| 1 | /* $Id$ $Revision$ */ | 
| 2 | /* vim:set shiftwidth=4 ts=8: */ | 
| 3 |  | 
| 4 | /************************************************************************* | 
| 5 |  * Copyright (c) 2011 AT&T Intellectual Property | 
| 6 |  * All rights reserved. This program and the accompanying materials | 
| 7 |  * are made available under the terms of the Eclipse Public License v1.0 | 
| 8 |  * which accompanies this distribution, and is available at | 
| 9 |  * http://www.eclipse.org/legal/epl-v10.html | 
| 10 |  * | 
| 11 |  * Contributors: See CVS logs. Details at http://www.graphviz.org/ | 
| 12 |  *************************************************************************/ | 
| 13 |  | 
| 14 |  | 
| 15 | #include "config.h" | 
| 16 |  | 
| 17 | #include	"neato.h" | 
| 18 | #include	"stress.h" | 
| 19 | #include	<time.h> | 
| 20 | #ifndef _WIN32 | 
| 21 | #include	<unistd.h> | 
| 22 | #endif | 
| 23 |  | 
| 24 | static double Epsilon2; | 
| 25 |  | 
| 26 |  | 
| 27 | double fpow32(double x) | 
| 28 | { | 
| 29 |     x = sqrt(x); | 
| 30 |     return x * x * x; | 
| 31 | } | 
| 32 |  | 
| 33 | double distvec(double *p0, double *p1, double *vec) | 
| 34 | { | 
| 35 |     int k; | 
| 36 |     double dist = 0.0; | 
| 37 |  | 
| 38 |     for (k = 0; k < Ndim; k++) { | 
| 39 | 	vec[k] = p0[k] - p1[k]; | 
| 40 | 	dist += (vec[k] * vec[k]); | 
| 41 |     } | 
| 42 |     dist = sqrt(dist); | 
| 43 |     return dist; | 
| 44 | } | 
| 45 |  | 
| 46 | double **new_array(int m, int n, double ival) | 
| 47 | { | 
| 48 |     double **rv; | 
| 49 |     double *mem; | 
| 50 |     int i, j; | 
| 51 |  | 
| 52 |     rv = N_NEW(m, double *); | 
| 53 |     mem = N_NEW(m * n, double); | 
| 54 |     for (i = 0; i < m; i++) { | 
| 55 | 	rv[i] = mem; | 
| 56 | 	mem = mem + n; | 
| 57 | 	for (j = 0; j < n; j++) | 
| 58 | 	    rv[i][j] = ival; | 
| 59 |     } | 
| 60 |     return rv; | 
| 61 | } | 
| 62 |  | 
| 63 | void free_array(double **rv) | 
| 64 | { | 
| 65 |     if (rv) { | 
| 66 | 	free(rv[0]); | 
| 67 | 	free(rv); | 
| 68 |     } | 
| 69 | } | 
| 70 |  | 
| 71 |  | 
| 72 | static double ***new_3array(int m, int n, int p, double ival) | 
| 73 | { | 
| 74 |     double ***rv; | 
| 75 |     int i, j, k; | 
| 76 |  | 
| 77 |     rv = N_NEW(m + 1, double **); | 
| 78 |     for (i = 0; i < m; i++) { | 
| 79 | 	rv[i] = N_NEW(n + 1, double *); | 
| 80 | 	for (j = 0; j < n; j++) { | 
| 81 | 	    rv[i][j] = N_NEW(p, double); | 
| 82 | 	    for (k = 0; k < p; k++) | 
| 83 | 		rv[i][j][k] = ival; | 
| 84 | 	} | 
| 85 | 	rv[i][j] = NULL;	/* NULL terminate so we can clean up */ | 
| 86 |     } | 
| 87 |     rv[i] = NULL; | 
| 88 |     return rv; | 
| 89 | } | 
| 90 |  | 
| 91 | static void free_3array(double ***rv) | 
| 92 | { | 
| 93 |     int i, j; | 
| 94 |  | 
| 95 |     if (rv) { | 
| 96 | 	for (i = 0; rv[i]; i++) { | 
| 97 | 	    for (j = 0; rv[i][j]; j++) | 
| 98 | 		free(rv[i][j]); | 
| 99 | 	    free(rv[i]); | 
| 100 | 	} | 
| 101 | 	free(rv); | 
| 102 |     } | 
| 103 | } | 
| 104 |  | 
| 105 |  | 
| 106 | /* lenattr: | 
| 107 |  * Return 1 if attribute not defined | 
| 108 |  * Return 2 if attribute string bad | 
| 109 |  */ | 
| 110 | static int lenattr(edge_t* e, Agsym_t* index, double* val) | 
| 111 | { | 
| 112 |     char* s; | 
| 113 |  | 
| 114 |     if (index == NULL) | 
| 115 | 	return 1; | 
| 116 |  | 
| 117 |     s = agxget(e, index); | 
| 118 |     if (*s == '\0') return 1; | 
| 119 |  | 
| 120 |     if ((sscanf(s, "%lf" , val) < 1) || (*val < 0) || ((*val == 0) && !Nop)) { | 
| 121 | 	agerr(AGWARN, "bad edge len \"%s\"" , s); | 
| 122 | 	return 2; | 
| 123 |     } | 
| 124 |     else | 
| 125 | 	return 0; | 
| 126 | } | 
| 127 |  | 
| 128 |  | 
| 129 | /* degreeKind; | 
| 130 |  * Returns degree of n ignoring loops and multiedges. | 
| 131 |  * Returns 0, 1 or many (2) | 
| 132 |  * For case of 1, returns other endpoint of edge. | 
| 133 |  */ | 
| 134 | static int degreeKind(graph_t * g, node_t * n, node_t ** op) | 
| 135 | { | 
| 136 |     edge_t *ep; | 
| 137 |     int deg = 0; | 
| 138 |     node_t *other = NULL; | 
| 139 |  | 
| 140 |     for (ep = agfstedge(g, n); ep; ep = agnxtedge(g, ep, n)) { | 
| 141 | 	if (aghead(ep) == agtail(ep)) | 
| 142 | 	    continue;		/* ignore loops */ | 
| 143 | 	if (deg == 1) { | 
| 144 | 	    if (((agtail(ep) == n) && (aghead(ep) == other)) ||	/* ignore multiedge */ | 
| 145 | 		((agtail(ep) == other) && (aghead(ep) == n))) | 
| 146 | 		continue; | 
| 147 | 	    return 2; | 
| 148 | 	} else {		/* deg == 0 */ | 
| 149 | 	    if (agtail(ep) == n) | 
| 150 | 		other = aghead(ep); | 
| 151 | 	    else | 
| 152 | 		other = agtail(ep); | 
| 153 | 	    *op = other; | 
| 154 | 	    deg++; | 
| 155 | 	} | 
| 156 |     } | 
| 157 |     return deg; | 
| 158 | } | 
| 159 |  | 
| 160 |  | 
| 161 | /* prune: | 
| 162 |  * np is at end of a chain. If its degree is 0, remove it. | 
| 163 |  * If its degree is 1, remove it and recurse. | 
| 164 |  * If its degree > 1, stop. | 
| 165 |  * The node next is the next node to be visited during iteration. | 
| 166 |  * If it is equal to a node being deleted, set it to next one. | 
| 167 |  * Delete from root graph, since G may be a connected component subgraph. | 
| 168 |  * Return next. | 
| 169 |  */ | 
| 170 | static node_t *prune(graph_t * G, node_t * np, node_t * next) | 
| 171 | { | 
| 172 |     node_t *other; | 
| 173 |     int deg; | 
| 174 |  | 
| 175 |     while (np) { | 
| 176 | 	deg = degreeKind(G, np, &other); | 
| 177 | 	if (deg == 0) { | 
| 178 | 	    if (next == np) | 
| 179 | 		next = agnxtnode(G, np); | 
| 180 | 	    agdelete(G->root, np); | 
| 181 | 	    np = 0; | 
| 182 | 	} else if (deg == 1) { | 
| 183 | 	    if (next == np) | 
| 184 | 		next = agnxtnode(G, np); | 
| 185 | 	    agdelete(G->root, np); | 
| 186 | 	    np = other; | 
| 187 | 	} else | 
| 188 | 	    np = 0; | 
| 189 |  | 
| 190 |     } | 
| 191 |     return next; | 
| 192 | } | 
| 193 |  | 
| 194 | static double setEdgeLen(graph_t * G, node_t * np, Agsym_t* lenx, double dfltlen) | 
| 195 | { | 
| 196 |     edge_t *ep; | 
| 197 |     double total_len = 0.0; | 
| 198 |     double len; | 
| 199 |     int err; | 
| 200 |  | 
| 201 |     for (ep = agfstout(G, np); ep; ep = agnxtout(G, ep)) { | 
| 202 | 	if ((err = lenattr(ep, lenx, &len))) { | 
| 203 | 	    if (err == 2) agerr(AGPREV, " in %s - setting to %.02f\n" , agnameof(G), dfltlen); | 
| 204 | 	    len = dfltlen; | 
| 205 | 	} | 
| 206 | 	ED_dist(ep) = len; | 
| 207 | 	total_len += len; | 
| 208 |     } | 
| 209 |     return total_len; | 
| 210 | } | 
| 211 |  | 
| 212 | /* scan_graph_mode: | 
| 213 |  * Prepare the graph and data structures depending on the layout mode. | 
| 214 |  * If Reduce is true, eliminate singletons and trees. Since G may be a | 
| 215 |  * subgraph, we remove the nodes from the root graph. | 
| 216 |  * Return the number of nodes in the reduced graph. | 
| 217 |  */ | 
| 218 | int scan_graph_mode(graph_t * G, int mode) | 
| 219 | { | 
| 220 |     int i, nV, nE, deg; | 
| 221 |     char *str; | 
| 222 |     node_t *np, *xp, *other; | 
| 223 |     double total_len = 0.0; | 
| 224 |     double dfltlen = 1.0; | 
| 225 |     Agsym_t* lenx; | 
| 226 |  | 
| 227 |     if (Verbose) | 
| 228 | 	fprintf(stderr, "Scanning graph %s, %d nodes\n" , agnameof(G), | 
| 229 | 		agnnodes(G)); | 
| 230 |  | 
| 231 |  | 
| 232 |     /* Eliminate singletons and trees */ | 
| 233 |     if (Reduce) { | 
| 234 | 	for (np = agfstnode(G); np; np = xp) { | 
| 235 | 	    xp = agnxtnode(G, np); | 
| 236 | 	    deg = degreeKind(G, np, &other); | 
| 237 | 	    if (deg == 0) {	/* singleton node */ | 
| 238 | 		agdelete(G->root, np); | 
| 239 | 	    } else if (deg == 1) { | 
| 240 | 		agdelete(G->root, np); | 
| 241 | 		xp = prune(G, other, xp); | 
| 242 | 	    } | 
| 243 | 	} | 
| 244 |     } | 
| 245 |  | 
| 246 |     nV = agnnodes(G); | 
| 247 |     nE = agnedges(G); | 
| 248 |  | 
| 249 |     lenx = agattr(G, AGEDGE, "len" , 0); | 
| 250 |     if (mode == MODE_KK) { | 
| 251 | 	Epsilon = .0001 * nV; | 
| 252 | 	getdouble(G, "epsilon" , &Epsilon); | 
| 253 | 	if ((str = agget(G->root, "Damping" ))) | 
| 254 | 	    Damping = atof(str); | 
| 255 | 	else | 
| 256 | 	    Damping = .99; | 
| 257 | 	GD_neato_nlist(G) = N_NEW(nV + 1, node_t *); | 
| 258 | 	for (i = 0, np = agfstnode(G); np; np = agnxtnode(G, np)) { | 
| 259 | 	    GD_neato_nlist(G)[i] = np; | 
| 260 | 	    ND_id(np) = i++; | 
| 261 | 	    ND_heapindex(np) = -1; | 
| 262 | 	    total_len += setEdgeLen(G, np, lenx, dfltlen); | 
| 263 | 	} | 
| 264 |     } else { | 
| 265 | 	Epsilon = DFLT_TOLERANCE; | 
| 266 | 	getdouble(G, "epsilon" , &Epsilon); | 
| 267 | 	for (i = 0, np = agfstnode(G); np; np = agnxtnode(G, np)) { | 
| 268 | 	    ND_id(np) = i++; | 
| 269 | 	    total_len += setEdgeLen(G, np, lenx, dfltlen); | 
| 270 | 	} | 
| 271 |     } | 
| 272 |  | 
| 273 |     str = agget(G, "defaultdist" ); | 
| 274 |     if (str && str[0]) | 
| 275 | 	Initial_dist = MAX(Epsilon, atof(str)); | 
| 276 |     else | 
| 277 | 	Initial_dist = total_len / (nE > 0 ? nE : 1) * sqrt(nV) + 1; | 
| 278 |  | 
| 279 |     if (!Nop && (mode == MODE_KK)) { | 
| 280 | 	GD_dist(G) = new_array(nV, nV, Initial_dist); | 
| 281 | 	GD_spring(G) = new_array(nV, nV, 1.0); | 
| 282 | 	GD_sum_t(G) = new_array(nV, Ndim, 1.0); | 
| 283 | 	GD_t(G) = new_3array(nV, nV, Ndim, 0.0); | 
| 284 |     } | 
| 285 |  | 
| 286 |     return nV; | 
| 287 | } | 
| 288 |  | 
| 289 | int scan_graph(graph_t * g) | 
| 290 | { | 
| 291 |     return scan_graph_mode(g, MODE_KK); | 
| 292 | } | 
| 293 |  | 
| 294 | void free_scan_graph(graph_t * g) | 
| 295 | { | 
| 296 |     free(GD_neato_nlist(g)); | 
| 297 |     if (!Nop) { | 
| 298 | 	free_array(GD_dist(g)); | 
| 299 | 	free_array(GD_spring(g)); | 
| 300 | 	free_array(GD_sum_t(g)); | 
| 301 | 	free_3array(GD_t(g)); | 
| 302 | 	GD_t(g) = NULL; | 
| 303 |     } | 
| 304 | } | 
| 305 |  | 
| 306 | void jitter_d(node_t * np, int nG, int n) | 
| 307 | { | 
| 308 |     int k; | 
| 309 |     for (k = n; k < Ndim; k++) | 
| 310 | 	ND_pos(np)[k] = nG * drand48(); | 
| 311 | } | 
| 312 |  | 
| 313 | void jitter3d(node_t * np, int nG) | 
| 314 | { | 
| 315 |     jitter_d(np, nG, 2); | 
| 316 | } | 
| 317 |  | 
| 318 | void randompos(node_t * np, int nG) | 
| 319 | { | 
| 320 |     ND_pos(np)[0] = nG * drand48(); | 
| 321 |     ND_pos(np)[1] = nG * drand48(); | 
| 322 |     if (Ndim > 2) | 
| 323 | 	jitter3d(np, nG); | 
| 324 | } | 
| 325 |  | 
| 326 | void initial_positions(graph_t * G, int nG) | 
| 327 | { | 
| 328 |     int init, i; | 
| 329 |     node_t *np; | 
| 330 |     static int once = 0; | 
| 331 |  | 
| 332 |     if (Verbose) | 
| 333 | 	fprintf(stderr, "Setting initial positions\n" ); | 
| 334 |  | 
| 335 |     init = checkStart(G, nG, INIT_RANDOM); | 
| 336 |     if (init == INIT_REGULAR) | 
| 337 | 	return; | 
| 338 |     if ((init == INIT_SELF) && (once == 0)) { | 
| 339 | 	agerr(AGWARN, "start=%s not supported with mode=self - ignored\n" ); | 
| 340 | 	once = 1; | 
| 341 |     } | 
| 342 |  | 
| 343 |     for (i = 0; (np = GD_neato_nlist(G)[i]); i++) { | 
| 344 | 	if (hasPos(np)) | 
| 345 | 	    continue; | 
| 346 | 	randompos(np, 1); | 
| 347 |     } | 
| 348 | } | 
| 349 |  | 
| 350 | void diffeq_model(graph_t * G, int nG) | 
| 351 | { | 
| 352 |     int i, j, k; | 
| 353 |     double dist, **D, **K, del[MAXDIM], f; | 
| 354 |     node_t *vi, *vj; | 
| 355 |     edge_t *e; | 
| 356 |  | 
| 357 |     if (Verbose) { | 
| 358 | 	fprintf(stderr, "Setting up spring model: " ); | 
| 359 | 	start_timer(); | 
| 360 |     } | 
| 361 |     /* init springs */ | 
| 362 |     K = GD_spring(G); | 
| 363 |     D = GD_dist(G); | 
| 364 |     for (i = 0; i < nG; i++) { | 
| 365 | 	for (j = 0; j < i; j++) { | 
| 366 | 	    f = Spring_coeff / (D[i][j] * D[i][j]); | 
| 367 | 	    if ((e = agfindedge(G, GD_neato_nlist(G)[i], GD_neato_nlist(G)[j]))) | 
| 368 | 		f = f * ED_factor(e); | 
| 369 | 	    K[i][j] = K[j][i] = f; | 
| 370 | 	} | 
| 371 |     } | 
| 372 |  | 
| 373 |     /* init differential equation solver */ | 
| 374 |     for (i = 0; i < nG; i++) | 
| 375 | 	for (k = 0; k < Ndim; k++) | 
| 376 | 	    GD_sum_t(G)[i][k] = 0.0; | 
| 377 |  | 
| 378 |     for (i = 0; (vi = GD_neato_nlist(G)[i]); i++) { | 
| 379 | 	for (j = 0; j < nG; j++) { | 
| 380 | 	    if (i == j) | 
| 381 | 		continue; | 
| 382 | 	    vj = GD_neato_nlist(G)[j]; | 
| 383 | 	    dist = distvec(ND_pos(vi), ND_pos(vj), del); | 
| 384 | 	    for (k = 0; k < Ndim; k++) { | 
| 385 | 		GD_t(G)[i][j][k] = | 
| 386 | 		    GD_spring(G)[i][j] * (del[k] - | 
| 387 | 					  GD_dist(G)[i][j] * del[k] / | 
| 388 | 					  dist); | 
| 389 | 		GD_sum_t(G)[i][k] += GD_t(G)[i][j][k]; | 
| 390 | 	    } | 
| 391 | 	} | 
| 392 |     } | 
| 393 |     if (Verbose) { | 
| 394 | 	fprintf(stderr, "%.2f sec\n" , elapsed_sec()); | 
| 395 |     } | 
| 396 | } | 
| 397 |  | 
| 398 | /* total_e: | 
| 399 |  * Return 2*energy of system. | 
| 400 |  */ | 
| 401 | static double total_e(graph_t * G, int nG) | 
| 402 | { | 
| 403 |     int i, j, d; | 
| 404 |     double e = 0.0;		/* 2*energy */ | 
| 405 |     double t0;			/* distance squared */ | 
| 406 |     double t1; | 
| 407 |     node_t *ip, *jp; | 
| 408 |  | 
| 409 |     for (i = 0; i < nG - 1; i++) { | 
| 410 | 	ip = GD_neato_nlist(G)[i]; | 
| 411 | 	for (j = i + 1; j < nG; j++) { | 
| 412 | 	    jp = GD_neato_nlist(G)[j]; | 
| 413 | 	    for (t0 = 0.0, d = 0; d < Ndim; d++) { | 
| 414 | 		t1 = (ND_pos(ip)[d] - ND_pos(jp)[d]); | 
| 415 | 		t0 += t1 * t1; | 
| 416 | 	    } | 
| 417 | 	    e = e + GD_spring(G)[i][j] * | 
| 418 | 		(t0 + GD_dist(G)[i][j] * GD_dist(G)[i][j] | 
| 419 | 		 - 2.0 * GD_dist(G)[i][j] * sqrt(t0)); | 
| 420 | 	} | 
| 421 |     } | 
| 422 |     return e; | 
| 423 | } | 
| 424 |  | 
| 425 | void solve_model(graph_t * G, int nG) | 
| 426 | { | 
| 427 |     node_t *np; | 
| 428 |  | 
| 429 |     Epsilon2 = Epsilon * Epsilon; | 
| 430 |  | 
| 431 |     while ((np = choose_node(G, nG))) { | 
| 432 | 	move_node(G, nG, np); | 
| 433 |     } | 
| 434 |     if (Verbose) { | 
| 435 | 	fprintf(stderr, "\nfinal e = %f" , total_e(G, nG)); | 
| 436 | 	fprintf(stderr, " %d%s iterations %.2f sec\n" , | 
| 437 | 		GD_move(G), (GD_move(G) == MaxIter ? "!"  : "" ), | 
| 438 | 		elapsed_sec()); | 
| 439 |     } | 
| 440 |     if (GD_move(G) == MaxIter) | 
| 441 | 	agerr(AGWARN, "Max. iterations (%d) reached on graph %s\n" , | 
| 442 | 	      MaxIter, agnameof(G)); | 
| 443 | } | 
| 444 |  | 
| 445 | void update_arrays(graph_t * G, int nG, int i) | 
| 446 | { | 
| 447 |     int j, k; | 
| 448 |     double del[MAXDIM], dist, old; | 
| 449 |     node_t *vi, *vj; | 
| 450 |  | 
| 451 |     vi = GD_neato_nlist(G)[i]; | 
| 452 |     for (k = 0; k < Ndim; k++) | 
| 453 | 	GD_sum_t(G)[i][k] = 0.0; | 
| 454 |     for (j = 0; j < nG; j++) { | 
| 455 | 	if (i == j) | 
| 456 | 	    continue; | 
| 457 | 	vj = GD_neato_nlist(G)[j]; | 
| 458 | 	dist = distvec(ND_pos(vi), ND_pos(vj), del); | 
| 459 | 	for (k = 0; k < Ndim; k++) { | 
| 460 | 	    old = GD_t(G)[i][j][k]; | 
| 461 | 	    GD_t(G)[i][j][k] = | 
| 462 | 		GD_spring(G)[i][j] * (del[k] - | 
| 463 | 				      GD_dist(G)[i][j] * del[k] / dist); | 
| 464 | 	    GD_sum_t(G)[i][k] += GD_t(G)[i][j][k]; | 
| 465 | 	    old = GD_t(G)[j][i][k]; | 
| 466 | 	    GD_t(G)[j][i][k] = -GD_t(G)[i][j][k]; | 
| 467 | 	    GD_sum_t(G)[j][k] += (GD_t(G)[j][i][k] - old); | 
| 468 | 	} | 
| 469 |     } | 
| 470 | } | 
| 471 |  | 
| 472 | #define Msub(i,j)  M[(i)*Ndim+(j)] | 
| 473 | void D2E(graph_t * G, int nG, int n, double *M) | 
| 474 | { | 
| 475 |     int i, l, k; | 
| 476 |     node_t *vi, *vn; | 
| 477 |     double scale, sq, t[MAXDIM]; | 
| 478 |     double **K = GD_spring(G); | 
| 479 |     double **D = GD_dist(G); | 
| 480 |  | 
| 481 |     vn = GD_neato_nlist(G)[n]; | 
| 482 |     for (l = 0; l < Ndim; l++) | 
| 483 | 	for (k = 0; k < Ndim; k++) | 
| 484 | 	    Msub(l, k) = 0.0; | 
| 485 |     for (i = 0; i < nG; i++) { | 
| 486 | 	if (n == i) | 
| 487 | 	    continue; | 
| 488 | 	vi = GD_neato_nlist(G)[i]; | 
| 489 | 	sq = 0.0; | 
| 490 | 	for (k = 0; k < Ndim; k++) { | 
| 491 | 	    t[k] = ND_pos(vn)[k] - ND_pos(vi)[k]; | 
| 492 | 	    sq += (t[k] * t[k]); | 
| 493 | 	} | 
| 494 | 	scale = 1 / fpow32(sq); | 
| 495 | 	for (k = 0; k < Ndim; k++) { | 
| 496 | 	    for (l = 0; l < k; l++) | 
| 497 | 		Msub(l, k) += K[n][i] * D[n][i] * t[k] * t[l] * scale; | 
| 498 | 	    Msub(k, k) += | 
| 499 | 		K[n][i] * (1.0 - D[n][i] * (sq - (t[k] * t[k])) * scale); | 
| 500 | 	} | 
| 501 |     } | 
| 502 |     for (k = 1; k < Ndim; k++) | 
| 503 | 	for (l = 0; l < k; l++) | 
| 504 | 	    Msub(k, l) = Msub(l, k); | 
| 505 | } | 
| 506 |  | 
| 507 | void final_energy(graph_t * G, int nG) | 
| 508 | { | 
| 509 |     fprintf(stderr, "iterations = %d final e = %f\n" , GD_move(G), | 
| 510 | 	    total_e(G, nG)); | 
| 511 | } | 
| 512 |  | 
| 513 | node_t *choose_node(graph_t * G, int nG) | 
| 514 | { | 
| 515 |     int i, k; | 
| 516 |     double m, max; | 
| 517 |     node_t *choice, *np; | 
| 518 |     static int cnt = 0; | 
| 519 | #if 0 | 
| 520 |     double e; | 
| 521 |     static double save_e = MAXDOUBLE; | 
| 522 | #endif | 
| 523 |  | 
| 524 |     cnt++; | 
| 525 |     if (GD_move(G) >= MaxIter) | 
| 526 | 	return NULL; | 
| 527 | #if 0 | 
| 528 |     if ((cnt % 100) == 0) { | 
| 529 | 	e = total_e(G, nG); | 
| 530 | 	if (e - save_e > 0) | 
| 531 | 	    return NULL; | 
| 532 | 	save_e = e; | 
| 533 |     } | 
| 534 | #endif | 
| 535 |     max = 0.0; | 
| 536 |     choice = NULL; | 
| 537 |     for (i = 0; i < nG; i++) { | 
| 538 | 	np = GD_neato_nlist(G)[i]; | 
| 539 | 	if (ND_pinned(np) > P_SET) | 
| 540 | 	    continue; | 
| 541 | 	for (m = 0.0, k = 0; k < Ndim; k++) | 
| 542 | 	    m += (GD_sum_t(G)[i][k] * GD_sum_t(G)[i][k]); | 
| 543 | 	/* could set the color=energy of the node here */ | 
| 544 | 	if (m > max) { | 
| 545 | 	    choice = np; | 
| 546 | 	    max = m; | 
| 547 | 	} | 
| 548 |     } | 
| 549 |     if (max < Epsilon2) | 
| 550 | 	choice = NULL; | 
| 551 |     else { | 
| 552 | 	if (Verbose && (cnt % 100 == 0)) { | 
| 553 | 	    fprintf(stderr, "%.3f " , sqrt(max)); | 
| 554 | 	    if (cnt % 1000 == 0) | 
| 555 | 		fprintf(stderr, "\n" ); | 
| 556 | 	} | 
| 557 | #if 0 | 
| 558 | 	e = total_e(G, nG); | 
| 559 | 	if (fabs((e - save_e) / save_e) < 1e-5) { | 
| 560 | 	    choice = NULL; | 
| 561 | 	} | 
| 562 | #endif | 
| 563 |     } | 
| 564 |     return choice; | 
| 565 | } | 
| 566 |  | 
| 567 | void move_node(graph_t * G, int nG, node_t * n) | 
| 568 | { | 
| 569 |     int i, m; | 
| 570 |     static double *a, b[MAXDIM], c[MAXDIM]; | 
| 571 |  | 
| 572 |     m = ND_id(n); | 
| 573 |     a = ALLOC(Ndim * Ndim, a, double); | 
| 574 |     D2E(G, nG, m, a); | 
| 575 |     for (i = 0; i < Ndim; i++) | 
| 576 | 	c[i] = -GD_sum_t(G)[m][i]; | 
| 577 |     solve(a, b, c, Ndim); | 
| 578 |     for (i = 0; i < Ndim; i++) { | 
| 579 | 	b[i] = (Damping + 2 * (1 - Damping) * drand48()) * b[i]; | 
| 580 | 	ND_pos(n)[i] += b[i]; | 
| 581 |     } | 
| 582 |     GD_move(G)++; | 
| 583 |     update_arrays(G, nG, m); | 
| 584 |     if (test_toggle()) { | 
| 585 | 	double sum = 0; | 
| 586 | 	for (i = 0; i < Ndim; i++) { | 
| 587 | 	    sum += fabs(b[i]); | 
| 588 | 	}			/* Why not squared? */ | 
| 589 | 	sum = sqrt(sum); | 
| 590 | 	fprintf(stderr, "%s %.3f\n" , agnameof(n), sum); | 
| 591 |     } | 
| 592 | } | 
| 593 |  | 
| 594 | static node_t **Heap; | 
| 595 | static int Heapsize; | 
| 596 | static node_t *Src; | 
| 597 |  | 
| 598 | void heapup(node_t * v) | 
| 599 | { | 
| 600 |     int i, par; | 
| 601 |     node_t *u; | 
| 602 |  | 
| 603 |     for (i = ND_heapindex(v); i > 0; i = par) { | 
| 604 | 	par = (i - 1) / 2; | 
| 605 | 	u = Heap[par]; | 
| 606 | 	if (ND_dist(u) <= ND_dist(v)) | 
| 607 | 	    break; | 
| 608 | 	Heap[par] = v; | 
| 609 | 	ND_heapindex(v) = par; | 
| 610 | 	Heap[i] = u; | 
| 611 | 	ND_heapindex(u) = i; | 
| 612 |     } | 
| 613 | } | 
| 614 |  | 
| 615 | void heapdown(node_t * v) | 
| 616 | { | 
| 617 |     int i, left, right, c; | 
| 618 |     node_t *u; | 
| 619 |  | 
| 620 |     i = ND_heapindex(v); | 
| 621 |     while ((left = 2 * i + 1) < Heapsize) { | 
| 622 | 	right = left + 1; | 
| 623 | 	if ((right < Heapsize) | 
| 624 | 	    && (ND_dist(Heap[right]) < ND_dist(Heap[left]))) | 
| 625 | 	    c = right; | 
| 626 | 	else | 
| 627 | 	    c = left; | 
| 628 | 	u = Heap[c]; | 
| 629 | 	if (ND_dist(v) <= ND_dist(u)) | 
| 630 | 	    break; | 
| 631 | 	Heap[c] = v; | 
| 632 | 	ND_heapindex(v) = c; | 
| 633 | 	Heap[i] = u; | 
| 634 | 	ND_heapindex(u) = i; | 
| 635 | 	i = c; | 
| 636 |     } | 
| 637 | } | 
| 638 |  | 
| 639 | void neato_enqueue(node_t * v) | 
| 640 | { | 
| 641 |     int i; | 
| 642 |  | 
| 643 |     assert(ND_heapindex(v) < 0); | 
| 644 |     i = Heapsize++; | 
| 645 |     ND_heapindex(v) = i; | 
| 646 |     Heap[i] = v; | 
| 647 |     if (i > 0) | 
| 648 | 	heapup(v); | 
| 649 | } | 
| 650 |  | 
| 651 | node_t *neato_dequeue(void) | 
| 652 | { | 
| 653 |     int i; | 
| 654 |     node_t *rv, *v; | 
| 655 |  | 
| 656 |     if (Heapsize == 0) | 
| 657 | 	return NULL; | 
| 658 |     rv = Heap[0]; | 
| 659 |     i = --Heapsize; | 
| 660 |     v = Heap[i]; | 
| 661 |     Heap[0] = v; | 
| 662 |     ND_heapindex(v) = 0; | 
| 663 |     if (i > 1) | 
| 664 | 	heapdown(v); | 
| 665 |     ND_heapindex(rv) = -1; | 
| 666 |     return rv; | 
| 667 | } | 
| 668 |  | 
| 669 | void shortest_path(graph_t * G, int nG) | 
| 670 | { | 
| 671 |     node_t *v; | 
| 672 |  | 
| 673 |     Heap = N_NEW(nG + 1, node_t *); | 
| 674 |     if (Verbose) { | 
| 675 | 	fprintf(stderr, "Calculating shortest paths: " ); | 
| 676 | 	start_timer(); | 
| 677 |     } | 
| 678 |     for (v = agfstnode(G); v; v = agnxtnode(G, v)) | 
| 679 | 	s1(G, v); | 
| 680 |     if (Verbose) { | 
| 681 | 	fprintf(stderr, "%.2f sec\n" , elapsed_sec()); | 
| 682 |     } | 
| 683 |     free(Heap); | 
| 684 | } | 
| 685 |  | 
| 686 | void s1(graph_t * G, node_t * node) | 
| 687 | { | 
| 688 |     node_t *v, *u; | 
| 689 |     edge_t *e; | 
| 690 |     int t; | 
| 691 |     double f; | 
| 692 |  | 
| 693 |     for (t = 0; (v = GD_neato_nlist(G)[t]); t++) | 
| 694 | 	ND_dist(v) = Initial_dist; | 
| 695 |     Src = node; | 
| 696 |     ND_dist(Src) = 0; | 
| 697 |     ND_hops(Src) = 0; | 
| 698 |     neato_enqueue(Src); | 
| 699 |  | 
| 700 |     while ((v = neato_dequeue())) { | 
| 701 | 	if (v != Src) | 
| 702 | 	    make_spring(G, Src, v, ND_dist(v)); | 
| 703 | 	for (e = agfstedge(G, v); e; e = agnxtedge(G, e, v)) { | 
| 704 | 	    if ((u = agtail(e)) == v) | 
| 705 | 		u = aghead(e); | 
| 706 | 	    f = ND_dist(v) + ED_dist(e); | 
| 707 | 	    if (ND_dist(u) > f) { | 
| 708 | 		ND_dist(u) = f; | 
| 709 | 		if (ND_heapindex(u) >= 0) | 
| 710 | 		    heapup(u); | 
| 711 | 		else { | 
| 712 | 		    ND_hops(u) = ND_hops(v) + 1; | 
| 713 | 		    neato_enqueue(u); | 
| 714 | 		} | 
| 715 | 	    } | 
| 716 | 	} | 
| 717 |     } | 
| 718 | } | 
| 719 |  | 
| 720 | void make_spring(graph_t * G, node_t * u, node_t * v, double f) | 
| 721 | { | 
| 722 |     int i, j; | 
| 723 |  | 
| 724 |     i = ND_id(u); | 
| 725 |     j = ND_id(v); | 
| 726 |     GD_dist(G)[i][j] = GD_dist(G)[j][i] = f; | 
| 727 | } | 
| 728 |  |