| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | |
| 15 | #include "vis.h" |
| 16 | |
| 17 | #ifdef DMALLOC |
| 18 | #include "dmalloc.h" |
| 19 | #endif |
| 20 | |
| 21 | static COORD unseen = (double) INT_MAX; |
| 22 | |
| 23 | /* shortestPath: |
| 24 | * Given a VxV weighted adjacency matrix, compute the shortest |
| 25 | * path vector from root to target. The returned vector (dad) encodes the |
| 26 | * shorted path from target to the root. That path is given by |
| 27 | * i, dad[i], dad[dad[i]], ..., root |
| 28 | * We have dad[root] = -1. |
| 29 | * |
| 30 | * Based on Dijkstra's algorithm (Sedgewick, 2nd. ed., p. 466). |
| 31 | * |
| 32 | * This implementation only uses the lower left triangle of the |
| 33 | * adjacency matrix, i.e., the values a[i][j] where i >= j. |
| 34 | */ |
| 35 | int *shortestPath(int root, int target, int V, array2 wadj) |
| 36 | { |
| 37 | int *dad; |
| 38 | COORD *vl; |
| 39 | COORD *val; |
| 40 | int min; |
| 41 | int k, t; |
| 42 | |
| 43 | /* allocate arrays */ |
| 44 | dad = (int *) malloc(V * sizeof(int)); |
| 45 | vl = (COORD *) malloc((V + 1) * sizeof(COORD)); /* One extra for sentinel */ |
| 46 | val = vl + 1; |
| 47 | |
| 48 | /* initialize arrays */ |
| 49 | for (k = 0; k < V; k++) { |
| 50 | dad[k] = -1; |
| 51 | val[k] = -unseen; |
| 52 | } |
| 53 | val[-1] = -(unseen + (COORD) 1); /* Set sentinel */ |
| 54 | min = root; |
| 55 | |
| 56 | /* use (min >= 0) to fill entire tree */ |
| 57 | while (min != target) { |
| 58 | k = min; |
| 59 | val[k] *= -1; |
| 60 | min = -1; |
| 61 | if (val[k] == unseen) |
| 62 | val[k] = 0; |
| 63 | |
| 64 | for (t = 0; t < V; t++) { |
| 65 | if (val[t] < 0) { |
| 66 | COORD newpri; |
| 67 | COORD wkt; |
| 68 | |
| 69 | /* Use lower triangle */ |
| 70 | if (k >= t) |
| 71 | wkt = wadj[k][t]; |
| 72 | else |
| 73 | wkt = wadj[t][k]; |
| 74 | |
| 75 | newpri = -(val[k] + wkt); |
| 76 | if ((wkt != 0) && (val[t] < newpri)) { |
| 77 | val[t] = newpri; |
| 78 | dad[t] = k; |
| 79 | } |
| 80 | if (val[t] > val[min]) |
| 81 | min = t; |
| 82 | } |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | free(vl); |
| 87 | return dad; |
| 88 | } |
| 89 | |
| 90 | /* makePath: |
| 91 | * Given two points p and q in two polygons pp and qp of a vconfig_t conf, |
| 92 | * and the visibility vectors of p and q relative to conf, |
| 93 | * compute the shortest path from p to q. |
| 94 | * If dad is the returned array and V is the number of polygon vertices in |
| 95 | * conf, then the path is V(==q), dad[V], dad[dad[V]], ..., V+1(==p). |
| 96 | * NB: This is the only path that is guaranteed to be valid. |
| 97 | * We have dad[V+1] = -1. |
| 98 | * |
| 99 | */ |
| 100 | int *makePath(Ppoint_t p, int pp, COORD * pvis, |
| 101 | Ppoint_t q, int qp, COORD * qvis, vconfig_t * conf) |
| 102 | { |
| 103 | int V = conf->N; |
| 104 | |
| 105 | if (directVis(p, pp, q, qp, conf)) { |
| 106 | int *dad = (int *) malloc(sizeof(int) * (V + 2)); |
| 107 | dad[V] = V + 1; |
| 108 | dad[V + 1] = -1; |
| 109 | return dad; |
| 110 | } else { |
| 111 | array2 wadj = conf->vis; |
| 112 | wadj[V] = qvis; |
| 113 | wadj[V + 1] = pvis; |
| 114 | return (shortestPath(V + 1, V, V + 2, wadj)); |
| 115 | } |
| 116 | } |
| 117 | |