1 | /* $Id$Revision: */ |
2 | /* vim:set shiftwidth=4 ts=8: */ |
3 | |
4 | /************************************************************************* |
5 | * Copyright (c) 2011 AT&T Intellectual Property |
6 | * All rights reserved. This program and the accompanying materials |
7 | * are made available under the terms of the Eclipse Public License v1.0 |
8 | * which accompanies this distribution, and is available at |
9 | * http://www.eclipse.org/legal/epl-v10.html |
10 | * |
11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
12 | *************************************************************************/ |
13 | |
14 | |
15 | #include "config.h" |
16 | |
17 | #include <string.h> |
18 | #include <assert.h> |
19 | #include <stdio.h> |
20 | #ifndef __USE_ISOC99 |
21 | #define __USE_ISOC99 |
22 | #endif |
23 | #include <math.h> |
24 | #include <geom.h> |
25 | #include <logic.h> |
26 | #include <memory.h> |
27 | #include <trap.h> |
28 | |
29 | /* Node types */ |
30 | |
31 | #define T_X 1 |
32 | #define T_Y 2 |
33 | #define T_SINK 3 |
34 | |
35 | #define FIRSTPT 1 /* checking whether pt. is inserted */ |
36 | #define LASTPT 2 |
37 | |
38 | #define S_LEFT 1 /* for merge-direction */ |
39 | #define S_RIGHT 2 |
40 | |
41 | #define INF 1<<30 |
42 | |
43 | #define CROSS(v0, v1, v2) (((v1).x - (v0).x)*((v2).y - (v0).y) - \ |
44 | ((v1).y - (v0).y)*((v2).x - (v0).x)) |
45 | |
46 | typedef struct { |
47 | int nodetype; /* Y-node or S-node */ |
48 | int segnum; |
49 | pointf yval; |
50 | int trnum; |
51 | int parent; /* doubly linked DAG */ |
52 | int left, right; /* children */ |
53 | } qnode_t; |
54 | |
55 | /* static int chain_idx, op_idx, mon_idx; */ |
56 | static int q_idx; |
57 | static int tr_idx; |
58 | static int QSIZE; |
59 | static int TRSIZE; |
60 | |
61 | /* Return a new node to be added into the query tree */ |
62 | static int newnode(void) |
63 | { |
64 | if (q_idx < QSIZE) |
65 | return q_idx++; |
66 | else { |
67 | fprintf(stderr, "newnode: Query-table overflow\n" ); |
68 | assert(0); |
69 | return -1; |
70 | } |
71 | } |
72 | |
73 | /* Return a free trapezoid */ |
74 | static int newtrap(trap_t* tr) |
75 | { |
76 | if (tr_idx < TRSIZE) { |
77 | tr[tr_idx].lseg = -1; |
78 | tr[tr_idx].rseg = -1; |
79 | tr[tr_idx].state = ST_VALID; |
80 | return tr_idx++; |
81 | } |
82 | else { |
83 | fprintf(stderr, "newtrap: Trapezoid-table overflow %d\n" , tr_idx); |
84 | assert(0); |
85 | return -1; |
86 | } |
87 | } |
88 | |
89 | /* Return the maximum of the two points into the yval structure */ |
90 | static int _max (pointf *yval, pointf *v0, pointf *v1) |
91 | { |
92 | if (v0->y > v1->y + C_EPS) |
93 | *yval = *v0; |
94 | else if (FP_EQUAL(v0->y, v1->y)) |
95 | { |
96 | if (v0->x > v1->x + C_EPS) |
97 | *yval = *v0; |
98 | else |
99 | *yval = *v1; |
100 | } |
101 | else |
102 | *yval = *v1; |
103 | |
104 | return 0; |
105 | } |
106 | |
107 | /* Return the minimum of the two points into the yval structure */ |
108 | static int _min (pointf *yval, pointf *v0, pointf *v1) |
109 | { |
110 | if (v0->y < v1->y - C_EPS) |
111 | *yval = *v0; |
112 | else if (FP_EQUAL(v0->y, v1->y)) |
113 | { |
114 | if (v0->x < v1->x) |
115 | *yval = *v0; |
116 | else |
117 | *yval = *v1; |
118 | } |
119 | else |
120 | *yval = *v1; |
121 | |
122 | return 0; |
123 | } |
124 | |
125 | static int _greater_than_equal_to (pointf *v0, pointf *v1) |
126 | { |
127 | if (v0->y > v1->y + C_EPS) |
128 | return TRUE; |
129 | else if (v0->y < v1->y - C_EPS) |
130 | return FALSE; |
131 | else |
132 | return (v0->x >= v1->x); |
133 | } |
134 | |
135 | static int _less_than (pointf *v0, pointf *v1) |
136 | { |
137 | if (v0->y < v1->y - C_EPS) |
138 | return TRUE; |
139 | else if (v0->y > v1->y + C_EPS) |
140 | return FALSE; |
141 | else |
142 | return (v0->x < v1->x); |
143 | } |
144 | |
145 | /* Initilialise the query structure (Q) and the trapezoid table (T) |
146 | * when the first segment is added to start the trapezoidation. The |
147 | * query-tree starts out with 4 trapezoids, one S-node and 2 Y-nodes |
148 | * |
149 | * 4 |
150 | * ----------------------------------- |
151 | * \ |
152 | * 1 \ 2 |
153 | * \ |
154 | * ----------------------------------- |
155 | * 3 |
156 | */ |
157 | |
158 | static int |
159 | init_query_structure(int segnum, segment_t* seg, trap_t* tr, qnode_t* qs) |
160 | { |
161 | int i1, i2, i3, i4, i5, i6, i7, root; |
162 | int t1, t2, t3, t4; |
163 | segment_t *s = &seg[segnum]; |
164 | |
165 | i1 = newnode(); |
166 | qs[i1].nodetype = T_Y; |
167 | _max(&qs[i1].yval, &s->v0, &s->v1); /* root */ |
168 | root = i1; |
169 | |
170 | qs[i1].right = i2 = newnode(); |
171 | qs[i2].nodetype = T_SINK; |
172 | qs[i2].parent = i1; |
173 | |
174 | qs[i1].left = i3 = newnode(); |
175 | qs[i3].nodetype = T_Y; |
176 | _min(&qs[i3].yval, &s->v0, &s->v1); /* root */ |
177 | qs[i3].parent = i1; |
178 | |
179 | qs[i3].left = i4 = newnode(); |
180 | qs[i4].nodetype = T_SINK; |
181 | qs[i4].parent = i3; |
182 | |
183 | qs[i3].right = i5 = newnode(); |
184 | qs[i5].nodetype = T_X; |
185 | qs[i5].segnum = segnum; |
186 | qs[i5].parent = i3; |
187 | |
188 | qs[i5].left = i6 = newnode(); |
189 | qs[i6].nodetype = T_SINK; |
190 | qs[i6].parent = i5; |
191 | |
192 | qs[i5].right = i7 = newnode(); |
193 | qs[i7].nodetype = T_SINK; |
194 | qs[i7].parent = i5; |
195 | |
196 | t1 = newtrap(tr); /* middle left */ |
197 | t2 = newtrap(tr); /* middle right */ |
198 | t3 = newtrap(tr); /* bottom-most */ |
199 | t4 = newtrap(tr); /* topmost */ |
200 | |
201 | tr[t1].hi = tr[t2].hi = tr[t4].lo = qs[i1].yval; |
202 | tr[t1].lo = tr[t2].lo = tr[t3].hi = qs[i3].yval; |
203 | tr[t4].hi.y = (double) (INF); |
204 | tr[t4].hi.x = (double) (INF); |
205 | tr[t3].lo.y = (double) -1* (INF); |
206 | tr[t3].lo.x = (double) -1* (INF); |
207 | tr[t1].rseg = tr[t2].lseg = segnum; |
208 | tr[t1].u0 = tr[t2].u0 = t4; |
209 | tr[t1].d0 = tr[t2].d0 = t3; |
210 | tr[t4].d0 = tr[t3].u0 = t1; |
211 | tr[t4].d1 = tr[t3].u1 = t2; |
212 | |
213 | tr[t1].sink = i6; |
214 | tr[t2].sink = i7; |
215 | tr[t3].sink = i4; |
216 | tr[t4].sink = i2; |
217 | |
218 | tr[t1].state = tr[t2].state = ST_VALID; |
219 | tr[t3].state = tr[t4].state = ST_VALID; |
220 | |
221 | qs[i2].trnum = t4; |
222 | qs[i4].trnum = t3; |
223 | qs[i6].trnum = t1; |
224 | qs[i7].trnum = t2; |
225 | |
226 | s->is_inserted = TRUE; |
227 | return root; |
228 | } |
229 | |
230 | /* Retun TRUE if the vertex v is to the left of line segment no. |
231 | * segnum. Takes care of the degenerate cases when both the vertices |
232 | * have the same y--cood, etc. |
233 | */ |
234 | static int |
235 | is_left_of (int segnum, segment_t* seg, pointf *v) |
236 | { |
237 | segment_t *s = &seg[segnum]; |
238 | double area; |
239 | |
240 | if (_greater_than(&s->v1, &s->v0)) /* seg. going upwards */ |
241 | { |
242 | if (FP_EQUAL(s->v1.y, v->y)) |
243 | { |
244 | if (v->x < s->v1.x) |
245 | area = 1.0; |
246 | else |
247 | area = -1.0; |
248 | } |
249 | else if (FP_EQUAL(s->v0.y, v->y)) |
250 | { |
251 | if (v->x < s->v0.x) |
252 | area = 1.0; |
253 | else |
254 | area = -1.0; |
255 | } |
256 | else |
257 | area = CROSS(s->v0, s->v1, (*v)); |
258 | } |
259 | else /* v0 > v1 */ |
260 | { |
261 | if (FP_EQUAL(s->v1.y, v->y)) |
262 | { |
263 | if (v->x < s->v1.x) |
264 | area = 1.0; |
265 | else |
266 | area = -1.0; |
267 | } |
268 | else if (FP_EQUAL(s->v0.y, v->y)) |
269 | { |
270 | if (v->x < s->v0.x) |
271 | area = 1.0; |
272 | else |
273 | area = -1.0; |
274 | } |
275 | else |
276 | area = CROSS(s->v1, s->v0, (*v)); |
277 | } |
278 | |
279 | if (area > 0.0) |
280 | return TRUE; |
281 | else |
282 | return FALSE; |
283 | } |
284 | |
285 | /* Returns true if the corresponding endpoint of the given segment is */ |
286 | /* already inserted into the segment tree. Use the simple test of */ |
287 | /* whether the segment which shares this endpoint is already inserted */ |
288 | static int inserted (int segnum, segment_t* seg, int whichpt) |
289 | { |
290 | if (whichpt == FIRSTPT) |
291 | return seg[seg[segnum].prev].is_inserted; |
292 | else |
293 | return seg[seg[segnum].next].is_inserted; |
294 | } |
295 | |
296 | /* This is query routine which determines which trapezoid does the |
297 | * point v lie in. The return value is the trapezoid number. |
298 | */ |
299 | static int |
300 | locate_endpoint (pointf *v, pointf *vo, int r, segment_t* seg, qnode_t* qs) |
301 | { |
302 | qnode_t *rptr = &qs[r]; |
303 | |
304 | switch (rptr->nodetype) { |
305 | case T_SINK: |
306 | return rptr->trnum; |
307 | |
308 | case T_Y: |
309 | if (_greater_than(v, &rptr->yval)) /* above */ |
310 | return locate_endpoint(v, vo, rptr->right, seg, qs); |
311 | else if (_equal_to(v, &rptr->yval)) /* the point is already */ |
312 | { /* inserted. */ |
313 | if (_greater_than(vo, &rptr->yval)) /* above */ |
314 | return locate_endpoint(v, vo, rptr->right, seg, qs); |
315 | else |
316 | return locate_endpoint(v, vo, rptr->left, seg, qs); /* below */ |
317 | } |
318 | else |
319 | return locate_endpoint(v, vo, rptr->left, seg, qs); /* below */ |
320 | |
321 | case T_X: |
322 | if (_equal_to(v, &seg[rptr->segnum].v0) || |
323 | _equal_to(v, &seg[rptr->segnum].v1)) |
324 | { |
325 | if (FP_EQUAL(v->y, vo->y)) /* horizontal segment */ |
326 | { |
327 | if (vo->x < v->x) |
328 | return locate_endpoint(v, vo, rptr->left, seg, qs); /* left */ |
329 | else |
330 | return locate_endpoint(v, vo, rptr->right, seg, qs); /* right */ |
331 | } |
332 | |
333 | else if (is_left_of(rptr->segnum, seg, vo)) |
334 | return locate_endpoint(v, vo, rptr->left, seg, qs); /* left */ |
335 | else |
336 | return locate_endpoint(v, vo, rptr->right, seg, qs); /* right */ |
337 | } |
338 | else if (is_left_of(rptr->segnum, seg, v)) |
339 | return locate_endpoint(v, vo, rptr->left, seg, qs); /* left */ |
340 | else |
341 | return locate_endpoint(v, vo, rptr->right, seg, qs); /* right */ |
342 | |
343 | default: |
344 | fprintf(stderr, "unexpected case in locate_endpoint\n" ); |
345 | assert (0); |
346 | break; |
347 | } |
348 | return 1; /* stop warning */ |
349 | } |
350 | |
351 | /* Thread in the segment into the existing trapezoidation. The |
352 | * limiting trapezoids are given by tfirst and tlast (which are the |
353 | * trapezoids containing the two endpoints of the segment. Merges all |
354 | * possible trapezoids which flank this segment and have been recently |
355 | * divided because of its insertion |
356 | */ |
357 | static void |
358 | merge_trapezoids (int segnum, int tfirst, int tlast, int side, trap_t* tr, |
359 | qnode_t* qs) |
360 | { |
361 | int t, tnext, cond; |
362 | int ptnext; |
363 | |
364 | /* First merge polys on the LHS */ |
365 | t = tfirst; |
366 | while ((t > 0) && _greater_than_equal_to(&tr[t].lo, &tr[tlast].lo)) |
367 | { |
368 | if (side == S_LEFT) |
369 | cond = ((((tnext = tr[t].d0) > 0) && (tr[tnext].rseg == segnum)) || |
370 | (((tnext = tr[t].d1) > 0) && (tr[tnext].rseg == segnum))); |
371 | else |
372 | cond = ((((tnext = tr[t].d0) > 0) && (tr[tnext].lseg == segnum)) || |
373 | (((tnext = tr[t].d1) > 0) && (tr[tnext].lseg == segnum))); |
374 | |
375 | if (cond) |
376 | { |
377 | if ((tr[t].lseg == tr[tnext].lseg) && |
378 | (tr[t].rseg == tr[tnext].rseg)) /* good neighbours */ |
379 | { /* merge them */ |
380 | /* Use the upper node as the new node i.e. t */ |
381 | |
382 | ptnext = qs[tr[tnext].sink].parent; |
383 | |
384 | if (qs[ptnext].left == tr[tnext].sink) |
385 | qs[ptnext].left = tr[t].sink; |
386 | else |
387 | qs[ptnext].right = tr[t].sink; /* redirect parent */ |
388 | |
389 | |
390 | /* Change the upper neighbours of the lower trapezoids */ |
391 | |
392 | if ((tr[t].d0 = tr[tnext].d0) > 0) { |
393 | if (tr[tr[t].d0].u0 == tnext) |
394 | tr[tr[t].d0].u0 = t; |
395 | else if (tr[tr[t].d0].u1 == tnext) |
396 | tr[tr[t].d0].u1 = t; |
397 | } |
398 | |
399 | if ((tr[t].d1 = tr[tnext].d1) > 0) { |
400 | if (tr[tr[t].d1].u0 == tnext) |
401 | tr[tr[t].d1].u0 = t; |
402 | else if (tr[tr[t].d1].u1 == tnext) |
403 | tr[tr[t].d1].u1 = t; |
404 | } |
405 | |
406 | tr[t].lo = tr[tnext].lo; |
407 | tr[tnext].state = ST_INVALID; /* invalidate the lower */ |
408 | /* trapezium */ |
409 | } |
410 | else /* not good neighbours */ |
411 | t = tnext; |
412 | } |
413 | else /* do not satisfy the outer if */ |
414 | t = tnext; |
415 | |
416 | } /* end-while */ |
417 | |
418 | } |
419 | |
420 | /* Add in the new segment into the trapezoidation and update Q and T |
421 | * structures. First locate the two endpoints of the segment in the |
422 | * Q-structure. Then start from the topmost trapezoid and go down to |
423 | * the lower trapezoid dividing all the trapezoids in between . |
424 | */ |
425 | static int |
426 | add_segment (int segnum, segment_t* seg, trap_t* tr, qnode_t* qs) |
427 | { |
428 | segment_t s; |
429 | int tu, tl, sk, tfirst, tlast; |
430 | int tfirstr = 0, tlastr = 0, tfirstl = 0, tlastl = 0; |
431 | int i1, i2, t, tn; |
432 | pointf tpt; |
433 | int tritop = 0, tribot = 0, is_swapped; |
434 | int tmptriseg; |
435 | |
436 | s = seg[segnum]; |
437 | if (_greater_than(&s.v1, &s.v0)) /* Get higher vertex in v0 */ |
438 | { |
439 | int tmp; |
440 | tpt = s.v0; |
441 | s.v0 = s.v1; |
442 | s.v1 = tpt; |
443 | tmp = s.root0; |
444 | s.root0 = s.root1; |
445 | s.root1 = tmp; |
446 | is_swapped = TRUE; |
447 | } |
448 | else is_swapped = FALSE; |
449 | |
450 | if ((is_swapped) ? !inserted(segnum, seg, LASTPT) : |
451 | !inserted(segnum, seg, FIRSTPT)) /* insert v0 in the tree */ |
452 | { |
453 | int tmp_d; |
454 | |
455 | tu = locate_endpoint(&s.v0, &s.v1, s.root0, seg, qs); |
456 | tl = newtrap(tr); /* tl is the new lower trapezoid */ |
457 | tr[tl].state = ST_VALID; |
458 | tr[tl] = tr[tu]; |
459 | tr[tu].lo.y = tr[tl].hi.y = s.v0.y; |
460 | tr[tu].lo.x = tr[tl].hi.x = s.v0.x; |
461 | tr[tu].d0 = tl; |
462 | tr[tu].d1 = 0; |
463 | tr[tl].u0 = tu; |
464 | tr[tl].u1 = 0; |
465 | |
466 | if (((tmp_d = tr[tl].d0) > 0) && (tr[tmp_d].u0 == tu)) |
467 | tr[tmp_d].u0 = tl; |
468 | if (((tmp_d = tr[tl].d0) > 0) && (tr[tmp_d].u1 == tu)) |
469 | tr[tmp_d].u1 = tl; |
470 | |
471 | if (((tmp_d = tr[tl].d1) > 0) && (tr[tmp_d].u0 == tu)) |
472 | tr[tmp_d].u0 = tl; |
473 | if (((tmp_d = tr[tl].d1) > 0) && (tr[tmp_d].u1 == tu)) |
474 | tr[tmp_d].u1 = tl; |
475 | |
476 | /* Now update the query structure and obtain the sinks for the */ |
477 | /* two trapezoids */ |
478 | |
479 | i1 = newnode(); /* Upper trapezoid sink */ |
480 | i2 = newnode(); /* Lower trapezoid sink */ |
481 | sk = tr[tu].sink; |
482 | |
483 | qs[sk].nodetype = T_Y; |
484 | qs[sk].yval = s.v0; |
485 | qs[sk].segnum = segnum; /* not really reqd ... maybe later */ |
486 | qs[sk].left = i2; |
487 | qs[sk].right = i1; |
488 | |
489 | qs[i1].nodetype = T_SINK; |
490 | qs[i1].trnum = tu; |
491 | qs[i1].parent = sk; |
492 | |
493 | qs[i2].nodetype = T_SINK; |
494 | qs[i2].trnum = tl; |
495 | qs[i2].parent = sk; |
496 | |
497 | tr[tu].sink = i1; |
498 | tr[tl].sink = i2; |
499 | tfirst = tl; |
500 | } |
501 | else /* v0 already present */ |
502 | { /* Get the topmost intersecting trapezoid */ |
503 | tfirst = locate_endpoint(&s.v0, &s.v1, s.root0, seg, qs); |
504 | tritop = 1; |
505 | } |
506 | |
507 | |
508 | if ((is_swapped) ? !inserted(segnum, seg, FIRSTPT) : |
509 | !inserted(segnum, seg, LASTPT)) /* insert v1 in the tree */ |
510 | { |
511 | int tmp_d; |
512 | |
513 | tu = locate_endpoint(&s.v1, &s.v0, s.root1, seg, qs); |
514 | |
515 | tl = newtrap(tr); /* tl is the new lower trapezoid */ |
516 | tr[tl].state = ST_VALID; |
517 | tr[tl] = tr[tu]; |
518 | tr[tu].lo.y = tr[tl].hi.y = s.v1.y; |
519 | tr[tu].lo.x = tr[tl].hi.x = s.v1.x; |
520 | tr[tu].d0 = tl; |
521 | tr[tu].d1 = 0; |
522 | tr[tl].u0 = tu; |
523 | tr[tl].u1 = 0; |
524 | |
525 | if (((tmp_d = tr[tl].d0) > 0) && (tr[tmp_d].u0 == tu)) |
526 | tr[tmp_d].u0 = tl; |
527 | if (((tmp_d = tr[tl].d0) > 0) && (tr[tmp_d].u1 == tu)) |
528 | tr[tmp_d].u1 = tl; |
529 | |
530 | if (((tmp_d = tr[tl].d1) > 0) && (tr[tmp_d].u0 == tu)) |
531 | tr[tmp_d].u0 = tl; |
532 | if (((tmp_d = tr[tl].d1) > 0) && (tr[tmp_d].u1 == tu)) |
533 | tr[tmp_d].u1 = tl; |
534 | |
535 | /* Now update the query structure and obtain the sinks for the */ |
536 | /* two trapezoids */ |
537 | |
538 | i1 = newnode(); /* Upper trapezoid sink */ |
539 | i2 = newnode(); /* Lower trapezoid sink */ |
540 | sk = tr[tu].sink; |
541 | |
542 | qs[sk].nodetype = T_Y; |
543 | qs[sk].yval = s.v1; |
544 | qs[sk].segnum = segnum; /* not really reqd ... maybe later */ |
545 | qs[sk].left = i2; |
546 | qs[sk].right = i1; |
547 | |
548 | qs[i1].nodetype = T_SINK; |
549 | qs[i1].trnum = tu; |
550 | qs[i1].parent = sk; |
551 | |
552 | qs[i2].nodetype = T_SINK; |
553 | qs[i2].trnum = tl; |
554 | qs[i2].parent = sk; |
555 | |
556 | tr[tu].sink = i1; |
557 | tr[tl].sink = i2; |
558 | tlast = tu; |
559 | } |
560 | else /* v1 already present */ |
561 | { /* Get the lowermost intersecting trapezoid */ |
562 | tlast = locate_endpoint(&s.v1, &s.v0, s.root1, seg, qs); |
563 | tribot = 1; |
564 | } |
565 | |
566 | /* Thread the segment into the query tree creating a new X-node */ |
567 | /* First, split all the trapezoids which are intersected by s into */ |
568 | /* two */ |
569 | |
570 | t = tfirst; /* topmost trapezoid */ |
571 | |
572 | while ((t > 0) && |
573 | _greater_than_equal_to(&tr[t].lo, &tr[tlast].lo)) |
574 | /* traverse from top to bot */ |
575 | { |
576 | int t_sav, tn_sav; |
577 | sk = tr[t].sink; |
578 | i1 = newnode(); /* left trapezoid sink */ |
579 | i2 = newnode(); /* right trapezoid sink */ |
580 | |
581 | qs[sk].nodetype = T_X; |
582 | qs[sk].segnum = segnum; |
583 | qs[sk].left = i1; |
584 | qs[sk].right = i2; |
585 | |
586 | qs[i1].nodetype = T_SINK; /* left trapezoid (use existing one) */ |
587 | qs[i1].trnum = t; |
588 | qs[i1].parent = sk; |
589 | |
590 | qs[i2].nodetype = T_SINK; /* right trapezoid (allocate new) */ |
591 | qs[i2].trnum = tn = newtrap(tr); |
592 | tr[tn].state = ST_VALID; |
593 | qs[i2].parent = sk; |
594 | |
595 | if (t == tfirst) |
596 | tfirstr = tn; |
597 | if (_equal_to(&tr[t].lo, &tr[tlast].lo)) |
598 | tlastr = tn; |
599 | |
600 | tr[tn] = tr[t]; |
601 | tr[t].sink = i1; |
602 | tr[tn].sink = i2; |
603 | t_sav = t; |
604 | tn_sav = tn; |
605 | |
606 | /* error */ |
607 | |
608 | if ((tr[t].d0 <= 0) && (tr[t].d1 <= 0)) /* case cannot arise */ |
609 | { |
610 | fprintf(stderr, "add_segment: error\n" ); |
611 | break; |
612 | } |
613 | |
614 | /* only one trapezoid below. partition t into two and make the */ |
615 | /* two resulting trapezoids t and tn as the upper neighbours of */ |
616 | /* the sole lower trapezoid */ |
617 | |
618 | else if ((tr[t].d0 > 0) && (tr[t].d1 <= 0)) |
619 | { /* Only one trapezoid below */ |
620 | if ((tr[t].u0 > 0) && (tr[t].u1 > 0)) |
621 | { /* continuation of a chain from abv. */ |
622 | if (tr[t].usave > 0) /* three upper neighbours */ |
623 | { |
624 | if (tr[t].uside == S_LEFT) |
625 | { |
626 | tr[tn].u0 = tr[t].u1; |
627 | tr[t].u1 = -1; |
628 | tr[tn].u1 = tr[t].usave; |
629 | |
630 | tr[tr[t].u0].d0 = t; |
631 | tr[tr[tn].u0].d0 = tn; |
632 | tr[tr[tn].u1].d0 = tn; |
633 | } |
634 | else /* intersects in the right */ |
635 | { |
636 | tr[tn].u1 = -1; |
637 | tr[tn].u0 = tr[t].u1; |
638 | tr[t].u1 = tr[t].u0; |
639 | tr[t].u0 = tr[t].usave; |
640 | |
641 | tr[tr[t].u0].d0 = t; |
642 | tr[tr[t].u1].d0 = t; |
643 | tr[tr[tn].u0].d0 = tn; |
644 | } |
645 | |
646 | tr[t].usave = tr[tn].usave = 0; |
647 | } |
648 | else /* No usave.... simple case */ |
649 | { |
650 | tr[tn].u0 = tr[t].u1; |
651 | tr[t].u1 = tr[tn].u1 = -1; |
652 | tr[tr[tn].u0].d0 = tn; |
653 | } |
654 | } |
655 | else |
656 | { /* fresh seg. or upward cusp */ |
657 | int tmp_u = tr[t].u0; |
658 | int td0, td1; |
659 | if (((td0 = tr[tmp_u].d0) > 0) && |
660 | ((td1 = tr[tmp_u].d1) > 0)) |
661 | { /* upward cusp */ |
662 | if ((tr[td0].rseg > 0) && |
663 | !is_left_of(tr[td0].rseg, seg, &s.v1)) |
664 | { |
665 | tr[t].u0 = tr[t].u1 = tr[tn].u1 = -1; |
666 | tr[tr[tn].u0].d1 = tn; |
667 | } |
668 | else /* cusp going leftwards */ |
669 | { |
670 | tr[tn].u0 = tr[tn].u1 = tr[t].u1 = -1; |
671 | tr[tr[t].u0].d0 = t; |
672 | } |
673 | } |
674 | else /* fresh segment */ |
675 | { |
676 | tr[tr[t].u0].d0 = t; |
677 | tr[tr[t].u0].d1 = tn; |
678 | } |
679 | } |
680 | |
681 | if (FP_EQUAL(tr[t].lo.y, tr[tlast].lo.y) && |
682 | FP_EQUAL(tr[t].lo.x, tr[tlast].lo.x) && tribot) |
683 | { /* bottom forms a triangle */ |
684 | |
685 | if (is_swapped) |
686 | tmptriseg = seg[segnum].prev; |
687 | else |
688 | tmptriseg = seg[segnum].next; |
689 | |
690 | if ((tmptriseg > 0) && is_left_of(tmptriseg, seg, &s.v0)) |
691 | { |
692 | /* L-R downward cusp */ |
693 | tr[tr[t].d0].u0 = t; |
694 | tr[tn].d0 = tr[tn].d1 = -1; |
695 | } |
696 | else |
697 | { |
698 | /* R-L downward cusp */ |
699 | tr[tr[tn].d0].u1 = tn; |
700 | tr[t].d0 = tr[t].d1 = -1; |
701 | } |
702 | } |
703 | else |
704 | { |
705 | if ((tr[tr[t].d0].u0 > 0) && (tr[tr[t].d0].u1 > 0)) |
706 | { |
707 | if (tr[tr[t].d0].u0 == t) /* passes through LHS */ |
708 | { |
709 | tr[tr[t].d0].usave = tr[tr[t].d0].u1; |
710 | tr[tr[t].d0].uside = S_LEFT; |
711 | } |
712 | else |
713 | { |
714 | tr[tr[t].d0].usave = tr[tr[t].d0].u0; |
715 | tr[tr[t].d0].uside = S_RIGHT; |
716 | } |
717 | } |
718 | tr[tr[t].d0].u0 = t; |
719 | tr[tr[t].d0].u1 = tn; |
720 | } |
721 | |
722 | t = tr[t].d0; |
723 | } |
724 | |
725 | |
726 | else if ((tr[t].d0 <= 0) && (tr[t].d1 > 0)) |
727 | { /* Only one trapezoid below */ |
728 | if ((tr[t].u0 > 0) && (tr[t].u1 > 0)) |
729 | { /* continuation of a chain from abv. */ |
730 | if (tr[t].usave > 0) /* three upper neighbours */ |
731 | { |
732 | if (tr[t].uside == S_LEFT) |
733 | { |
734 | tr[tn].u0 = tr[t].u1; |
735 | tr[t].u1 = -1; |
736 | tr[tn].u1 = tr[t].usave; |
737 | |
738 | tr[tr[t].u0].d0 = t; |
739 | tr[tr[tn].u0].d0 = tn; |
740 | tr[tr[tn].u1].d0 = tn; |
741 | } |
742 | else /* intersects in the right */ |
743 | { |
744 | tr[tn].u1 = -1; |
745 | tr[tn].u0 = tr[t].u1; |
746 | tr[t].u1 = tr[t].u0; |
747 | tr[t].u0 = tr[t].usave; |
748 | |
749 | tr[tr[t].u0].d0 = t; |
750 | tr[tr[t].u1].d0 = t; |
751 | tr[tr[tn].u0].d0 = tn; |
752 | } |
753 | |
754 | tr[t].usave = tr[tn].usave = 0; |
755 | } |
756 | else /* No usave.... simple case */ |
757 | { |
758 | tr[tn].u0 = tr[t].u1; |
759 | tr[t].u1 = tr[tn].u1 = -1; |
760 | tr[tr[tn].u0].d0 = tn; |
761 | } |
762 | } |
763 | else |
764 | { /* fresh seg. or upward cusp */ |
765 | int tmp_u = tr[t].u0; |
766 | int td0, td1; |
767 | if (((td0 = tr[tmp_u].d0) > 0) && |
768 | ((td1 = tr[tmp_u].d1) > 0)) |
769 | { /* upward cusp */ |
770 | if ((tr[td0].rseg > 0) && |
771 | !is_left_of(tr[td0].rseg, seg, &s.v1)) |
772 | { |
773 | tr[t].u0 = tr[t].u1 = tr[tn].u1 = -1; |
774 | tr[tr[tn].u0].d1 = tn; |
775 | } |
776 | else |
777 | { |
778 | tr[tn].u0 = tr[tn].u1 = tr[t].u1 = -1; |
779 | tr[tr[t].u0].d0 = t; |
780 | } |
781 | } |
782 | else /* fresh segment */ |
783 | { |
784 | tr[tr[t].u0].d0 = t; |
785 | tr[tr[t].u0].d1 = tn; |
786 | } |
787 | } |
788 | |
789 | if (FP_EQUAL(tr[t].lo.y, tr[tlast].lo.y) && |
790 | FP_EQUAL(tr[t].lo.x, tr[tlast].lo.x) && tribot) |
791 | { /* bottom forms a triangle */ |
792 | /* int tmpseg; */ |
793 | |
794 | if (is_swapped) |
795 | tmptriseg = seg[segnum].prev; |
796 | else |
797 | tmptriseg = seg[segnum].next; |
798 | |
799 | /* if ((tmpseg > 0) && is_left_of(tmpseg, seg, &s.v0)) */ |
800 | if ((tmptriseg > 0) && is_left_of(tmptriseg, seg, &s.v0)) |
801 | { |
802 | /* L-R downward cusp */ |
803 | tr[tr[t].d1].u0 = t; |
804 | tr[tn].d0 = tr[tn].d1 = -1; |
805 | } |
806 | else |
807 | { |
808 | /* R-L downward cusp */ |
809 | tr[tr[tn].d1].u1 = tn; |
810 | tr[t].d0 = tr[t].d1 = -1; |
811 | } |
812 | } |
813 | else |
814 | { |
815 | if ((tr[tr[t].d1].u0 > 0) && (tr[tr[t].d1].u1 > 0)) |
816 | { |
817 | if (tr[tr[t].d1].u0 == t) /* passes through LHS */ |
818 | { |
819 | tr[tr[t].d1].usave = tr[tr[t].d1].u1; |
820 | tr[tr[t].d1].uside = S_LEFT; |
821 | } |
822 | else |
823 | { |
824 | tr[tr[t].d1].usave = tr[tr[t].d1].u0; |
825 | tr[tr[t].d1].uside = S_RIGHT; |
826 | } |
827 | } |
828 | tr[tr[t].d1].u0 = t; |
829 | tr[tr[t].d1].u1 = tn; |
830 | } |
831 | |
832 | t = tr[t].d1; |
833 | } |
834 | |
835 | /* two trapezoids below. Find out which one is intersected by */ |
836 | /* this segment and proceed down that one */ |
837 | |
838 | else |
839 | { |
840 | /* int tmpseg = tr[tr[t].d0].rseg; */ |
841 | double y0, yt; |
842 | pointf tmppt; |
843 | int tnext, i_d0, i_d1; |
844 | |
845 | i_d0 = i_d1 = FALSE; |
846 | if (FP_EQUAL(tr[t].lo.y, s.v0.y)) |
847 | { |
848 | if (tr[t].lo.x > s.v0.x) |
849 | i_d0 = TRUE; |
850 | else |
851 | i_d1 = TRUE; |
852 | } |
853 | else |
854 | { |
855 | tmppt.y = y0 = tr[t].lo.y; |
856 | yt = (y0 - s.v0.y)/(s.v1.y - s.v0.y); |
857 | tmppt.x = s.v0.x + yt * (s.v1.x - s.v0.x); |
858 | |
859 | if (_less_than(&tmppt, &tr[t].lo)) |
860 | i_d0 = TRUE; |
861 | else |
862 | i_d1 = TRUE; |
863 | } |
864 | |
865 | /* check continuity from the top so that the lower-neighbour */ |
866 | /* values are properly filled for the upper trapezoid */ |
867 | |
868 | if ((tr[t].u0 > 0) && (tr[t].u1 > 0)) |
869 | { /* continuation of a chain from abv. */ |
870 | if (tr[t].usave > 0) /* three upper neighbours */ |
871 | { |
872 | if (tr[t].uside == S_LEFT) |
873 | { |
874 | tr[tn].u0 = tr[t].u1; |
875 | tr[t].u1 = -1; |
876 | tr[tn].u1 = tr[t].usave; |
877 | |
878 | tr[tr[t].u0].d0 = t; |
879 | tr[tr[tn].u0].d0 = tn; |
880 | tr[tr[tn].u1].d0 = tn; |
881 | } |
882 | else /* intersects in the right */ |
883 | { |
884 | tr[tn].u1 = -1; |
885 | tr[tn].u0 = tr[t].u1; |
886 | tr[t].u1 = tr[t].u0; |
887 | tr[t].u0 = tr[t].usave; |
888 | |
889 | tr[tr[t].u0].d0 = t; |
890 | tr[tr[t].u1].d0 = t; |
891 | tr[tr[tn].u0].d0 = tn; |
892 | } |
893 | |
894 | tr[t].usave = tr[tn].usave = 0; |
895 | } |
896 | else /* No usave.... simple case */ |
897 | { |
898 | tr[tn].u0 = tr[t].u1; |
899 | tr[tn].u1 = -1; |
900 | tr[t].u1 = -1; |
901 | tr[tr[tn].u0].d0 = tn; |
902 | } |
903 | } |
904 | else |
905 | { /* fresh seg. or upward cusp */ |
906 | int tmp_u = tr[t].u0; |
907 | int td0, td1; |
908 | if (((td0 = tr[tmp_u].d0) > 0) && |
909 | ((td1 = tr[tmp_u].d1) > 0)) |
910 | { /* upward cusp */ |
911 | if ((tr[td0].rseg > 0) && |
912 | !is_left_of(tr[td0].rseg, seg, &s.v1)) |
913 | { |
914 | tr[t].u0 = tr[t].u1 = tr[tn].u1 = -1; |
915 | tr[tr[tn].u0].d1 = tn; |
916 | } |
917 | else |
918 | { |
919 | tr[tn].u0 = tr[tn].u1 = tr[t].u1 = -1; |
920 | tr[tr[t].u0].d0 = t; |
921 | } |
922 | } |
923 | else /* fresh segment */ |
924 | { |
925 | tr[tr[t].u0].d0 = t; |
926 | tr[tr[t].u0].d1 = tn; |
927 | } |
928 | } |
929 | |
930 | if (FP_EQUAL(tr[t].lo.y, tr[tlast].lo.y) && |
931 | FP_EQUAL(tr[t].lo.x, tr[tlast].lo.x) && tribot) |
932 | { |
933 | /* this case arises only at the lowest trapezoid.. i.e. |
934 | tlast, if the lower endpoint of the segment is |
935 | already inserted in the structure */ |
936 | |
937 | tr[tr[t].d0].u0 = t; |
938 | tr[tr[t].d0].u1 = -1; |
939 | tr[tr[t].d1].u0 = tn; |
940 | tr[tr[t].d1].u1 = -1; |
941 | |
942 | tr[tn].d0 = tr[t].d1; |
943 | tr[t].d1 = tr[tn].d1 = -1; |
944 | |
945 | tnext = tr[t].d1; |
946 | } |
947 | else if (i_d0) |
948 | /* intersecting d0 */ |
949 | { |
950 | tr[tr[t].d0].u0 = t; |
951 | tr[tr[t].d0].u1 = tn; |
952 | tr[tr[t].d1].u0 = tn; |
953 | tr[tr[t].d1].u1 = -1; |
954 | |
955 | /* new code to determine the bottom neighbours of the */ |
956 | /* newly partitioned trapezoid */ |
957 | |
958 | tr[t].d1 = -1; |
959 | |
960 | tnext = tr[t].d0; |
961 | } |
962 | else /* intersecting d1 */ |
963 | { |
964 | tr[tr[t].d0].u0 = t; |
965 | tr[tr[t].d0].u1 = -1; |
966 | tr[tr[t].d1].u0 = t; |
967 | tr[tr[t].d1].u1 = tn; |
968 | |
969 | /* new code to determine the bottom neighbours of the */ |
970 | /* newly partitioned trapezoid */ |
971 | |
972 | tr[tn].d0 = tr[t].d1; |
973 | tr[tn].d1 = -1; |
974 | |
975 | tnext = tr[t].d1; |
976 | } |
977 | |
978 | t = tnext; |
979 | } |
980 | |
981 | tr[t_sav].rseg = tr[tn_sav].lseg = segnum; |
982 | } /* end-while */ |
983 | |
984 | /* Now combine those trapezoids which share common segments. We can */ |
985 | /* use the pointers to the parent to connect these together. This */ |
986 | /* works only because all these new trapezoids have been formed */ |
987 | /* due to splitting by the segment, and hence have only one parent */ |
988 | |
989 | tfirstl = tfirst; |
990 | tlastl = tlast; |
991 | merge_trapezoids(segnum, tfirstl, tlastl, S_LEFT, tr, qs); |
992 | merge_trapezoids(segnum, tfirstr, tlastr, S_RIGHT, tr, qs); |
993 | |
994 | seg[segnum].is_inserted = TRUE; |
995 | return 0; |
996 | } |
997 | |
998 | /* Update the roots stored for each of the endpoints of the segment. |
999 | * This is done to speed up the location-query for the endpoint when |
1000 | * the segment is inserted into the trapezoidation subsequently |
1001 | */ |
1002 | static void |
1003 | find_new_roots(int segnum, segment_t* seg, trap_t* tr, qnode_t* qs) |
1004 | { |
1005 | segment_t *s = &seg[segnum]; |
1006 | |
1007 | if (s->is_inserted) return; |
1008 | |
1009 | s->root0 = locate_endpoint(&s->v0, &s->v1, s->root0, seg, qs); |
1010 | s->root0 = tr[s->root0].sink; |
1011 | |
1012 | s->root1 = locate_endpoint(&s->v1, &s->v0, s->root1, seg, qs); |
1013 | s->root1 = tr[s->root1].sink; |
1014 | } |
1015 | |
1016 | /* Get log*n for given n */ |
1017 | static int math_logstar_n(int n) |
1018 | { |
1019 | register int i; |
1020 | double v; |
1021 | |
1022 | for (i = 0, v = (double) n; v >= 1; i++) |
1023 | v = log2(v); |
1024 | |
1025 | return (i - 1); |
1026 | } |
1027 | |
1028 | static int math_N(int n, int h) |
1029 | { |
1030 | register int i; |
1031 | double v; |
1032 | |
1033 | for (i = 0, v = (int) n; i < h; i++) |
1034 | v = log2(v); |
1035 | |
1036 | return (int) ceil((double) 1.0*n/v); |
1037 | } |
1038 | |
1039 | /* Main routine to perform trapezoidation */ |
1040 | int |
1041 | construct_trapezoids(int nseg, segment_t* seg, int* permute, int ntraps, |
1042 | trap_t* tr) |
1043 | { |
1044 | int i; |
1045 | int root, h; |
1046 | int segi = 1; |
1047 | qnode_t* qs; |
1048 | |
1049 | QSIZE = 2*ntraps; |
1050 | TRSIZE = ntraps; |
1051 | qs = N_NEW (2*ntraps, qnode_t); |
1052 | q_idx = tr_idx = 1; |
1053 | memset((void *)tr, 0, ntraps*sizeof(trap_t)); |
1054 | |
1055 | /* Add the first segment and get the query structure and trapezoid */ |
1056 | /* list initialised */ |
1057 | |
1058 | root = init_query_structure(permute[segi++], seg, tr, qs); |
1059 | |
1060 | for (i = 1; i <= nseg; i++) |
1061 | seg[i].root0 = seg[i].root1 = root; |
1062 | |
1063 | for (h = 1; h <= math_logstar_n(nseg); h++) { |
1064 | for (i = math_N(nseg, h -1) + 1; i <= math_N(nseg, h); i++) |
1065 | add_segment(permute[segi++], seg, tr, qs); |
1066 | |
1067 | /* Find a new root for each of the segment endpoints */ |
1068 | for (i = 1; i <= nseg; i++) |
1069 | find_new_roots(i, seg, tr, qs); |
1070 | } |
1071 | |
1072 | for (i = math_N(nseg, math_logstar_n(nseg)) + 1; i <= nseg; i++) |
1073 | add_segment(permute[segi++], seg, tr, qs); |
1074 | |
1075 | free (qs); |
1076 | return tr_idx; |
1077 | } |
1078 | |