1 | /* $Id$ $Revision$ */ |
2 | /* vim:set shiftwidth=4 ts=8: */ |
3 | |
4 | /************************************************************************* |
5 | * Copyright (c) 2011 AT&T Intellectual Property |
6 | * All rights reserved. This program and the accompanying materials |
7 | * are made available under the terms of the Eclipse Public License v1.0 |
8 | * which accompanies this distribution, and is available at |
9 | * http://www.eclipse.org/legal/epl-v10.html |
10 | * |
11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
12 | *************************************************************************/ |
13 | |
14 | |
15 | #include "vis.h" |
16 | |
17 | #ifdef DMALLOC |
18 | #include "dmalloc.h" |
19 | #endif |
20 | |
21 | static COORD unseen = (double) INT_MAX; |
22 | |
23 | /* shortestPath: |
24 | * Given a VxV weighted adjacency matrix, compute the shortest |
25 | * path vector from root to target. The returned vector (dad) encodes the |
26 | * shorted path from target to the root. That path is given by |
27 | * i, dad[i], dad[dad[i]], ..., root |
28 | * We have dad[root] = -1. |
29 | * |
30 | * Based on Dijkstra's algorithm (Sedgewick, 2nd. ed., p. 466). |
31 | * |
32 | * This implementation only uses the lower left triangle of the |
33 | * adjacency matrix, i.e., the values a[i][j] where i >= j. |
34 | */ |
35 | int *shortestPath(int root, int target, int V, array2 wadj) |
36 | { |
37 | int *dad; |
38 | COORD *vl; |
39 | COORD *val; |
40 | int min; |
41 | int k, t; |
42 | |
43 | /* allocate arrays */ |
44 | dad = (int *) malloc(V * sizeof(int)); |
45 | vl = (COORD *) malloc((V + 1) * sizeof(COORD)); /* One extra for sentinel */ |
46 | val = vl + 1; |
47 | |
48 | /* initialize arrays */ |
49 | for (k = 0; k < V; k++) { |
50 | dad[k] = -1; |
51 | val[k] = -unseen; |
52 | } |
53 | val[-1] = -(unseen + (COORD) 1); /* Set sentinel */ |
54 | min = root; |
55 | |
56 | /* use (min >= 0) to fill entire tree */ |
57 | while (min != target) { |
58 | k = min; |
59 | val[k] *= -1; |
60 | min = -1; |
61 | if (val[k] == unseen) |
62 | val[k] = 0; |
63 | |
64 | for (t = 0; t < V; t++) { |
65 | if (val[t] < 0) { |
66 | COORD newpri; |
67 | COORD wkt; |
68 | |
69 | /* Use lower triangle */ |
70 | if (k >= t) |
71 | wkt = wadj[k][t]; |
72 | else |
73 | wkt = wadj[t][k]; |
74 | |
75 | newpri = -(val[k] + wkt); |
76 | if ((wkt != 0) && (val[t] < newpri)) { |
77 | val[t] = newpri; |
78 | dad[t] = k; |
79 | } |
80 | if (val[t] > val[min]) |
81 | min = t; |
82 | } |
83 | } |
84 | } |
85 | |
86 | free(vl); |
87 | return dad; |
88 | } |
89 | |
90 | /* makePath: |
91 | * Given two points p and q in two polygons pp and qp of a vconfig_t conf, |
92 | * and the visibility vectors of p and q relative to conf, |
93 | * compute the shortest path from p to q. |
94 | * If dad is the returned array and V is the number of polygon vertices in |
95 | * conf, then the path is V(==q), dad[V], dad[dad[V]], ..., V+1(==p). |
96 | * NB: This is the only path that is guaranteed to be valid. |
97 | * We have dad[V+1] = -1. |
98 | * |
99 | */ |
100 | int *makePath(Ppoint_t p, int pp, COORD * pvis, |
101 | Ppoint_t q, int qp, COORD * qvis, vconfig_t * conf) |
102 | { |
103 | int V = conf->N; |
104 | |
105 | if (directVis(p, pp, q, qp, conf)) { |
106 | int *dad = (int *) malloc(sizeof(int) * (V + 2)); |
107 | dad[V] = V + 1; |
108 | dad[V + 1] = -1; |
109 | return dad; |
110 | } else { |
111 | array2 wadj = conf->vis; |
112 | wadj[V] = qvis; |
113 | wadj[V + 1] = pvis; |
114 | return (shortestPath(V + 1, V, V + 2, wadj)); |
115 | } |
116 | } |
117 | |