| 1 | /* $Id$Revision: */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /********************************************************** |
| 5 | * See the LICENSE file for copyright information. * |
| 6 | **********************************************************/ |
| 7 | |
| 8 | #include "config.h" |
| 9 | |
| 10 | #include "red_black_tree.h" |
| 11 | #include "stdio.h" |
| 12 | |
| 13 | /***********************************************************************/ |
| 14 | /* FUNCTION: RBTreeCreate */ |
| 15 | /**/ |
| 16 | /* INPUTS: All the inputs are names of functions. CompFunc takes to */ |
| 17 | /* void pointers to keys and returns 1 if the first argument is */ |
| 18 | /* "greater than" the second. DestFunc takes a pointer to a key and */ |
| 19 | /* destroys it in the appropriate manner when the node containing that */ |
| 20 | /* key is deleted. InfoDestFunc is similar to DestFunc except it */ |
| 21 | /* receives a pointer to the info of a node and destroys it. */ |
| 22 | /* PrintFunc receives a pointer to the key of a node and prints it. */ |
| 23 | /* PrintInfo receives a pointer to the info of a node and prints it. */ |
| 24 | /* If RBTreePrint is never called the print functions don't have to be */ |
| 25 | /* defined and NullFunction can be used. */ |
| 26 | /**/ |
| 27 | /* OUTPUT: This function returns a pointer to the newly created */ |
| 28 | /* red-black tree. */ |
| 29 | /**/ |
| 30 | /* Modifies Input: none */ |
| 31 | /***********************************************************************/ |
| 32 | |
| 33 | rb_red_blk_tree* RBTreeCreate( int (*CompFunc) (const void*,const void*), |
| 34 | void (*DestFunc) (void*), |
| 35 | void (*InfoDestFunc) (void*), |
| 36 | void (*PrintFunc) (const void*), |
| 37 | void (*PrintInfo)(void*)) { |
| 38 | rb_red_blk_tree* newTree = NULL; |
| 39 | rb_red_blk_node* temp; |
| 40 | |
| 41 | if (setjmp(rb_jbuf)) { |
| 42 | if (newTree) { |
| 43 | if (newTree->nil) free (newTree->nil); |
| 44 | free (newTree); |
| 45 | } |
| 46 | return NULL; |
| 47 | } |
| 48 | newTree=(rb_red_blk_tree*) SafeMalloc(sizeof(rb_red_blk_tree)); |
| 49 | newTree->nil = newTree->root = NULL; |
| 50 | newTree->Compare= CompFunc; |
| 51 | newTree->DestroyKey= DestFunc; |
| 52 | newTree->PrintKey= PrintFunc; |
| 53 | newTree->PrintInfo= PrintInfo; |
| 54 | newTree->DestroyInfo= InfoDestFunc; |
| 55 | |
| 56 | /* see the comment in the rb_red_blk_tree structure in red_black_tree.h */ |
| 57 | /* for information on nil and root */ |
| 58 | temp=newTree->nil= (rb_red_blk_node*) SafeMalloc(sizeof(rb_red_blk_node)); |
| 59 | temp->parent=temp->left=temp->right=temp; |
| 60 | temp->red=0; |
| 61 | temp->key=0; |
| 62 | temp=newTree->root= (rb_red_blk_node*) SafeMalloc(sizeof(rb_red_blk_node)); |
| 63 | temp->parent=temp->left=temp->right=newTree->nil; |
| 64 | temp->key=0; |
| 65 | temp->red=0; |
| 66 | return(newTree); |
| 67 | } |
| 68 | |
| 69 | /***********************************************************************/ |
| 70 | /* FUNCTION: LeftRotate */ |
| 71 | /**/ |
| 72 | /* INPUTS: This takes a tree so that it can access the appropriate */ |
| 73 | /* root and nil pointers, and the node to rotate on. */ |
| 74 | /**/ |
| 75 | /* OUTPUT: None */ |
| 76 | /**/ |
| 77 | /* Modifies Input: tree, x */ |
| 78 | /**/ |
| 79 | /* EFFECTS: Rotates as described in _Introduction_To_Algorithms by */ |
| 80 | /* Cormen, Leiserson, Rivest (Chapter 14). Basically this */ |
| 81 | /* makes the parent of x be to the left of x, x the parent of */ |
| 82 | /* its parent before the rotation and fixes other pointers */ |
| 83 | /* accordingly. */ |
| 84 | /***********************************************************************/ |
| 85 | |
| 86 | void LeftRotate(rb_red_blk_tree* tree, rb_red_blk_node* x) { |
| 87 | rb_red_blk_node* y; |
| 88 | rb_red_blk_node* nil=tree->nil; |
| 89 | |
| 90 | /* I originally wrote this function to use the sentinel for */ |
| 91 | /* nil to avoid checking for nil. However this introduces a */ |
| 92 | /* very subtle bug because sometimes this function modifies */ |
| 93 | /* the parent pointer of nil. This can be a problem if a */ |
| 94 | /* function which calls LeftRotate also uses the nil sentinel */ |
| 95 | /* and expects the nil sentinel's parent pointer to be unchanged */ |
| 96 | /* after calling this function. For example, when RBDeleteFixUP */ |
| 97 | /* calls LeftRotate it expects the parent pointer of nil to be */ |
| 98 | /* unchanged. */ |
| 99 | |
| 100 | y=x->right; |
| 101 | x->right=y->left; |
| 102 | |
| 103 | if (y->left != nil) y->left->parent=x; /* used to use sentinel here */ |
| 104 | /* and do an unconditional assignment instead of testing for nil */ |
| 105 | |
| 106 | y->parent=x->parent; |
| 107 | |
| 108 | /* instead of checking if x->parent is the root as in the book, we */ |
| 109 | /* count on the root sentinel to implicitly take care of this case */ |
| 110 | if( x == x->parent->left) { |
| 111 | x->parent->left=y; |
| 112 | } else { |
| 113 | x->parent->right=y; |
| 114 | } |
| 115 | y->left=x; |
| 116 | x->parent=y; |
| 117 | |
| 118 | #ifdef DEBUG_ASSERT |
| 119 | Assert(!tree->nil->red,"nil not red in LeftRotate" ); |
| 120 | #endif |
| 121 | } |
| 122 | |
| 123 | |
| 124 | /***********************************************************************/ |
| 125 | /* FUNCTION: RighttRotate */ |
| 126 | /**/ |
| 127 | /* INPUTS: This takes a tree so that it can access the appropriate */ |
| 128 | /* root and nil pointers, and the node to rotate on. */ |
| 129 | /**/ |
| 130 | /* OUTPUT: None */ |
| 131 | /**/ |
| 132 | /* Modifies Input?: tree, y */ |
| 133 | /**/ |
| 134 | /* EFFECTS: Rotates as described in _Introduction_To_Algorithms by */ |
| 135 | /* Cormen, Leiserson, Rivest (Chapter 14). Basically this */ |
| 136 | /* makes the parent of x be to the left of x, x the parent of */ |
| 137 | /* its parent before the rotation and fixes other pointers */ |
| 138 | /* accordingly. */ |
| 139 | /***********************************************************************/ |
| 140 | |
| 141 | void RightRotate(rb_red_blk_tree* tree, rb_red_blk_node* y) { |
| 142 | rb_red_blk_node* x; |
| 143 | rb_red_blk_node* nil=tree->nil; |
| 144 | |
| 145 | /* I originally wrote this function to use the sentinel for */ |
| 146 | /* nil to avoid checking for nil. However this introduces a */ |
| 147 | /* very subtle bug because sometimes this function modifies */ |
| 148 | /* the parent pointer of nil. This can be a problem if a */ |
| 149 | /* function which calls LeftRotate also uses the nil sentinel */ |
| 150 | /* and expects the nil sentinel's parent pointer to be unchanged */ |
| 151 | /* after calling this function. For example, when RBDeleteFixUP */ |
| 152 | /* calls LeftRotate it expects the parent pointer of nil to be */ |
| 153 | /* unchanged. */ |
| 154 | |
| 155 | x=y->left; |
| 156 | y->left=x->right; |
| 157 | |
| 158 | if (nil != x->right) x->right->parent=y; /*used to use sentinel here */ |
| 159 | /* and do an unconditional assignment instead of testing for nil */ |
| 160 | |
| 161 | /* instead of checking if x->parent is the root as in the book, we */ |
| 162 | /* count on the root sentinel to implicitly take care of this case */ |
| 163 | x->parent=y->parent; |
| 164 | if( y == y->parent->left) { |
| 165 | y->parent->left=x; |
| 166 | } else { |
| 167 | y->parent->right=x; |
| 168 | } |
| 169 | x->right=y; |
| 170 | y->parent=x; |
| 171 | |
| 172 | #ifdef DEBUG_ASSERT |
| 173 | Assert(!tree->nil->red,"nil not red in RightRotate" ); |
| 174 | #endif |
| 175 | } |
| 176 | |
| 177 | /***********************************************************************/ |
| 178 | /* FUNCTION: TreeInsertHelp */ |
| 179 | /**/ |
| 180 | /* INPUTS: tree is the tree to insert into and z is the node to insert */ |
| 181 | /**/ |
| 182 | /* OUTPUT: none */ |
| 183 | /**/ |
| 184 | /* Modifies Input: tree, z */ |
| 185 | /**/ |
| 186 | /* EFFECTS: Inserts z into the tree as if it were a regular binary tree */ |
| 187 | /* using the algorithm described in _Introduction_To_Algorithms_ */ |
| 188 | /* by Cormen et al. This function is only intended to be called */ |
| 189 | /* by the RBTreeInsert function and not by the user */ |
| 190 | /***********************************************************************/ |
| 191 | |
| 192 | void TreeInsertHelp(rb_red_blk_tree* tree, rb_red_blk_node* z) { |
| 193 | /* This function should only be called by InsertRBTree (see above) */ |
| 194 | rb_red_blk_node* x; |
| 195 | rb_red_blk_node* y; |
| 196 | rb_red_blk_node* nil=tree->nil; |
| 197 | |
| 198 | z->left=z->right=nil; |
| 199 | y=tree->root; |
| 200 | x=tree->root->left; |
| 201 | while( x != nil) { |
| 202 | y=x; |
| 203 | if (1 == tree->Compare(x->key,z->key)) { /* x.key > z.key */ |
| 204 | x=x->left; |
| 205 | } else { /* x,key <= z.key */ |
| 206 | x=x->right; |
| 207 | } |
| 208 | } |
| 209 | z->parent=y; |
| 210 | if ( (y == tree->root) || |
| 211 | (1 == tree->Compare(y->key,z->key))) { /* y.key > z.key */ |
| 212 | y->left=z; |
| 213 | } else { |
| 214 | y->right=z; |
| 215 | } |
| 216 | |
| 217 | #ifdef DEBUG_ASSERT |
| 218 | Assert(!tree->nil->red,"nil not red in TreeInsertHelp" ); |
| 219 | #endif |
| 220 | } |
| 221 | |
| 222 | /* Before calling Insert RBTree the node x should have its key set */ |
| 223 | |
| 224 | /***********************************************************************/ |
| 225 | /* FUNCTION: RBTreeInsert */ |
| 226 | /**/ |
| 227 | /* INPUTS: tree is the red-black tree to insert a node which has a key */ |
| 228 | /* pointed to by key and info pointed to by info. */ |
| 229 | /**/ |
| 230 | /* OUTPUT: This function returns a pointer to the newly inserted node */ |
| 231 | /* which is guarunteed to be valid until this node is deleted. */ |
| 232 | /* What this means is if another data structure stores this */ |
| 233 | /* pointer then the tree does not need to be searched when this */ |
| 234 | /* is to be deleted. */ |
| 235 | /**/ |
| 236 | /* Modifies Input: tree */ |
| 237 | /**/ |
| 238 | /* EFFECTS: Creates a node node which contains the appropriate key and */ |
| 239 | /* info pointers and inserts it into the tree. */ |
| 240 | /***********************************************************************/ |
| 241 | |
| 242 | rb_red_blk_node * RBTreeInsert(rb_red_blk_tree* tree, void* key, void* info) { |
| 243 | rb_red_blk_node * y; |
| 244 | rb_red_blk_node * x; |
| 245 | rb_red_blk_node * newNode; |
| 246 | |
| 247 | if (setjmp(rb_jbuf)) |
| 248 | return NULL; |
| 249 | x=(rb_red_blk_node*) SafeMalloc(sizeof(rb_red_blk_node)); |
| 250 | x->key=key; |
| 251 | x->info=info; |
| 252 | |
| 253 | TreeInsertHelp(tree,x); |
| 254 | newNode=x; |
| 255 | x->red=1; |
| 256 | while(x->parent->red) { /* use sentinel instead of checking for root */ |
| 257 | if (x->parent == x->parent->parent->left) { |
| 258 | y=x->parent->parent->right; |
| 259 | if (y->red) { |
| 260 | x->parent->red=0; |
| 261 | y->red=0; |
| 262 | x->parent->parent->red=1; |
| 263 | x=x->parent->parent; |
| 264 | } else { |
| 265 | if (x == x->parent->right) { |
| 266 | x=x->parent; |
| 267 | LeftRotate(tree,x); |
| 268 | } |
| 269 | x->parent->red=0; |
| 270 | x->parent->parent->red=1; |
| 271 | RightRotate(tree,x->parent->parent); |
| 272 | } |
| 273 | } else { /* case for x->parent == x->parent->parent->right */ |
| 274 | y=x->parent->parent->left; |
| 275 | if (y->red) { |
| 276 | x->parent->red=0; |
| 277 | y->red=0; |
| 278 | x->parent->parent->red=1; |
| 279 | x=x->parent->parent; |
| 280 | } else { |
| 281 | if (x == x->parent->left) { |
| 282 | x=x->parent; |
| 283 | RightRotate(tree,x); |
| 284 | } |
| 285 | x->parent->red=0; |
| 286 | x->parent->parent->red=1; |
| 287 | LeftRotate(tree,x->parent->parent); |
| 288 | } |
| 289 | } |
| 290 | } |
| 291 | tree->root->left->red=0; |
| 292 | return(newNode); |
| 293 | |
| 294 | #ifdef DEBUG_ASSERT |
| 295 | Assert(!tree->nil->red,"nil not red in RBTreeInsert" ); |
| 296 | Assert(!tree->root->red,"root not red in RBTreeInsert" ); |
| 297 | #endif |
| 298 | } |
| 299 | |
| 300 | /***********************************************************************/ |
| 301 | /* FUNCTION: TreeSuccessor */ |
| 302 | /**/ |
| 303 | /* INPUTS: tree is the tree in question, and x is the node we want the */ |
| 304 | /* the successor of. */ |
| 305 | /**/ |
| 306 | /* OUTPUT: This function returns the successor of x or NULL if no */ |
| 307 | /* successor exists. */ |
| 308 | /**/ |
| 309 | /* Modifies Input: none */ |
| 310 | /**/ |
| 311 | /* Note: uses the algorithm in _Introduction_To_Algorithms_ */ |
| 312 | /***********************************************************************/ |
| 313 | |
| 314 | rb_red_blk_node* TreeSuccessor(rb_red_blk_tree* tree,rb_red_blk_node* x) { |
| 315 | rb_red_blk_node* y; |
| 316 | rb_red_blk_node* nil=tree->nil; |
| 317 | rb_red_blk_node* root=tree->root; |
| 318 | |
| 319 | if (nil != (y = x->right)) { /* assignment to y is intentional */ |
| 320 | while(y->left != nil) { /* returns the minium of the right subtree of x */ |
| 321 | y=y->left; |
| 322 | } |
| 323 | return(y); |
| 324 | } else { |
| 325 | y=x->parent; |
| 326 | while(x == y->right) { /* sentinel used instead of checking for nil */ |
| 327 | x=y; |
| 328 | y=y->parent; |
| 329 | } |
| 330 | if (y == root) return(nil); |
| 331 | return(y); |
| 332 | } |
| 333 | } |
| 334 | |
| 335 | /***********************************************************************/ |
| 336 | /* FUNCTION: Treepredecessor */ |
| 337 | /**/ |
| 338 | /* INPUTS: tree is the tree in question, and x is the node we want the */ |
| 339 | /* the predecessor of. */ |
| 340 | /**/ |
| 341 | /* OUTPUT: This function returns the predecessor of x or NULL if no */ |
| 342 | /* predecessor exists. */ |
| 343 | /**/ |
| 344 | /* Modifies Input: none */ |
| 345 | /**/ |
| 346 | /* Note: uses the algorithm in _Introduction_To_Algorithms_ */ |
| 347 | /***********************************************************************/ |
| 348 | |
| 349 | rb_red_blk_node* TreePredecessor(rb_red_blk_tree* tree, rb_red_blk_node* x) { |
| 350 | rb_red_blk_node* y; |
| 351 | rb_red_blk_node* nil=tree->nil; |
| 352 | rb_red_blk_node* root=tree->root; |
| 353 | |
| 354 | if (nil != (y = x->left)) { /* assignment to y is intentional */ |
| 355 | while(y->right != nil) { /* returns the maximum of the left subtree of x */ |
| 356 | y=y->right; |
| 357 | } |
| 358 | return(y); |
| 359 | } else { |
| 360 | y=x->parent; |
| 361 | while(x == y->left) { |
| 362 | if (y == root) return(nil); |
| 363 | x=y; |
| 364 | y=y->parent; |
| 365 | } |
| 366 | return(y); |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | /***********************************************************************/ |
| 371 | /* FUNCTION: InorderTreePrint */ |
| 372 | /**/ |
| 373 | /* INPUTS: tree is the tree to print and x is the current inorder node */ |
| 374 | /**/ |
| 375 | /* OUTPUT: none */ |
| 376 | /**/ |
| 377 | /* EFFECTS: This function recursively prints the nodes of the tree */ |
| 378 | /* inorder using the PrintKey and PrintInfo functions. */ |
| 379 | /**/ |
| 380 | /* Modifies Input: none */ |
| 381 | /**/ |
| 382 | /* Note: This function should only be called from RBTreePrint */ |
| 383 | /***********************************************************************/ |
| 384 | |
| 385 | void InorderTreePrint(rb_red_blk_tree* tree, rb_red_blk_node* x) { |
| 386 | rb_red_blk_node* nil=tree->nil; |
| 387 | rb_red_blk_node* root=tree->root; |
| 388 | if (x != tree->nil) { |
| 389 | InorderTreePrint(tree,x->left); |
| 390 | printf("info=" ); |
| 391 | tree->PrintInfo(x->info); |
| 392 | printf(" key=" ); |
| 393 | tree->PrintKey(x->key); |
| 394 | printf(" l->key=" ); |
| 395 | if( x->left == nil) printf("NULL" ); else tree->PrintKey(x->left->key); |
| 396 | printf(" r->key=" ); |
| 397 | if( x->right == nil) printf("NULL" ); else tree->PrintKey(x->right->key); |
| 398 | printf(" p->key=" ); |
| 399 | if( x->parent == root) printf("NULL" ); else tree->PrintKey(x->parent->key); |
| 400 | printf(" red=%i\n" ,x->red); |
| 401 | InorderTreePrint(tree,x->right); |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | |
| 406 | /***********************************************************************/ |
| 407 | /* FUNCTION: TreeDestHelper */ |
| 408 | /**/ |
| 409 | /* INPUTS: tree is the tree to destroy and x is the current node */ |
| 410 | /**/ |
| 411 | /* OUTPUT: none */ |
| 412 | /**/ |
| 413 | /* EFFECTS: This function recursively destroys the nodes of the tree */ |
| 414 | /* postorder using the DestroyKey and DestroyInfo functions. */ |
| 415 | /**/ |
| 416 | /* Modifies Input: tree, x */ |
| 417 | /**/ |
| 418 | /* Note: This function should only be called by RBTreeDestroy */ |
| 419 | /***********************************************************************/ |
| 420 | |
| 421 | void TreeDestHelper(rb_red_blk_tree* tree, rb_red_blk_node* x) { |
| 422 | rb_red_blk_node* nil=tree->nil; |
| 423 | if (x != nil) { |
| 424 | TreeDestHelper(tree,x->left); |
| 425 | TreeDestHelper(tree,x->right); |
| 426 | tree->DestroyKey(x->key); |
| 427 | tree->DestroyInfo(x->info); |
| 428 | free(x); |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | |
| 433 | /***********************************************************************/ |
| 434 | /* FUNCTION: RBTreeDestroy */ |
| 435 | /**/ |
| 436 | /* INPUTS: tree is the tree to destroy */ |
| 437 | /**/ |
| 438 | /* OUTPUT: none */ |
| 439 | /**/ |
| 440 | /* EFFECT: Destroys the key and frees memory */ |
| 441 | /**/ |
| 442 | /* Modifies Input: tree */ |
| 443 | /**/ |
| 444 | /***********************************************************************/ |
| 445 | |
| 446 | void RBTreeDestroy(rb_red_blk_tree* tree) { |
| 447 | TreeDestHelper(tree,tree->root->left); |
| 448 | free(tree->root); |
| 449 | free(tree->nil); |
| 450 | free(tree); |
| 451 | } |
| 452 | |
| 453 | |
| 454 | /***********************************************************************/ |
| 455 | /* FUNCTION: RBTreePrint */ |
| 456 | /**/ |
| 457 | /* INPUTS: tree is the tree to print */ |
| 458 | /**/ |
| 459 | /* OUTPUT: none */ |
| 460 | /**/ |
| 461 | /* EFFECT: This function recursively prints the nodes of the tree */ |
| 462 | /* inorder using the PrintKey and PrintInfo functions. */ |
| 463 | /**/ |
| 464 | /* Modifies Input: none */ |
| 465 | /**/ |
| 466 | /***********************************************************************/ |
| 467 | |
| 468 | void RBTreePrint(rb_red_blk_tree* tree) { |
| 469 | InorderTreePrint(tree,tree->root->left); |
| 470 | } |
| 471 | |
| 472 | |
| 473 | /***********************************************************************/ |
| 474 | /* FUNCTION: RBExactQuery */ |
| 475 | /**/ |
| 476 | /* INPUTS: tree is the tree to print and q is a pointer to the key */ |
| 477 | /* we are searching for */ |
| 478 | /**/ |
| 479 | /* OUTPUT: returns the a node with key equal to q. If there are */ |
| 480 | /* multiple nodes with key equal to q this function returns */ |
| 481 | /* the one highest in the tree */ |
| 482 | /**/ |
| 483 | /* Modifies Input: none */ |
| 484 | /**/ |
| 485 | /***********************************************************************/ |
| 486 | |
| 487 | rb_red_blk_node* RBExactQuery(rb_red_blk_tree* tree, void* q) { |
| 488 | rb_red_blk_node* x=tree->root->left; |
| 489 | rb_red_blk_node* nil=tree->nil; |
| 490 | int compVal; |
| 491 | if (x == nil) return(0); |
| 492 | compVal=tree->Compare(x->key,(int*) q); |
| 493 | while(0 != compVal) {/*assignemnt*/ |
| 494 | if (1 == compVal) { /* x->key > q */ |
| 495 | x=x->left; |
| 496 | } else { |
| 497 | x=x->right; |
| 498 | } |
| 499 | if ( x == nil) return(0); |
| 500 | compVal=tree->Compare(x->key,(int*) q); |
| 501 | } |
| 502 | return(x); |
| 503 | } |
| 504 | |
| 505 | |
| 506 | /***********************************************************************/ |
| 507 | /* FUNCTION: RBDeleteFixUp */ |
| 508 | /**/ |
| 509 | /* INPUTS: tree is the tree to fix and x is the child of the spliced */ |
| 510 | /* out node in RBTreeDelete. */ |
| 511 | /**/ |
| 512 | /* OUTPUT: none */ |
| 513 | /**/ |
| 514 | /* EFFECT: Performs rotations and changes colors to restore red-black */ |
| 515 | /* properties after a node is deleted */ |
| 516 | /**/ |
| 517 | /* Modifies Input: tree, x */ |
| 518 | /**/ |
| 519 | /* The algorithm from this function is from _Introduction_To_Algorithms_ */ |
| 520 | /***********************************************************************/ |
| 521 | |
| 522 | void RBDeleteFixUp(rb_red_blk_tree* tree, rb_red_blk_node* x) { |
| 523 | rb_red_blk_node* root=tree->root->left; |
| 524 | rb_red_blk_node* w; |
| 525 | |
| 526 | while( (!x->red) && (root != x)) { |
| 527 | if (x == x->parent->left) { |
| 528 | w=x->parent->right; |
| 529 | if (w->red) { |
| 530 | w->red=0; |
| 531 | x->parent->red=1; |
| 532 | LeftRotate(tree,x->parent); |
| 533 | w=x->parent->right; |
| 534 | } |
| 535 | if ( (!w->right->red) && (!w->left->red) ) { |
| 536 | w->red=1; |
| 537 | x=x->parent; |
| 538 | } else { |
| 539 | if (!w->right->red) { |
| 540 | w->left->red=0; |
| 541 | w->red=1; |
| 542 | RightRotate(tree,w); |
| 543 | w=x->parent->right; |
| 544 | } |
| 545 | w->red=x->parent->red; |
| 546 | x->parent->red=0; |
| 547 | w->right->red=0; |
| 548 | LeftRotate(tree,x->parent); |
| 549 | x=root; /* this is to exit while loop */ |
| 550 | } |
| 551 | } else { /* the code below is has left and right switched from above */ |
| 552 | w=x->parent->left; |
| 553 | if (w->red) { |
| 554 | w->red=0; |
| 555 | x->parent->red=1; |
| 556 | RightRotate(tree,x->parent); |
| 557 | w=x->parent->left; |
| 558 | } |
| 559 | if ( (!w->right->red) && (!w->left->red) ) { |
| 560 | w->red=1; |
| 561 | x=x->parent; |
| 562 | } else { |
| 563 | if (!w->left->red) { |
| 564 | w->right->red=0; |
| 565 | w->red=1; |
| 566 | LeftRotate(tree,w); |
| 567 | w=x->parent->left; |
| 568 | } |
| 569 | w->red=x->parent->red; |
| 570 | x->parent->red=0; |
| 571 | w->left->red=0; |
| 572 | RightRotate(tree,x->parent); |
| 573 | x=root; /* this is to exit while loop */ |
| 574 | } |
| 575 | } |
| 576 | } |
| 577 | x->red=0; |
| 578 | |
| 579 | #ifdef DEBUG_ASSERT |
| 580 | Assert(!tree->nil->red,"nil not black in RBDeleteFixUp" ); |
| 581 | #endif |
| 582 | } |
| 583 | |
| 584 | |
| 585 | /***********************************************************************/ |
| 586 | /* FUNCTION: RBDelete */ |
| 587 | /**/ |
| 588 | /* INPUTS: tree is the tree to delete node z from */ |
| 589 | /**/ |
| 590 | /* OUTPUT: none */ |
| 591 | /**/ |
| 592 | /* EFFECT: Deletes z from tree and frees the key and info of z */ |
| 593 | /* using DestoryKey and DestoryInfo. Then calls */ |
| 594 | /* RBDeleteFixUp to restore red-black properties */ |
| 595 | /**/ |
| 596 | /* Modifies Input: tree, z */ |
| 597 | /**/ |
| 598 | /* The algorithm from this function is from _Introduction_To_Algorithms_ */ |
| 599 | /***********************************************************************/ |
| 600 | |
| 601 | void RBDelete(rb_red_blk_tree* tree, rb_red_blk_node* z){ |
| 602 | rb_red_blk_node* y; |
| 603 | rb_red_blk_node* x; |
| 604 | rb_red_blk_node* nil=tree->nil; |
| 605 | rb_red_blk_node* root=tree->root; |
| 606 | |
| 607 | y= ((z->left == nil) || (z->right == nil)) ? z : TreeSuccessor(tree,z); |
| 608 | x= (y->left == nil) ? y->right : y->left; |
| 609 | if (root == (x->parent = y->parent)) { /* assignment of y->p to x->p is intentional */ |
| 610 | root->left=x; |
| 611 | } else { |
| 612 | if (y == y->parent->left) { |
| 613 | y->parent->left=x; |
| 614 | } else { |
| 615 | y->parent->right=x; |
| 616 | } |
| 617 | } |
| 618 | if (y != z) { /* y should not be nil in this case */ |
| 619 | |
| 620 | #ifdef DEBUG_ASSERT |
| 621 | Assert( (y!=tree->nil),"y is nil in RBDelete\n" ); |
| 622 | #endif |
| 623 | /* y is the node to splice out and x is its child */ |
| 624 | |
| 625 | if (!(y->red)) RBDeleteFixUp(tree,x); |
| 626 | |
| 627 | tree->DestroyKey(z->key); |
| 628 | tree->DestroyInfo(z->info); |
| 629 | y->left=z->left; |
| 630 | y->right=z->right; |
| 631 | y->parent=z->parent; |
| 632 | y->red=z->red; |
| 633 | z->left->parent=z->right->parent=y; |
| 634 | if (z == z->parent->left) { |
| 635 | z->parent->left=y; |
| 636 | } else { |
| 637 | z->parent->right=y; |
| 638 | } |
| 639 | free(z); |
| 640 | } else { |
| 641 | tree->DestroyKey(y->key); |
| 642 | tree->DestroyInfo(y->info); |
| 643 | if (!(y->red)) RBDeleteFixUp(tree,x); |
| 644 | free(y); |
| 645 | } |
| 646 | |
| 647 | #ifdef DEBUG_ASSERT |
| 648 | Assert(!tree->nil->red,"nil not black in RBDelete" ); |
| 649 | #endif |
| 650 | } |
| 651 | |
| 652 | |
| 653 | /***********************************************************************/ |
| 654 | /* FUNCTION: RBEnumerate */ |
| 655 | /**/ |
| 656 | /* INPUTS: tree is the tree to look for keys >= low */ |
| 657 | /* and <= high with respect to the Compare function */ |
| 658 | /**/ |
| 659 | /* OUTPUT: stack containing pointers to the nodes between [low,high] */ |
| 660 | /**/ |
| 661 | /* Modifies Input: none */ |
| 662 | /***********************************************************************/ |
| 663 | |
| 664 | stk_stack* RBEnumerate(rb_red_blk_tree* tree, void* low, void* high) { |
| 665 | stk_stack* enumResultStack; |
| 666 | rb_red_blk_node* nil=tree->nil; |
| 667 | rb_red_blk_node* x=tree->root->left; |
| 668 | rb_red_blk_node* lastBest=nil; |
| 669 | |
| 670 | if (setjmp(rb_jbuf)) { |
| 671 | return NULL; |
| 672 | } |
| 673 | enumResultStack=StackCreate(); |
| 674 | while(nil != x) { |
| 675 | if ( 1 == (tree->Compare(x->key,high)) ) { /* x->key > high */ |
| 676 | x=x->left; |
| 677 | } else { |
| 678 | lastBest=x; |
| 679 | x=x->right; |
| 680 | } |
| 681 | } |
| 682 | while ( (lastBest != nil) && (1 != tree->Compare(low,lastBest->key))) { |
| 683 | StackPush(enumResultStack,lastBest); |
| 684 | lastBest=TreePredecessor(tree,lastBest); |
| 685 | } |
| 686 | return(enumResultStack); |
| 687 | } |
| 688 | |
| 689 | |
| 690 | |
| 691 | |
| 692 | |
| 693 | |
| 694 | |
| 695 | |