, |
608 | directions[k], coords[k]); |
609 | } |
610 | |
611 | /************************************************* |
612 | ** compute restriction of the laplacian to subspace: ** |
613 | *************************************************/ |
614 | |
615 | tmp_mat = NULL; |
616 | matrix = NULL; |
617 | mult_sparse_dense_mat_transpose(lap, subspace, n, subspace_dim, |
618 | &tmp_mat); |
619 | mult_dense_mat(subspace, tmp_mat, subspace_dim, n, subspace_dim, |
620 | &matrix); |
621 | free(tmp_mat[0]); |
622 | free(tmp_mat); |
623 | |
624 | /************************************************* |
625 | ** Layout optimization ** |
626 | *************************************************/ |
627 | |
628 | b = N_GNEW(n, double); |
629 | b_restricted = N_GNEW(subspace_dim, double); |
630 | old_stress = compute_stress1(coords, distances, dim, n, exp); |
631 | for (converged = FALSE, iterations = 0; |
632 | iterations < n_iterations && !converged; iterations++) { |
633 | |
634 | /* Axis-by-axis optimization: */ |
635 | for (k = 0; k < dim; k++) { |
636 | /* compute the vector b */ |
637 | /* multiply on-the-fly with distance-based laplacian */ |
638 | /* (for saving storage we don't construct this Lap explicitly) */ |
639 | for (i = 0; i < n; i++) { |
640 | degree = 0; |
641 | b[i] = 0; |
642 | dist_list = distances[i].edist - 1; |
643 | edges = lap[i].edges; |
644 | ewgts = lap[i].ewgts; |
645 | for (j = 1; j < lap[i].nedges; j++) { |
646 | node = edges[j]; |
647 | dist_ij = distance_kD(coords, dim, i, node); |
648 | if (dist_ij > 1e-30) { /* skip zero distances */ |
649 | L_ij = -ewgts[j] * dist_list[j] / dist_ij; /* L_ij=w_{ij}*d_{ij}/dist_{ij} */ |
650 | degree -= L_ij; |
651 | b[i] += L_ij * coords[k][node]; |
652 | } |
653 | } |
654 | b[i] += degree * coords[k][i]; |
655 | } |
656 | right_mult_with_vector_d(subspace, subspace_dim, n, b, |
657 | b_restricted); |
658 | if (conjugate_gradient_f(matrix, directions[k], b_restricted, |
659 | subspace_dim, conj_tol, subspace_dim, |
660 | FALSE)) { |
661 | iterations = -1; |
662 | goto finish0; |
663 | } |
664 | right_mult_with_vector_transpose(subspace, n, subspace_dim, |
665 | directions[k], coords[k]); |
666 | } |
667 | |
668 | if ((converged = (iterations % 2 == 0))) { /* check for convergence each two iterations */ |
669 | new_stress = compute_stress1(coords, distances, dim, n, exp); |
670 | converged = |
671 | fabs(new_stress - old_stress) / (new_stress + 1e-10) < |
672 | Epsilon; |
673 | old_stress = new_stress; |
674 | } |
675 | } |
676 | finish0: |
677 | free(b_restricted); |
678 | free(b); |
679 | |
680 | if (reweight_graph) { |
681 | restore_old_weights(graph, n, old_weights); |
682 | } |
683 | |
684 | for (i = 0; i < n; i++) { |
685 | if (distances[i].free_mem) { |
686 | free(distances[i].edges); |
687 | free(distances[i].edist); |
688 | } |
689 | } |
690 | |
691 | free(distances); |
692 | free(lap[0].edges); |
693 | free(lap[0].ewgts); |
694 | free(lap); |
695 | free(CenterIndex); |
696 | free(invCenterIndex); |
697 | free(directions[0]); |
698 | free(directions); |
699 | if (matrix != NULL) { |
700 | free(matrix[0]); |
701 | free(matrix); |
702 | } |
703 | free(subspace[0]); |
704 | free(subspace); |
705 | freeQueue(&Q); |
706 | |
707 | return iterations; |
708 | } |
709 | |
710 | /* compute_weighted_apsp_packed: |
711 | * Edge lengths can be any float > 0 |
712 | */ |
713 | static float *compute_weighted_apsp_packed(vtx_data * graph, int n) |
714 | { |
715 | int i, j, count; |
716 | float *Dij = N_NEW(n * (n + 1) / 2, float); |
717 | |
718 | float *Di = N_NEW(n, float); |
719 | Queue Q; |
720 | |
721 | mkQueue(&Q, n); |
722 | |
723 | count = 0; |
724 | for (i = 0; i < n; i++) { |
725 | dijkstra_f(i, graph, n, Di); |
726 | for (j = i; j < n; j++) { |
727 | Dij[count++] = Di[j]; |
728 | } |
729 | } |
730 | free(Di); |
731 | freeQueue(&Q); |
732 | return Dij; |
733 | } |
734 | |
735 | |
736 | /* mdsModel: |
737 | * Update matrix with actual edge lengths |
738 | */ |
739 | float *mdsModel(vtx_data * graph, int nG) |
740 | { |
741 | int i, j, e; |
742 | float *Dij; |
743 | int shift = 0; |
744 | double delta = 0.0; |
745 | |
746 | if (graph->ewgts == NULL) |
747 | return 0; |
748 | |
749 | /* first, compute shortest paths to fill in non-edges */ |
750 | Dij = compute_weighted_apsp_packed(graph, nG); |
751 | |
752 | /* then, replace edge entries will user-supplied len */ |
753 | for (i = 0; i < nG; i++) { |
754 | shift += i; |
755 | for (e = 1; e < graph[i].nedges; e++) { |
756 | j = graph[i].edges[e]; |
757 | if (j < i) |
758 | continue; |
759 | delta += fabsf(Dij[i * nG + j - shift] - graph[i].ewgts[e]); |
760 | Dij[i * nG + j - shift] = graph[i].ewgts[e]; |
761 | } |
762 | } |
763 | if (Verbose) { |
764 | fprintf(stderr, "mdsModel: delta = %f\n" , delta); |
765 | } |
766 | return Dij; |
767 | } |
768 | |
769 | /* compute_apsp_packed: |
770 | * Assumes integral weights > 0. |
771 | */ |
772 | float *compute_apsp_packed(vtx_data * graph, int n) |
773 | { |
774 | int i, j, count; |
775 | float *Dij = N_NEW(n * (n + 1) / 2, float); |
776 | |
777 | DistType *Di = N_NEW(n, DistType); |
778 | Queue Q; |
779 | |
780 | mkQueue(&Q, n); |
781 | |
782 | count = 0; |
783 | for (i = 0; i < n; i++) { |
784 | bfs(i, graph, n, Di, &Q); |
785 | for (j = i; j < n; j++) { |
786 | Dij[count++] = ((float) Di[j]); |
787 | } |
788 | } |
789 | free(Di); |
790 | freeQueue(&Q); |
791 | return Dij; |
792 | } |
793 | |
794 | #define max(x,y) ((x)>(y)?(x):(y)) |
795 | |
796 | float *compute_apsp_artifical_weights_packed(vtx_data * graph, int n) |
797 | { |
798 | /* compute all-pairs-shortest-path-length while weighting the graph */ |
799 | /* so high-degree nodes are distantly located */ |
800 | |
801 | float *Dij; |
802 | int i, j; |
803 | float *old_weights = graph[0].ewgts; |
804 | int nedges = 0; |
805 | float *weights; |
806 | int *vtx_vec; |
807 | int deg_i, deg_j, neighbor; |
808 | |
809 | for (i = 0; i < n; i++) { |
810 | nedges += graph[i].nedges; |
811 | } |
812 | |
813 | weights = N_NEW(nedges, float); |
814 | vtx_vec = N_NEW(n, int); |
815 | for (i = 0; i < n; i++) { |
816 | vtx_vec[i] = 0; |
817 | } |
818 | |
819 | if (graph->ewgts) { |
820 | for (i = 0; i < n; i++) { |
821 | fill_neighbors_vec_unweighted(graph, i, vtx_vec); |
822 | deg_i = graph[i].nedges - 1; |
823 | for (j = 1; j <= deg_i; j++) { |
824 | neighbor = graph[i].edges[j]; |
825 | deg_j = graph[neighbor].nedges - 1; |
826 | weights[j] = (float) |
827 | max((float) |
828 | (deg_i + deg_j - |
829 | 2 * common_neighbors(graph, i, neighbor, |
830 | vtx_vec)), |
831 | graph[i].ewgts[j]); |
832 | } |
833 | empty_neighbors_vec(graph, i, vtx_vec); |
834 | graph[i].ewgts = weights; |
835 | weights += graph[i].nedges; |
836 | } |
837 | Dij = compute_weighted_apsp_packed(graph, n); |
838 | } else { |
839 | for (i = 0; i < n; i++) { |
840 | graph[i].ewgts = weights; |
841 | fill_neighbors_vec_unweighted(graph, i, vtx_vec); |
842 | deg_i = graph[i].nedges - 1; |
843 | for (j = 1; j <= deg_i; j++) { |
844 | neighbor = graph[i].edges[j]; |
845 | deg_j = graph[neighbor].nedges - 1; |
846 | weights[j] = |
847 | ((float) deg_i + deg_j - |
848 | 2 * common_neighbors(graph, i, neighbor, vtx_vec)); |
849 | } |
850 | empty_neighbors_vec(graph, i, vtx_vec); |
851 | weights += graph[i].nedges; |
852 | } |
853 | Dij = compute_apsp_packed(graph, n); |
854 | } |
855 | |
856 | free(vtx_vec); |
857 | free(graph[0].ewgts); |
858 | graph[0].ewgts = NULL; |
859 | if (old_weights != NULL) { |
860 | for (i = 0; i < n; i++) { |
861 | graph[i].ewgts = old_weights; |
862 | old_weights += graph[i].nedges; |
863 | } |
864 | } |
865 | return Dij; |
866 | } |
867 | |
868 | #if DEBUG > 1 |
869 | static void dumpMatrix(float *Dij, int n) |
870 | { |
871 | int i, j, count = 0; |
872 | for (i = 0; i < n; i++) { |
873 | for (j = i; j < n; j++) { |
874 | fprintf(stderr, "%.02f " , Dij[count++]); |
875 | } |
876 | fputs("\n" , stderr); |
877 | } |
878 | } |
879 | #endif |
880 | |
881 | /* Accumulator type for diagonal of Laplacian. Needs to be as large |
882 | * as possible. Use long double; configure to double if necessary. |
883 | */ |
884 | #define DegType long double |
885 | |
886 | /* stress_majorization_kD_mkernel: |
887 | * At present, if any nodes have pos set, smart_ini is false. |
888 | */ |
889 | int stress_majorization_kD_mkernel(vtx_data * graph, /* Input graph in sparse representation */ |
890 | int n, /* Number of nodes */ |
891 | int nedges_graph, /* Number of edges */ |
892 | double **d_coords, /* coordinates of nodes (output layout) */ |
893 | node_t ** nodes, /* original nodes */ |
894 | int dim, /* dimemsionality of layout */ |
895 | int opts, /* options */ |
896 | int model, /* model */ |
897 | int maxi /* max iterations */ |
898 | ) |
899 | { |
900 | int iterations; /* output: number of iteration of the process */ |
901 | |
902 | double conj_tol = tolerance_cg; /* tolerance of Conjugate Gradient */ |
903 | float *Dij = NULL; |
904 | int i, j, k; |
905 | float **coords = NULL; |
906 | float *f_storage = NULL; |
907 | float constant_term; |
908 | int count; |
909 | DegType degree; |
910 | int lap_length; |
911 | float *lap2 = NULL; |
912 | DegType *degrees = NULL; |
913 | int step; |
914 | float val; |
915 | double old_stress, new_stress; |
916 | boolean converged; |
917 | float **b = NULL; |
918 | float *tmp_coords = NULL; |
919 | float *dist_accumulator = NULL; |
920 | float *lap1 = NULL; |
921 | int smart_ini = opts & opt_smart_init; |
922 | int exp = opts & opt_exp_flag; |
923 | int len; |
924 | int havePinned; /* some node is pinned */ |
925 | #ifdef ALTERNATIVE_STRESS_CALC |
926 | double mat_stress; |
927 | #endif |
928 | #ifdef NONCORE |
929 | FILE *fp = NULL; |
930 | #endif |
931 | |
932 | |
933 | /************************************************* |
934 | ** Computation of full, dense, unrestricted k-D ** |
935 | ** stress minimization by majorization ** |
936 | *************************************************/ |
937 | |
938 | /**************************************************** |
939 | ** Compute the all-pairs-shortest-distances matrix ** |
940 | ****************************************************/ |
941 | |
942 | if (maxi < 0) |
943 | return 0; |
944 | |
945 | if (Verbose) |
946 | start_timer(); |
947 | |
948 | if (model == MODEL_SUBSET) { |
949 | /* weight graph to separate high-degree nodes */ |
950 | /* and perform slower Dijkstra-based computation */ |
951 | if (Verbose) |
952 | fprintf(stderr, "Calculating subset model" ); |
953 | Dij = compute_apsp_artifical_weights_packed(graph, n); |
954 | } else if (model == MODEL_CIRCUIT) { |
955 | Dij = circuitModel(graph, n); |
956 | if (!Dij) { |
957 | agerr(AGWARN, |
958 | "graph is disconnected. Hence, the circuit model\n" ); |
959 | agerr(AGPREV, |
960 | "is undefined. Reverting to the shortest path model.\n" ); |
961 | } |
962 | } else if (model == MODEL_MDS) { |
963 | if (Verbose) |
964 | fprintf(stderr, "Calculating MDS model" ); |
965 | Dij = mdsModel(graph, n); |
966 | } |
967 | if (!Dij) { |
968 | if (Verbose) |
969 | fprintf(stderr, "Calculating shortest paths" ); |
970 | if (graph->ewgts) |
971 | Dij = compute_weighted_apsp_packed(graph, n); |
972 | else |
973 | Dij = compute_apsp_packed(graph, n); |
974 | } |
975 | |
976 | if (Verbose) { |
977 | fprintf(stderr, ": %.2f sec\n" , elapsed_sec()); |
978 | fprintf(stderr, "Setting initial positions" ); |
979 | start_timer(); |
980 | } |
981 | |
982 | /************************** |
983 | ** Layout initialization ** |
984 | **************************/ |
985 | |
986 | if (smart_ini && (n > 1)) { |
987 | havePinned = 0; |
988 | /* optimize layout quickly within subspace */ |
989 | /* perform at most 50 iterations within 30-D subspace to |
990 | get an estimate */ |
991 | if (sparse_stress_subspace_majorization_kD(graph, n, nedges_graph, |
992 | d_coords, dim, smart_ini, exp, |
993 | (model == MODEL_SUBSET), 50, |
994 | neighborhood_radius_subspace, |
995 | num_pivots_stress) < 0) { |
996 | iterations = -1; |
997 | goto finish1; |
998 | } |
999 | |
1000 | for (i = 0; i < dim; i++) { |
1001 | /* for numerical stability, scale down layout */ |
1002 | double max = 1; |
1003 | for (j = 0; j < n; j++) { |
1004 | if (fabs(d_coords[i][j]) > max) { |
1005 | max = fabs(d_coords[i][j]); |
1006 | } |
1007 | } |
1008 | for (j = 0; j < n; j++) { |
1009 | d_coords[i][j] /= max; |
1010 | } |
1011 | /* add small random noise */ |
1012 | for (j = 0; j < n; j++) { |
1013 | d_coords[i][j] += 1e-6 * (drand48() - 0.5); |
1014 | } |
1015 | orthog1(n, d_coords[i]); |
1016 | } |
1017 | } else { |
1018 | havePinned = initLayout(graph, n, dim, d_coords, nodes); |
1019 | } |
1020 | if (Verbose) |
1021 | fprintf(stderr, ": %.2f sec" , elapsed_sec()); |
1022 | if ((n == 1) || (maxi == 0)) |
1023 | return 0; |
1024 | |
1025 | if (Verbose) { |
1026 | fprintf(stderr, ": %.2f sec\n" , elapsed_sec()); |
1027 | fprintf(stderr, "Setting up stress function" ); |
1028 | start_timer(); |
1029 | } |
1030 | coords = N_NEW(dim, float *); |
1031 | f_storage = N_NEW(dim * n, float); |
1032 | for (i = 0; i < dim; i++) { |
1033 | coords[i] = f_storage + i * n; |
1034 | for (j = 0; j < n; j++) { |
1035 | coords[i][j] = ((float) d_coords[i][j]); |
1036 | } |
1037 | } |
1038 | |
1039 | /* compute constant term in stress sum */ |
1040 | /* which is \sum_{i<j} w_{ij}d_{ij}^2 */ |
1041 | if (exp) { |
1042 | #ifdef Dij2 |
1043 | constant_term = ((float) n * (n - 1) / 2); |
1044 | #else |
1045 | constant_term = 0; |
1046 | for (count = 0, i = 0; i < n - 1; i++) { |
1047 | count++; /* skip self distance */ |
1048 | for (j = 1; j < n - i; j++, count++) { |
1049 | constant_term += Dij[count]; |
1050 | } |
1051 | } |
1052 | #endif |
1053 | } else { |
1054 | constant_term = 0; |
1055 | for (count = 0, i = 0; i < n - 1; i++) { |
1056 | count++; /* skip self distance */ |
1057 | for (j = 1; j < n - i; j++, count++) { |
1058 | constant_term += Dij[count]; |
1059 | } |
1060 | } |
1061 | } |
1062 | |
1063 | /************************** |
1064 | ** Laplacian computation ** |
1065 | **************************/ |
1066 | |
1067 | lap_length = n * (n + 1) / 2; |
1068 | lap2 = Dij; |
1069 | if (exp == 2) { |
1070 | #ifdef Dij2 |
1071 | square_vec(lap_length, lap2); |
1072 | #endif |
1073 | } |
1074 | /* compute off-diagonal entries */ |
1075 | invert_vec(lap_length, lap2); |
1076 | |
1077 | /* compute diagonal entries */ |
1078 | count = 0; |
1079 | degrees = N_NEW(n, DegType); |
1080 | /* set_vector_val(n, 0, degrees); */ |
1081 | memset(degrees, 0, n * sizeof(DegType)); |
1082 | for (i = 0; i < n - 1; i++) { |
1083 | degree = 0; |
1084 | count++; /* skip main diag entry */ |
1085 | for (j = 1; j < n - i; j++, count++) { |
1086 | val = lap2[count]; |
1087 | degree += val; |
1088 | degrees[i + j] -= val; |
1089 | } |
1090 | degrees[i] -= degree; |
1091 | } |
1092 | for (step = n, count = 0, i = 0; i < n; i++, count += step, step--) { |
1093 | lap2[count] = degrees[i]; |
1094 | } |
1095 | |
1096 | #ifdef NONCORE |
1097 | if (n > max_nodes_in_mem) { |
1098 | #define FILENAME "tmp_Dij$$$.bin" |
1099 | fp = fopen(FILENAME, "wb" ); |
1100 | fwrite(lap2, sizeof(float), lap_length, fp); |
1101 | fclose(fp); |
1102 | fp = NULL; |
1103 | } |
1104 | #endif |
1105 | |
1106 | /************************* |
1107 | ** Layout optimization ** |
1108 | *************************/ |
1109 | |
1110 | b = N_NEW(dim, float *); |
1111 | b[0] = N_NEW(dim * n, float); |
1112 | for (k = 1; k < dim; k++) { |
1113 | b[k] = b[0] + k * n; |
1114 | } |
1115 | |
1116 | tmp_coords = N_NEW(n, float); |
1117 | dist_accumulator = N_NEW(n, float); |
1118 | lap1 = NULL; |
1119 | #ifdef NONCORE |
1120 | if (n <= max_nodes_in_mem) { |
1121 | lap1 = N_NEW(lap_length, float); |
1122 | } else { |
1123 | lap1 = lap2; |
1124 | fp = fopen(FILENAME, "rb" ); |
1125 | fgetpos(fp, &pos); |
1126 | } |
1127 | #else |
1128 | lap1 = N_NEW(lap_length, float); |
1129 | #endif |
1130 | |
1131 | |
1132 | #ifdef USE_MAXFLOAT |
1133 | old_stress = MAXFLOAT; /* at least one iteration */ |
1134 | #else |
1135 | old_stress = MAXDOUBLE; /* at least one iteration */ |
1136 | #endif |
1137 | if (Verbose) { |
1138 | fprintf(stderr, ": %.2f sec\n" , elapsed_sec()); |
1139 | fprintf(stderr, "Solving model: " ); |
1140 | start_timer(); |
1141 | } |
1142 | |
1143 | for (converged = FALSE, iterations = 0; |
1144 | iterations < maxi && !converged; iterations++) { |
1145 | |
1146 | /* First, construct Laplacian of 1/(d_ij*|p_i-p_j|) */ |
1147 | /* set_vector_val(n, 0, degrees); */ |
1148 | memset(degrees, 0, n * sizeof(DegType)); |
1149 | if (exp == 2) { |
1150 | #ifdef Dij2 |
1151 | #ifdef NONCORE |
1152 | if (n <= max_nodes_in_mem) { |
1153 | sqrt_vecf(lap_length, lap2, lap1); |
1154 | } else { |
1155 | sqrt_vec(lap_length, lap1); |
1156 | } |
1157 | #else |
1158 | sqrt_vecf(lap_length, lap2, lap1); |
1159 | #endif |
1160 | #endif |
1161 | } |
1162 | for (count = 0, i = 0; i < n - 1; i++) { |
1163 | len = n - i - 1; |
1164 | /* init 'dist_accumulator' with zeros */ |
1165 | set_vector_valf(len, 0, dist_accumulator); |
1166 | |
1167 | /* put into 'dist_accumulator' all squared distances between 'i' and 'i'+1,...,'n'-1 */ |
1168 | for (k = 0; k < dim; k++) { |
1169 | set_vector_valf(len, coords[k][i], tmp_coords); |
1170 | vectors_mult_additionf(len, tmp_coords, -1, |
1171 | coords[k] + i + 1); |
1172 | square_vec(len, tmp_coords); |
1173 | vectors_additionf(len, tmp_coords, dist_accumulator, |
1174 | dist_accumulator); |
1175 | } |
1176 | |
1177 | /* convert to 1/d_{ij} */ |
1178 | invert_sqrt_vec(len, dist_accumulator); |
1179 | /* detect overflows */ |
1180 | for (j = 0; j < len; j++) { |
1181 | if (dist_accumulator[j] >= MAXFLOAT |
1182 | || dist_accumulator[j] < 0) { |
1183 | dist_accumulator[j] = 0; |
1184 | } |
1185 | } |
1186 | |
1187 | count++; /* save place for the main diagonal entry */ |
1188 | degree = 0; |
1189 | if (exp == 2) { |
1190 | for (j = 0; j < len; j++, count++) { |
1191 | #ifdef Dij2 |
1192 | val = lap1[count] *= dist_accumulator[j]; |
1193 | #else |
1194 | val = lap1[count] = dist_accumulator[j]; |
1195 | #endif |
1196 | degree += val; |
1197 | degrees[i + j + 1] -= val; |
1198 | } |
1199 | } else { |
1200 | for (j = 0; j < len; j++, count++) { |
1201 | val = lap1[count] = dist_accumulator[j]; |
1202 | degree += val; |
1203 | degrees[i + j + 1] -= val; |
1204 | } |
1205 | } |
1206 | degrees[i] -= degree; |
1207 | } |
1208 | for (step = n, count = 0, i = 0; i < n; i++, count += step, step--) { |
1209 | lap1[count] = degrees[i]; |
1210 | } |
1211 | |
1212 | /* Now compute b[] */ |
1213 | for (k = 0; k < dim; k++) { |
1214 | /* b[k] := lap1*coords[k] */ |
1215 | right_mult_with_vector_ff(lap1, n, coords[k], b[k]); |
1216 | } |
1217 | |
1218 | |
1219 | /* compute new stress */ |
1220 | /* remember that the Laplacians are negated, so we subtract instead of add and vice versa */ |
1221 | new_stress = 0; |
1222 | for (k = 0; k < dim; k++) { |
1223 | new_stress += vectors_inner_productf(n, coords[k], b[k]); |
1224 | } |
1225 | new_stress *= 2; |
1226 | new_stress += constant_term; /* only after mult by 2 */ |
1227 | #ifdef NONCORE |
1228 | if (n > max_nodes_in_mem) { |
1229 | /* restore lap2 from memory */ |
1230 | fsetpos(fp, &pos); |
1231 | fread(lap2, sizeof(float), lap_length, fp); |
1232 | } |
1233 | #endif |
1234 | for (k = 0; k < dim; k++) { |
1235 | right_mult_with_vector_ff(lap2, n, coords[k], tmp_coords); |
1236 | new_stress -= vectors_inner_productf(n, coords[k], tmp_coords); |
1237 | } |
1238 | #ifdef ALTERNATIVE_STRESS_CALC |
1239 | mat_stress = new_stress; |
1240 | new_stress = compute_stressf(coords, lap2, dim, n); |
1241 | if (fabs(mat_stress - new_stress) / min(mat_stress, new_stress) > |
1242 | 0.001) { |
1243 | fprintf(stderr, "Diff stress vals: %lf %lf (iteration #%d)\n" , |
1244 | mat_stress, new_stress, iterations); |
1245 | } |
1246 | #endif |
1247 | /* Invariant: old_stress > 0. In theory, old_stress >= new_stress |
1248 | * but we use fabs in case of numerical error. |
1249 | */ |
1250 | { |
1251 | double diff = old_stress - new_stress; |
1252 | double change = ABS(diff); |
1253 | converged = (((change / old_stress) < Epsilon) |
1254 | || (new_stress < Epsilon)); |
1255 | } |
1256 | old_stress = new_stress; |
1257 | |
1258 | for (k = 0; k < dim; k++) { |
1259 | node_t *np; |
1260 | if (havePinned) { |
1261 | copy_vectorf(n, coords[k], tmp_coords); |
1262 | if (conjugate_gradient_mkernel(lap2, tmp_coords, b[k], n, |
1263 | conj_tol, n) < 0) { |
1264 | iterations = -1; |
1265 | goto finish1; |
1266 | } |
1267 | for (i = 0; i < n; i++) { |
1268 | np = nodes[i]; |
1269 | if (!isFixed(np)) |
1270 | coords[k][i] = tmp_coords[i]; |
1271 | } |
1272 | } else { |
1273 | if (conjugate_gradient_mkernel(lap2, coords[k], b[k], n, |
1274 | conj_tol, n) < 0) { |
1275 | iterations = -1; |
1276 | goto finish1; |
1277 | } |
1278 | } |
1279 | } |
1280 | if (Verbose && (iterations % 5 == 0)) { |
1281 | fprintf(stderr, "%.3f " , new_stress); |
1282 | if ((iterations + 5) % 50 == 0) |
1283 | fprintf(stderr, "\n" ); |
1284 | } |
1285 | } |
1286 | if (Verbose) { |
1287 | fprintf(stderr, "\nfinal e = %f %d iterations %.2f sec\n" , |
1288 | compute_stressf(coords, lap2, dim, n, exp), |
1289 | iterations, elapsed_sec()); |
1290 | } |
1291 | |
1292 | for (i = 0; i < dim; i++) { |
1293 | for (j = 0; j < n; j++) { |
1294 | d_coords[i][j] = coords[i][j]; |
1295 | } |
1296 | } |
1297 | #ifdef NONCORE |
1298 | if (fp) |
1299 | fclose(fp); |
1300 | #endif |
1301 | finish1: |
1302 | free(f_storage); |
1303 | free(coords); |
1304 | |
1305 | free(lap2); |
1306 | if (b) { |
1307 | free(b[0]); |
1308 | free(b); |
1309 | } |
1310 | free(tmp_coords); |
1311 | free(dist_accumulator); |
1312 | free(degrees); |
1313 | free(lap1); |
1314 | return iterations; |
1315 | } |
1316 | |