| 1 | /* $Id$Revision: */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | |
| 15 | #include "config.h" |
| 16 | |
| 17 | #include <limits.h> |
| 18 | #include "memory.h" |
| 19 | #include "sgraph.h" |
| 20 | #include "fPQ.h" |
| 21 | |
| 22 | #if 0 |
| 23 | /* Max. number of maze segments around a node */ |
| 24 | static int MaxNodeBoundary = 100; |
| 25 | |
| 26 | typedef struct { |
| 27 | int left, right, up, down; |
| 28 | } irect; |
| 29 | |
| 30 | /* nodes in the search graph correspond to line segments in the |
| 31 | * grid formed by n_hlines horizontal lines and n_vlines vertical lines. |
| 32 | * The vertical segments are enumerated first, top to bottom, left to right. |
| 33 | * Then the horizontal segments left to right, top to bottom. For example, |
| 34 | * with an array of 4 vertical and 3 horizontal lines, we have |
| 35 | * |
| 36 | * |--14--|--15--|--16--| |
| 37 | * 1 3 5 7 |
| 38 | * |--11--|--12--|--13--| |
| 39 | * 0 2 4 6 |
| 40 | * |-- 8--|-- 9--|--10--| |
| 41 | */ |
| 42 | static irect |
| 43 | get_indices(orthograph* OG,int i, int j) |
| 44 | { |
| 45 | irect r; |
| 46 | int hl = OG->n_hlines-1; |
| 47 | int vl = OG->n_vlines-1; |
| 48 | r.left = i*hl + j; |
| 49 | r.right = r.left + hl; |
| 50 | r.down = (vl+1)*hl + j*vl + i; |
| 51 | r.up = r.down + vl; |
| 52 | return r; |
| 53 | } |
| 54 | |
| 55 | static irect |
| 56 | find_boundary(orthograph* G, int n) |
| 57 | { |
| 58 | rect R = G->Nodes[n]; |
| 59 | irect r; |
| 60 | int i; |
| 61 | |
| 62 | for (i = 0; i < G->n_vlines; i++) { |
| 63 | if (R.left == G->v_lines[i]) { |
| 64 | r.left = i; |
| 65 | break; |
| 66 | } |
| 67 | } |
| 68 | for (; i < G->n_vlines; i++) { |
| 69 | if (R.right == G->v_lines[i]) { |
| 70 | r.right = i; |
| 71 | break; |
| 72 | } |
| 73 | } |
| 74 | for (i = 0; i < G->n_hlines; i++) { |
| 75 | if (R.down == G->h_lines[i]) { |
| 76 | r.down = i; |
| 77 | break; |
| 78 | } |
| 79 | } |
| 80 | for (; i < G->n_hlines; i++) { |
| 81 | if (R.up == G->h_lines[i]) { |
| 82 | r.up = i; |
| 83 | break; |
| 84 | } |
| 85 | } |
| 86 | return r; |
| 87 | } |
| 88 | #endif |
| 89 | |
| 90 | void |
| 91 | gsave (sgraph* G) |
| 92 | { |
| 93 | int i; |
| 94 | G->save_nnodes = G->nnodes; |
| 95 | G->save_nedges = G->nedges; |
| 96 | for (i = 0; i < G->nnodes; i++) |
| 97 | G->nodes[i].save_n_adj = G->nodes[i].n_adj; |
| 98 | } |
| 99 | |
| 100 | void |
| 101 | reset(sgraph* G) |
| 102 | { |
| 103 | int i; |
| 104 | G->nnodes = G->save_nnodes; |
| 105 | G->nedges = G->save_nedges; |
| 106 | for (i = 0; i < G->nnodes; i++) |
| 107 | G->nodes[i].n_adj = G->nodes[i].save_n_adj; |
| 108 | for (; i < G->nnodes+2; i++) |
| 109 | G->nodes[i].n_adj = 0; |
| 110 | } |
| 111 | |
| 112 | void |
| 113 | initSEdges (sgraph* g, int maxdeg) |
| 114 | { |
| 115 | int i; |
| 116 | int* adj = N_NEW (6*g->nnodes + 2*maxdeg, int); |
| 117 | g->edges = N_NEW (3*g->nnodes + maxdeg, sedge); |
| 118 | for (i = 0; i < g->nnodes; i++) { |
| 119 | g->nodes[i].adj_edge_list = adj; |
| 120 | adj += 6; |
| 121 | } |
| 122 | for (; i < g->nnodes+2; i++) { |
| 123 | g->nodes[i].adj_edge_list = adj; |
| 124 | adj += maxdeg; |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | sgraph* |
| 129 | createSGraph (int nnodes) |
| 130 | { |
| 131 | sgraph* g = NEW(sgraph); |
| 132 | |
| 133 | /* create the nodes vector in the search graph */ |
| 134 | g->nnodes = 0; |
| 135 | g->nodes = N_NEW(nnodes, snode); |
| 136 | return g; |
| 137 | } |
| 138 | |
| 139 | snode* |
| 140 | createSNode (sgraph* g) |
| 141 | { |
| 142 | snode* np = g->nodes+g->nnodes; |
| 143 | np->index = g->nnodes; |
| 144 | g->nnodes++; |
| 145 | return np; |
| 146 | } |
| 147 | |
| 148 | static void |
| 149 | addEdgeToNode (snode* np, sedge* e, int idx) |
| 150 | { |
| 151 | np->adj_edge_list[np->n_adj] = idx; |
| 152 | np->n_adj++; |
| 153 | } |
| 154 | |
| 155 | sedge* |
| 156 | createSEdge (sgraph* g, snode* v1, snode* v2, double wt) |
| 157 | { |
| 158 | sedge* e; |
| 159 | int idx = g->nedges++; |
| 160 | |
| 161 | e = g->edges + idx; |
| 162 | e->v1 = v1->index; |
| 163 | e->v2 = v2->index; |
| 164 | e->weight = wt; |
| 165 | e->cnt = 0; |
| 166 | |
| 167 | addEdgeToNode (v1, e, idx); |
| 168 | addEdgeToNode (v2, e, idx); |
| 169 | |
| 170 | return e; |
| 171 | } |
| 172 | |
| 173 | void |
| 174 | freeSGraph (sgraph* g) |
| 175 | { |
| 176 | free (g->nodes[0].adj_edge_list); |
| 177 | free (g->nodes); |
| 178 | free (g->edges); |
| 179 | free (g); |
| 180 | } |
| 181 | |
| 182 | #include "fPQ.h" |
| 183 | |
| 184 | /* shortest path: |
| 185 | * Constructs the path of least weight between from and to. |
| 186 | * |
| 187 | * Assumes graph, node and edge type, and that nodes |
| 188 | * have associated values N_VAL, N_IDX, and N_DAD, the first two |
| 189 | * being ints, the last being a node*. Edges have a E_WT function |
| 190 | * to specify the edge length or weight. |
| 191 | * |
| 192 | * Assumes there are functions: |
| 193 | * agnnodes: graph -> int number of nodes in the graph |
| 194 | * agfstnode, agnxtnode : iterators over the nodes in the graph |
| 195 | * agfstedge, agnxtedge : iterators over the edges attached to a node |
| 196 | * adjacentNode : given an edge e and an endpoint n of e, returns the |
| 197 | * other endpoint. |
| 198 | * |
| 199 | * The path is given by |
| 200 | * to, N_DAD(to), N_DAD(N_DAD(to)), ..., from |
| 201 | */ |
| 202 | |
| 203 | #define UNSEEN INT_MIN |
| 204 | |
| 205 | static snode* |
| 206 | adjacentNode(sgraph* g, sedge* e, snode* n) |
| 207 | { |
| 208 | if (e->v1==n->index) |
| 209 | return (&(g->nodes[e->v2])); |
| 210 | else |
| 211 | return (&(g->nodes[e->v1])); |
| 212 | } |
| 213 | |
| 214 | int |
| 215 | shortPath (sgraph* g, snode* from, snode* to) |
| 216 | { |
| 217 | snode* n; |
| 218 | sedge* e; |
| 219 | snode* adjn; |
| 220 | int d; |
| 221 | int x, y; |
| 222 | |
| 223 | for (x = 0; x<g->nnodes; x++) { |
| 224 | snode* temp; |
| 225 | temp = &(g->nodes[x]); |
| 226 | N_VAL(temp) = UNSEEN; |
| 227 | } |
| 228 | |
| 229 | PQinit(); |
| 230 | if (PQ_insert (from)) return 1; |
| 231 | N_DAD(from) = NULL; |
| 232 | N_VAL(from) = 0; |
| 233 | |
| 234 | while ((n = PQremove())) { |
| 235 | #ifdef DEBUG |
| 236 | fprintf (stderr, "process %d\n" , n->index); |
| 237 | #endif |
| 238 | N_VAL(n) *= -1; |
| 239 | if (n == to) break; |
| 240 | for (y=0; y<n->n_adj; y++) { |
| 241 | e = &(g->edges[n->adj_edge_list[y]]); |
| 242 | adjn = adjacentNode(g, e, n); |
| 243 | if (N_VAL(adjn) < 0) { |
| 244 | d = -(N_VAL(n) + E_WT(e)); |
| 245 | if (N_VAL(adjn) == UNSEEN) { |
| 246 | #ifdef DEBUG |
| 247 | fprintf (stderr, "new %d (%d)\n" , adjn->index, -d); |
| 248 | #endif |
| 249 | N_VAL(adjn) = d; |
| 250 | if (PQ_insert(adjn)) return 1; |
| 251 | N_DAD(adjn) = n; |
| 252 | N_EDGE(adjn) = e; |
| 253 | } |
| 254 | else { |
| 255 | if (N_VAL(adjn) < d) { |
| 256 | #ifdef DEBUG |
| 257 | fprintf (stderr, "adjust %d (%d)\n" , adjn->index, -d); |
| 258 | #endif |
| 259 | PQupdate(adjn, d); |
| 260 | N_DAD(adjn) = n; |
| 261 | N_EDGE(adjn) = e; |
| 262 | } |
| 263 | } |
| 264 | } |
| 265 | } |
| 266 | } |
| 267 | |
| 268 | /* PQfree(); */ |
| 269 | return 0; |
| 270 | } |
| 271 | |
| 272 | |