| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | #include "Multilevel.h" |
| 15 | #include "PriorityQueue.h" |
| 16 | #include "memory.h" |
| 17 | #include "logic.h" |
| 18 | #include "assert.h" |
| 19 | #include "arith.h" |
| 20 | |
| 21 | |
| 22 | Multilevel_control Multilevel_control_new(int scheme, int mode){ |
| 23 | Multilevel_control ctrl; |
| 24 | |
| 25 | ctrl = GNEW(struct Multilevel_control_struct); |
| 26 | ctrl->minsize = 4; |
| 27 | ctrl->min_coarsen_factor = 0.75; |
| 28 | ctrl->maxlevel = 1<<30; |
| 29 | ctrl->randomize = TRUE; |
| 30 | /* now set in spring_electrical_control_new(), as well as by command line argument -c |
| 31 | ctrl->coarsen_scheme = COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_CLUSTER_PERNODE_LEAVES_FIRST; |
| 32 | ctrl->coarsen_scheme = COARSEN_INDEPENDENT_VERTEX_SET_RS; |
| 33 | ctrl->coarsen_scheme = COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE; |
| 34 | ctrl->coarsen_scheme = COARSEN_HYBRID; |
| 35 | ctrl->coarsen_scheme = COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_SUPERNODES_FIRST; |
| 36 | ctrl->coarsen_mode = COARSEN_MODE_FORCEFUL; or COARSEN_MODE_GENTLE; |
| 37 | */ |
| 38 | |
| 39 | ctrl->coarsen_scheme = scheme; |
| 40 | ctrl->coarsen_mode = mode; |
| 41 | return ctrl; |
| 42 | } |
| 43 | |
| 44 | void Multilevel_control_delete(Multilevel_control ctrl){ |
| 45 | FREE(ctrl); |
| 46 | } |
| 47 | |
| 48 | static Multilevel Multilevel_init(SparseMatrix A, SparseMatrix D, real *node_weights){ |
| 49 | Multilevel grid; |
| 50 | if (!A) return NULL; |
| 51 | assert(A->m == A->n); |
| 52 | grid = GNEW(struct Multilevel_struct); |
| 53 | grid->level = 0; |
| 54 | grid->n = A->n; |
| 55 | grid->A = A; |
| 56 | grid->D = D; |
| 57 | grid->P = NULL; |
| 58 | grid->R = NULL; |
| 59 | grid->node_weights = node_weights; |
| 60 | grid->next = NULL; |
| 61 | grid->prev = NULL; |
| 62 | grid->delete_top_level_A = FALSE; |
| 63 | return grid; |
| 64 | } |
| 65 | |
| 66 | void Multilevel_delete(Multilevel grid){ |
| 67 | if (!grid) return; |
| 68 | if (grid->A){ |
| 69 | if (grid->level == 0) { |
| 70 | if (grid->delete_top_level_A) { |
| 71 | SparseMatrix_delete(grid->A); |
| 72 | if (grid->D) SparseMatrix_delete(grid->D); |
| 73 | } |
| 74 | } else { |
| 75 | SparseMatrix_delete(grid->A); |
| 76 | if (grid->D) SparseMatrix_delete(grid->D); |
| 77 | } |
| 78 | } |
| 79 | SparseMatrix_delete(grid->P); |
| 80 | SparseMatrix_delete(grid->R); |
| 81 | if (grid->node_weights && grid->level > 0) FREE(grid->node_weights); |
| 82 | Multilevel_delete(grid->next); |
| 83 | FREE(grid); |
| 84 | } |
| 85 | |
| 86 | static void maximal_independent_vertex_set(SparseMatrix A, int randomize, int **vset, int *nvset, int *nzc){ |
| 87 | int i, ii, j, *ia, *ja, m, n, *p = NULL; |
| 88 | assert(A); |
| 89 | assert(SparseMatrix_known_strucural_symmetric(A)); |
| 90 | ia = A->ia; |
| 91 | ja = A->ja; |
| 92 | m = A->m; |
| 93 | n = A->n; |
| 94 | assert(n == m); |
| 95 | *vset = N_GNEW(m,int); |
| 96 | for (i = 0; i < m; i++) (*vset)[i] = MAX_IND_VTX_SET_U; |
| 97 | *nvset = 0; |
| 98 | *nzc = 0; |
| 99 | |
| 100 | if (!randomize){ |
| 101 | for (i = 0; i < m; i++){ |
| 102 | if ((*vset)[i] == MAX_IND_VTX_SET_U){ |
| 103 | (*vset)[i] = (*nvset)++; |
| 104 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 105 | if (i == ja[j]) continue; |
| 106 | (*vset)[ja[j]] = MAX_IND_VTX_SET_F; |
| 107 | (*nzc)++; |
| 108 | } |
| 109 | } |
| 110 | } |
| 111 | } else { |
| 112 | p = random_permutation(m); |
| 113 | for (ii = 0; ii < m; ii++){ |
| 114 | i = p[ii]; |
| 115 | if ((*vset)[i] == MAX_IND_VTX_SET_U){ |
| 116 | (*vset)[i] = (*nvset)++; |
| 117 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 118 | if (i == ja[j]) continue; |
| 119 | (*vset)[ja[j]] = MAX_IND_VTX_SET_F; |
| 120 | (*nzc)++; |
| 121 | } |
| 122 | } |
| 123 | } |
| 124 | FREE(p); |
| 125 | } |
| 126 | (*nzc) += *nvset; |
| 127 | } |
| 128 | |
| 129 | |
| 130 | static void maximal_independent_vertex_set_RS(SparseMatrix A, int randomize, int **vset, int *nvset, int *nzc){ |
| 131 | /* The Ruge-Stuben coarsening scheme. Initially all vertices are in the U set (with marker MAX_IND_VTX_SET_U), |
| 132 | with gain equal to their degree. Select vertex with highest gain into a C set (with |
| 133 | marker >= MAX_IND_VTX_SET_C), and their neighbors j in F set (with marker MAX_IND_VTX_SET_F). The neighbors of |
| 134 | j that are in the U set get their gains incremented by 1. So overall |
| 135 | gain[k] = |{neighbor of k in U set}|+2*|{neighbors of k in F set}|. |
| 136 | nzc is the number of entries in the restriction matrix |
| 137 | */ |
| 138 | int i, jj, ii, *p = NULL, j, k, *ia, *ja, m, n, gain, removed, nf = 0; |
| 139 | PriorityQueue q; |
| 140 | assert(A); |
| 141 | assert(SparseMatrix_known_strucural_symmetric(A)); |
| 142 | |
| 143 | ia = A->ia; |
| 144 | ja = A->ja; |
| 145 | m = A->m; |
| 146 | n = A->n; |
| 147 | assert(n == m); |
| 148 | *vset = N_GNEW(m,int); |
| 149 | for (i = 0; i < m; i++) { |
| 150 | (*vset)[i] = MAX_IND_VTX_SET_U; |
| 151 | } |
| 152 | *nvset = 0; |
| 153 | *nzc = 0; |
| 154 | |
| 155 | q = PriorityQueue_new(m, 2*(m-1)); |
| 156 | |
| 157 | if (!randomize){ |
| 158 | for (i = 0; i < m; i++) |
| 159 | PriorityQueue_push(q, i, ia[i+1] - ia[i]); |
| 160 | } else { |
| 161 | p = random_permutation(m); |
| 162 | for (ii = 0; ii < m; ii++){ |
| 163 | i = p[ii]; |
| 164 | PriorityQueue_push(q, i, ia[i+1] - ia[i]); |
| 165 | } |
| 166 | FREE(p); |
| 167 | } |
| 168 | |
| 169 | while (PriorityQueue_pop(q, &i, &gain)){ |
| 170 | assert((*vset)[i] == MAX_IND_VTX_SET_U); |
| 171 | (*vset)[i] = (*nvset)++; |
| 172 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 173 | jj = ja[j]; |
| 174 | assert((*vset)[jj] == MAX_IND_VTX_SET_U || (*vset)[jj] == MAX_IND_VTX_SET_F); |
| 175 | if (i == jj) continue; |
| 176 | |
| 177 | if ((*vset)[jj] == MAX_IND_VTX_SET_U){ |
| 178 | removed = PriorityQueue_remove(q, jj); |
| 179 | assert(removed); |
| 180 | (*vset)[jj] = MAX_IND_VTX_SET_F; |
| 181 | nf++; |
| 182 | |
| 183 | for (k = ia[jj]; k < ia[jj+1]; k++){ |
| 184 | if (jj == ja[k]) continue; |
| 185 | if ((*vset)[ja[k]] == MAX_IND_VTX_SET_U){ |
| 186 | gain = PriorityQueue_get_gain(q, ja[k]); |
| 187 | assert(gain >= 0); |
| 188 | PriorityQueue_push(q, ja[k], gain + 1); |
| 189 | } |
| 190 | } |
| 191 | } |
| 192 | (*nzc)++; |
| 193 | } |
| 194 | } |
| 195 | (*nzc) += *nvset; |
| 196 | PriorityQueue_delete(q); |
| 197 | |
| 198 | } |
| 199 | |
| 200 | |
| 201 | |
| 202 | static void maximal_independent_edge_set(SparseMatrix A, int randomize, int **matching, int *nmatch){ |
| 203 | int i, ii, j, *ia, *ja, m, n, *p = NULL; |
| 204 | assert(A); |
| 205 | assert(SparseMatrix_known_strucural_symmetric(A)); |
| 206 | ia = A->ia; |
| 207 | ja = A->ja; |
| 208 | m = A->m; |
| 209 | n = A->n; |
| 210 | assert(n == m); |
| 211 | *matching = N_GNEW(m,int); |
| 212 | for (i = 0; i < m; i++) (*matching)[i] = i; |
| 213 | *nmatch = n; |
| 214 | |
| 215 | if (!randomize){ |
| 216 | for (i = 0; i < m; i++){ |
| 217 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 218 | if (i == ja[j]) continue; |
| 219 | if ((*matching)[ja[j]] == ja[j] && (*matching)[i] == i){ |
| 220 | (*matching)[ja[j]] = i; |
| 221 | (*matching)[i] = ja[j]; |
| 222 | (*nmatch)--; |
| 223 | } |
| 224 | } |
| 225 | } |
| 226 | } else { |
| 227 | p = random_permutation(m); |
| 228 | for (ii = 0; ii < m; ii++){ |
| 229 | i = p[ii]; |
| 230 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 231 | if (i == ja[j]) continue; |
| 232 | if ((*matching)[ja[j]] == ja[j] && (*matching)[i] == i){ |
| 233 | (*matching)[ja[j]] = i; |
| 234 | (*matching)[i] = ja[j]; |
| 235 | (*nmatch)--; |
| 236 | } |
| 237 | } |
| 238 | } |
| 239 | FREE(p); |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | |
| 244 | |
| 245 | static void maximal_independent_edge_set_heavest_edge_pernode(SparseMatrix A, int randomize, int **matching, int *nmatch){ |
| 246 | int i, ii, j, *ia, *ja, m, n, *p = NULL; |
| 247 | real *a, amax = 0; |
| 248 | int first = TRUE, jamax = 0; |
| 249 | |
| 250 | assert(A); |
| 251 | assert(SparseMatrix_known_strucural_symmetric(A)); |
| 252 | ia = A->ia; |
| 253 | ja = A->ja; |
| 254 | m = A->m; |
| 255 | n = A->n; |
| 256 | assert(n == m); |
| 257 | *matching = N_GNEW(m,int); |
| 258 | for (i = 0; i < m; i++) (*matching)[i] = i; |
| 259 | *nmatch = n; |
| 260 | |
| 261 | assert(SparseMatrix_is_symmetric(A, FALSE)); |
| 262 | assert(A->type == MATRIX_TYPE_REAL); |
| 263 | |
| 264 | a = (real*) A->a; |
| 265 | if (!randomize){ |
| 266 | for (i = 0; i < m; i++){ |
| 267 | first = TRUE; |
| 268 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 269 | if (i == ja[j]) continue; |
| 270 | if ((*matching)[ja[j]] == ja[j] && (*matching)[i] == i){ |
| 271 | if (first) { |
| 272 | amax = a[j]; |
| 273 | jamax = ja[j]; |
| 274 | first = FALSE; |
| 275 | } else { |
| 276 | if (a[j] > amax){ |
| 277 | amax = a[j]; |
| 278 | jamax = ja[j]; |
| 279 | } |
| 280 | } |
| 281 | } |
| 282 | } |
| 283 | if (!first){ |
| 284 | (*matching)[jamax] = i; |
| 285 | (*matching)[i] = jamax; |
| 286 | (*nmatch)--; |
| 287 | } |
| 288 | } |
| 289 | } else { |
| 290 | p = random_permutation(m); |
| 291 | for (ii = 0; ii < m; ii++){ |
| 292 | i = p[ii]; |
| 293 | if ((*matching)[i] != i) continue; |
| 294 | first = TRUE; |
| 295 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 296 | if (i == ja[j]) continue; |
| 297 | if ((*matching)[ja[j]] == ja[j] && (*matching)[i] == i){ |
| 298 | if (first) { |
| 299 | amax = a[j]; |
| 300 | jamax = ja[j]; |
| 301 | first = FALSE; |
| 302 | } else { |
| 303 | if (a[j] > amax){ |
| 304 | amax = a[j]; |
| 305 | jamax = ja[j]; |
| 306 | } |
| 307 | } |
| 308 | } |
| 309 | } |
| 310 | if (!first){ |
| 311 | (*matching)[jamax] = i; |
| 312 | (*matching)[i] = jamax; |
| 313 | (*nmatch)--; |
| 314 | } |
| 315 | } |
| 316 | FREE(p); |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | |
| 321 | |
| 322 | |
| 323 | |
| 324 | #define node_degree(i) (ia[(i)+1] - ia[(i)]) |
| 325 | |
| 326 | static void maximal_independent_edge_set_heavest_edge_pernode_leaves_first(SparseMatrix A, int randomize, int **cluster, int **clusterp, int *ncluster){ |
| 327 | int i, ii, j, *ia, *ja, m, n, *p = NULL, q; |
| 328 | real *a, amax = 0; |
| 329 | int first = TRUE, jamax = 0; |
| 330 | int *matched, nz, ncmax = 0, nz0, nzz,k ; |
| 331 | enum {UNMATCHED = -2, MATCHED = -1}; |
| 332 | |
| 333 | assert(A); |
| 334 | assert(SparseMatrix_known_strucural_symmetric(A)); |
| 335 | ia = A->ia; |
| 336 | ja = A->ja; |
| 337 | m = A->m; |
| 338 | n = A->n; |
| 339 | assert(n == m); |
| 340 | *cluster = N_GNEW(m,int); |
| 341 | *clusterp = N_GNEW((m+1),int); |
| 342 | matched = N_GNEW(m,int); |
| 343 | |
| 344 | for (i = 0; i < m; i++) matched[i] = i; |
| 345 | |
| 346 | assert(SparseMatrix_is_symmetric(A, FALSE)); |
| 347 | assert(A->type == MATRIX_TYPE_REAL); |
| 348 | |
| 349 | *ncluster = 0; |
| 350 | (*clusterp)[0] = 0; |
| 351 | nz = 0; |
| 352 | a = (real*) A->a; |
| 353 | if (!randomize){ |
| 354 | for (i = 0; i < m; i++){ |
| 355 | if (matched[i] == MATCHED || node_degree(i) != 1) continue; |
| 356 | q = ja[ia[i]]; |
| 357 | assert(matched[q] != MATCHED); |
| 358 | matched[q] = MATCHED; |
| 359 | (*cluster)[nz++] = q; |
| 360 | for (j = ia[q]; j < ia[q+1]; j++){ |
| 361 | if (q == ja[j]) continue; |
| 362 | if (node_degree(ja[j]) == 1){ |
| 363 | matched[ja[j]] = MATCHED; |
| 364 | (*cluster)[nz++] = ja[j]; |
| 365 | } |
| 366 | } |
| 367 | ncmax = MAX(ncmax, nz - (*clusterp)[*ncluster]); |
| 368 | nz0 = (*clusterp)[*ncluster]; |
| 369 | if (nz - nz0 <= MAX_CLUSTER_SIZE){ |
| 370 | (*clusterp)[++(*ncluster)] = nz; |
| 371 | } else { |
| 372 | (*clusterp)[++(*ncluster)] = ++nz0; |
| 373 | nzz = nz0; |
| 374 | for (k = nz0; k < nz && nzz < nz; k++){ |
| 375 | nzz += MAX_CLUSTER_SIZE - 1; |
| 376 | nzz = MIN(nz, nzz); |
| 377 | (*clusterp)[++(*ncluster)] = nzz; |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | } |
| 382 | #ifdef DEBUG_print |
| 383 | if (Verbose) |
| 384 | fprintf(stderr, "%d leaves and parents for %d clusters, largest cluster = %d\n" ,nz, *ncluster, ncmax); |
| 385 | #endif |
| 386 | for (i = 0; i < m; i++){ |
| 387 | first = TRUE; |
| 388 | if (matched[i] == MATCHED) continue; |
| 389 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 390 | if (i == ja[j]) continue; |
| 391 | if (matched[ja[j]] != MATCHED && matched[i] != MATCHED){ |
| 392 | if (first) { |
| 393 | amax = a[j]; |
| 394 | jamax = ja[j]; |
| 395 | first = FALSE; |
| 396 | } else { |
| 397 | if (a[j] > amax){ |
| 398 | amax = a[j]; |
| 399 | jamax = ja[j]; |
| 400 | } |
| 401 | } |
| 402 | } |
| 403 | } |
| 404 | if (!first){ |
| 405 | matched[jamax] = MATCHED; |
| 406 | matched[i] = MATCHED; |
| 407 | (*cluster)[nz++] = i; |
| 408 | (*cluster)[nz++] = jamax; |
| 409 | (*clusterp)[++(*ncluster)] = nz; |
| 410 | } |
| 411 | } |
| 412 | |
| 413 | /* dan yi dian, wu ban */ |
| 414 | for (i = 0; i < m; i++){ |
| 415 | if (matched[i] == i){ |
| 416 | (*cluster)[nz++] = i; |
| 417 | (*clusterp)[++(*ncluster)] = nz; |
| 418 | } |
| 419 | } |
| 420 | assert(nz == n); |
| 421 | |
| 422 | } else { |
| 423 | p = random_permutation(m); |
| 424 | for (ii = 0; ii < m; ii++){ |
| 425 | i = p[ii]; |
| 426 | if (matched[i] == MATCHED || node_degree(i) != 1) continue; |
| 427 | q = ja[ia[i]]; |
| 428 | assert(matched[q] != MATCHED); |
| 429 | matched[q] = MATCHED; |
| 430 | (*cluster)[nz++] = q; |
| 431 | for (j = ia[q]; j < ia[q+1]; j++){ |
| 432 | if (q == ja[j]) continue; |
| 433 | if (node_degree(ja[j]) == 1){ |
| 434 | matched[ja[j]] = MATCHED; |
| 435 | (*cluster)[nz++] = ja[j]; |
| 436 | } |
| 437 | } |
| 438 | ncmax = MAX(ncmax, nz - (*clusterp)[*ncluster]); |
| 439 | nz0 = (*clusterp)[*ncluster]; |
| 440 | if (nz - nz0 <= MAX_CLUSTER_SIZE){ |
| 441 | (*clusterp)[++(*ncluster)] = nz; |
| 442 | } else { |
| 443 | (*clusterp)[++(*ncluster)] = ++nz0; |
| 444 | nzz = nz0; |
| 445 | for (k = nz0; k < nz && nzz < nz; k++){ |
| 446 | nzz += MAX_CLUSTER_SIZE - 1; |
| 447 | nzz = MIN(nz, nzz); |
| 448 | (*clusterp)[++(*ncluster)] = nzz; |
| 449 | } |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | #ifdef DEBUG_print |
| 454 | if (Verbose) |
| 455 | fprintf(stderr, "%d leaves and parents for %d clusters, largest cluster = %d\n" ,nz, *ncluster, ncmax); |
| 456 | #endif |
| 457 | for (ii = 0; ii < m; ii++){ |
| 458 | i = p[ii]; |
| 459 | first = TRUE; |
| 460 | if (matched[i] == MATCHED) continue; |
| 461 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 462 | if (i == ja[j]) continue; |
| 463 | if (matched[ja[j]] != MATCHED && matched[i] != MATCHED){ |
| 464 | if (first) { |
| 465 | amax = a[j]; |
| 466 | jamax = ja[j]; |
| 467 | first = FALSE; |
| 468 | } else { |
| 469 | if (a[j] > amax){ |
| 470 | amax = a[j]; |
| 471 | jamax = ja[j]; |
| 472 | } |
| 473 | } |
| 474 | } |
| 475 | } |
| 476 | if (!first){ |
| 477 | matched[jamax] = MATCHED; |
| 478 | matched[i] = MATCHED; |
| 479 | (*cluster)[nz++] = i; |
| 480 | (*cluster)[nz++] = jamax; |
| 481 | (*clusterp)[++(*ncluster)] = nz; |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | /* dan yi dian, wu ban */ |
| 486 | for (i = 0; i < m; i++){ |
| 487 | if (matched[i] == i){ |
| 488 | (*cluster)[nz++] = i; |
| 489 | (*clusterp)[++(*ncluster)] = nz; |
| 490 | } |
| 491 | } |
| 492 | |
| 493 | FREE(p); |
| 494 | } |
| 495 | |
| 496 | FREE(matched); |
| 497 | } |
| 498 | |
| 499 | |
| 500 | |
| 501 | static void maximal_independent_edge_set_heavest_edge_pernode_supernodes_first(SparseMatrix A, int randomize, int **cluster, int **clusterp, int *ncluster){ |
| 502 | int i, ii, j, *ia, *ja, m, n, *p = NULL; |
| 503 | real *a, amax = 0; |
| 504 | int first = TRUE, jamax = 0; |
| 505 | int *matched, nz, nz0; |
| 506 | enum {UNMATCHED = -2, MATCHED = -1}; |
| 507 | int nsuper, *super = NULL, *superp = NULL; |
| 508 | |
| 509 | assert(A); |
| 510 | assert(SparseMatrix_known_strucural_symmetric(A)); |
| 511 | ia = A->ia; |
| 512 | ja = A->ja; |
| 513 | m = A->m; |
| 514 | n = A->n; |
| 515 | assert(n == m); |
| 516 | *cluster = N_GNEW(m,int); |
| 517 | *clusterp = N_GNEW((m+1),int); |
| 518 | matched = N_GNEW(m,int); |
| 519 | |
| 520 | for (i = 0; i < m; i++) matched[i] = i; |
| 521 | |
| 522 | assert(SparseMatrix_is_symmetric(A, FALSE)); |
| 523 | assert(A->type == MATRIX_TYPE_REAL); |
| 524 | |
| 525 | SparseMatrix_decompose_to_supervariables(A, &nsuper, &super, &superp); |
| 526 | |
| 527 | *ncluster = 0; |
| 528 | (*clusterp)[0] = 0; |
| 529 | nz = 0; |
| 530 | a = (real*) A->a; |
| 531 | |
| 532 | for (i = 0; i < nsuper; i++){ |
| 533 | if (superp[i+1] - superp[i] <= 1) continue; |
| 534 | nz0 = (*clusterp)[*ncluster]; |
| 535 | for (j = superp[i]; j < superp[i+1]; j++){ |
| 536 | matched[super[j]] = MATCHED; |
| 537 | (*cluster)[nz++] = super[j]; |
| 538 | if (nz - nz0 >= MAX_CLUSTER_SIZE){ |
| 539 | (*clusterp)[++(*ncluster)] = nz; |
| 540 | nz0 = nz; |
| 541 | } |
| 542 | } |
| 543 | if (nz > nz0) (*clusterp)[++(*ncluster)] = nz; |
| 544 | } |
| 545 | |
| 546 | if (!randomize){ |
| 547 | for (i = 0; i < m; i++){ |
| 548 | first = TRUE; |
| 549 | if (matched[i] == MATCHED) continue; |
| 550 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 551 | if (i == ja[j]) continue; |
| 552 | if (matched[ja[j]] != MATCHED && matched[i] != MATCHED){ |
| 553 | if (first) { |
| 554 | amax = a[j]; |
| 555 | jamax = ja[j]; |
| 556 | first = FALSE; |
| 557 | } else { |
| 558 | if (a[j] > amax){ |
| 559 | amax = a[j]; |
| 560 | jamax = ja[j]; |
| 561 | } |
| 562 | } |
| 563 | } |
| 564 | } |
| 565 | if (!first){ |
| 566 | matched[jamax] = MATCHED; |
| 567 | matched[i] = MATCHED; |
| 568 | (*cluster)[nz++] = i; |
| 569 | (*cluster)[nz++] = jamax; |
| 570 | (*clusterp)[++(*ncluster)] = nz; |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | /* dan yi dian, wu ban */ |
| 575 | for (i = 0; i < m; i++){ |
| 576 | if (matched[i] == i){ |
| 577 | (*cluster)[nz++] = i; |
| 578 | (*clusterp)[++(*ncluster)] = nz; |
| 579 | } |
| 580 | } |
| 581 | assert(nz == n); |
| 582 | |
| 583 | } else { |
| 584 | p = random_permutation(m); |
| 585 | for (ii = 0; ii < m; ii++){ |
| 586 | i = p[ii]; |
| 587 | first = TRUE; |
| 588 | if (matched[i] == MATCHED) continue; |
| 589 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 590 | if (i == ja[j]) continue; |
| 591 | if (matched[ja[j]] != MATCHED && matched[i] != MATCHED){ |
| 592 | if (first) { |
| 593 | amax = a[j]; |
| 594 | jamax = ja[j]; |
| 595 | first = FALSE; |
| 596 | } else { |
| 597 | if (a[j] > amax){ |
| 598 | amax = a[j]; |
| 599 | jamax = ja[j]; |
| 600 | } |
| 601 | } |
| 602 | } |
| 603 | } |
| 604 | if (!first){ |
| 605 | matched[jamax] = MATCHED; |
| 606 | matched[i] = MATCHED; |
| 607 | (*cluster)[nz++] = i; |
| 608 | (*cluster)[nz++] = jamax; |
| 609 | (*clusterp)[++(*ncluster)] = nz; |
| 610 | } |
| 611 | } |
| 612 | |
| 613 | /* dan yi dian, wu ban */ |
| 614 | for (i = 0; i < m; i++){ |
| 615 | if (matched[i] == i){ |
| 616 | (*cluster)[nz++] = i; |
| 617 | (*clusterp)[++(*ncluster)] = nz; |
| 618 | } |
| 619 | } |
| 620 | FREE(p); |
| 621 | |
| 622 | } |
| 623 | |
| 624 | FREE(super); |
| 625 | |
| 626 | FREE(superp); |
| 627 | |
| 628 | FREE(matched); |
| 629 | } |
| 630 | |
| 631 | static int scomp(const void *s1, const void *s2){ |
| 632 | real *ss1, *ss2; |
| 633 | ss1 = (real*) s1; |
| 634 | ss2 = (real*) s2; |
| 635 | |
| 636 | if ((ss1)[1] > (ss2)[1]){ |
| 637 | return -1; |
| 638 | } else if ((ss1)[1] < (ss2)[1]){ |
| 639 | return 1; |
| 640 | } |
| 641 | return 0; |
| 642 | } |
| 643 | |
| 644 | static void maximal_independent_edge_set_heavest_cluster_pernode_leaves_first(SparseMatrix A, int csize, |
| 645 | int randomize, int **cluster, int **clusterp, int *ncluster){ |
| 646 | int i, ii, j, *ia, *ja, m, n, *p = NULL, q, iv; |
| 647 | real *a; |
| 648 | int *matched, nz, nz0, nzz,k, nv; |
| 649 | enum {UNMATCHED = -2, MATCHED = -1}; |
| 650 | real *vlist; |
| 651 | |
| 652 | assert(A); |
| 653 | assert(SparseMatrix_known_strucural_symmetric(A)); |
| 654 | ia = A->ia; |
| 655 | ja = A->ja; |
| 656 | m = A->m; |
| 657 | n = A->n; |
| 658 | assert(n == m); |
| 659 | *cluster = N_GNEW(m,int); |
| 660 | *clusterp = N_GNEW((m+1),int); |
| 661 | matched = N_GNEW(m,int); |
| 662 | vlist = N_GNEW(2*m,real); |
| 663 | |
| 664 | for (i = 0; i < m; i++) matched[i] = i; |
| 665 | |
| 666 | assert(SparseMatrix_is_symmetric(A, FALSE)); |
| 667 | assert(A->type == MATRIX_TYPE_REAL); |
| 668 | |
| 669 | *ncluster = 0; |
| 670 | (*clusterp)[0] = 0; |
| 671 | nz = 0; |
| 672 | a = (real*) A->a; |
| 673 | |
| 674 | p = random_permutation(m); |
| 675 | for (ii = 0; ii < m; ii++){ |
| 676 | i = p[ii]; |
| 677 | if (matched[i] == MATCHED || node_degree(i) != 1) continue; |
| 678 | q = ja[ia[i]]; |
| 679 | assert(matched[q] != MATCHED); |
| 680 | matched[q] = MATCHED; |
| 681 | (*cluster)[nz++] = q; |
| 682 | for (j = ia[q]; j < ia[q+1]; j++){ |
| 683 | if (q == ja[j]) continue; |
| 684 | if (node_degree(ja[j]) == 1){ |
| 685 | matched[ja[j]] = MATCHED; |
| 686 | (*cluster)[nz++] = ja[j]; |
| 687 | } |
| 688 | } |
| 689 | nz0 = (*clusterp)[*ncluster]; |
| 690 | if (nz - nz0 <= MAX_CLUSTER_SIZE){ |
| 691 | (*clusterp)[++(*ncluster)] = nz; |
| 692 | } else { |
| 693 | (*clusterp)[++(*ncluster)] = ++nz0; |
| 694 | nzz = nz0; |
| 695 | for (k = nz0; k < nz && nzz < nz; k++){ |
| 696 | nzz += MAX_CLUSTER_SIZE - 1; |
| 697 | nzz = MIN(nz, nzz); |
| 698 | (*clusterp)[++(*ncluster)] = nzz; |
| 699 | } |
| 700 | } |
| 701 | } |
| 702 | |
| 703 | for (ii = 0; ii < m; ii++){ |
| 704 | i = p[ii]; |
| 705 | if (matched[i] == MATCHED) continue; |
| 706 | nv = 0; |
| 707 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 708 | if (i == ja[j]) continue; |
| 709 | if (matched[ja[j]] != MATCHED && matched[i] != MATCHED){ |
| 710 | vlist[2*nv] = ja[j]; |
| 711 | vlist[2*nv+1] = a[j]; |
| 712 | nv++; |
| 713 | } |
| 714 | } |
| 715 | if (nv > 0){ |
| 716 | qsort(vlist, nv, sizeof(real)*2, scomp); |
| 717 | for (j = 0; j < MIN(csize - 1, nv); j++){ |
| 718 | iv = (int) vlist[2*j]; |
| 719 | matched[iv] = MATCHED; |
| 720 | (*cluster)[nz++] = iv; |
| 721 | } |
| 722 | matched[i] = MATCHED; |
| 723 | (*cluster)[nz++] = i; |
| 724 | (*clusterp)[++(*ncluster)] = nz; |
| 725 | } |
| 726 | } |
| 727 | |
| 728 | /* dan yi dian, wu ban */ |
| 729 | for (i = 0; i < m; i++){ |
| 730 | if (matched[i] == i){ |
| 731 | (*cluster)[nz++] = i; |
| 732 | (*clusterp)[++(*ncluster)] = nz; |
| 733 | } |
| 734 | } |
| 735 | FREE(p); |
| 736 | |
| 737 | |
| 738 | FREE(matched); |
| 739 | } |
| 740 | static void maximal_independent_edge_set_heavest_edge_pernode_scaled(SparseMatrix A, int randomize, int **matching, int *nmatch){ |
| 741 | int i, ii, j, *ia, *ja, m, n, *p = NULL; |
| 742 | real *a, amax = 0; |
| 743 | int first = TRUE, jamax = 0; |
| 744 | |
| 745 | assert(A); |
| 746 | assert(SparseMatrix_known_strucural_symmetric(A)); |
| 747 | ia = A->ia; |
| 748 | ja = A->ja; |
| 749 | m = A->m; |
| 750 | n = A->n; |
| 751 | assert(n == m); |
| 752 | *matching = N_GNEW(m,int); |
| 753 | for (i = 0; i < m; i++) (*matching)[i] = i; |
| 754 | *nmatch = n; |
| 755 | |
| 756 | assert(SparseMatrix_is_symmetric(A, FALSE)); |
| 757 | assert(A->type == MATRIX_TYPE_REAL); |
| 758 | |
| 759 | a = (real*) A->a; |
| 760 | if (!randomize){ |
| 761 | for (i = 0; i < m; i++){ |
| 762 | first = TRUE; |
| 763 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 764 | if (i == ja[j]) continue; |
| 765 | if ((*matching)[ja[j]] == ja[j] && (*matching)[i] == i){ |
| 766 | if (first) { |
| 767 | amax = a[j]/(ia[i+1]-ia[i])/(ia[ja[j]+1]-ia[ja[j]]); |
| 768 | jamax = ja[j]; |
| 769 | first = FALSE; |
| 770 | } else { |
| 771 | if (a[j]/(ia[i+1]-ia[i])/(ia[ja[j]+1]-ia[ja[j]]) > amax){ |
| 772 | amax = a[j]/(ia[i+1]-ia[i])/(ia[ja[j]+1]-ia[ja[j]]); |
| 773 | jamax = ja[j]; |
| 774 | } |
| 775 | } |
| 776 | } |
| 777 | } |
| 778 | if (!first){ |
| 779 | (*matching)[jamax] = i; |
| 780 | (*matching)[i] = jamax; |
| 781 | (*nmatch)--; |
| 782 | } |
| 783 | } |
| 784 | } else { |
| 785 | p = random_permutation(m); |
| 786 | for (ii = 0; ii < m; ii++){ |
| 787 | i = p[ii]; |
| 788 | if ((*matching)[i] != i) continue; |
| 789 | first = TRUE; |
| 790 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 791 | if (i == ja[j]) continue; |
| 792 | if ((*matching)[ja[j]] == ja[j] && (*matching)[i] == i){ |
| 793 | if (first) { |
| 794 | amax = a[j]/(ia[i+1]-ia[i])/(ia[ja[j]+1]-ia[ja[j]]); |
| 795 | jamax = ja[j]; |
| 796 | first = FALSE; |
| 797 | } else { |
| 798 | if (a[j]/(ia[i+1]-ia[i])/(ia[ja[j]+1]-ia[ja[j]]) > amax){ |
| 799 | amax = a[j]/(ia[i+1]-ia[i])/(ia[ja[j]+1]-ia[ja[j]]); |
| 800 | jamax = ja[j]; |
| 801 | } |
| 802 | } |
| 803 | } |
| 804 | } |
| 805 | if (!first){ |
| 806 | (*matching)[jamax] = i; |
| 807 | (*matching)[i] = jamax; |
| 808 | (*nmatch)--; |
| 809 | } |
| 810 | } |
| 811 | FREE(p); |
| 812 | } |
| 813 | } |
| 814 | |
| 815 | SparseMatrix DistanceMatrix_restrict_cluster(int ncluster, int *clusterp, int *cluster, SparseMatrix P, SparseMatrix R, SparseMatrix D){ |
| 816 | #if 0 |
| 817 | /* this construct a distance matrix of a coarse graph, for a coarsen give by merging all nodes in each cluster */ |
| 818 | SparseMatrix cD = NULL; |
| 819 | int i, j, nzc; |
| 820 | int **irn, **jcn; |
| 821 | real **val; |
| 822 | int n = D->m; |
| 823 | int *assignment = NULL; |
| 824 | int nz; |
| 825 | int *id = D->ia, jd = D->ja; |
| 826 | int *mask = NULL; |
| 827 | int *nnodes, *mask; |
| 828 | real *d = NULL; |
| 829 | |
| 830 | |
| 831 | assert(D->m == D->n); |
| 832 | if (!D) return NULL; |
| 833 | if (D->a && D->type == MATRIX_TYPE_REAL) d = (real*) D->val; |
| 834 | |
| 835 | irn = N_GNEW(ncluster,int*); |
| 836 | jcn = N_GNEW(ncluster,int*); |
| 837 | val = N_GNEW(ncluster,real*); |
| 838 | assignment = N_GNEW(n,int); |
| 839 | nz = N_GNEW(ncluster,int); |
| 840 | mask = N_GNEW(n,int); |
| 841 | nnodes = N_GNEW(ncluster,int); |
| 842 | |
| 843 | |
| 844 | /* find ncluster-subgrahs induced by the ncluster -clusters, find the diameter of each, |
| 845 | then use the radius as the distance from the supernode to the rest of the "world" |
| 846 | */ |
| 847 | for (i = 0; i < ncluster; i++) nz[i] = 0; |
| 848 | for (i = 0; i < ncluster; i++){ |
| 849 | for (j = clusterp[i]; j < clusterp[i+1]; j++){ |
| 850 | assert(clusterp[i+1] > clusterp[i]); |
| 851 | assignment[cluster[j]] = i; |
| 852 | } |
| 853 | } |
| 854 | |
| 855 | for (i = 0; i < n; i++){/* figure out how many entries per submatrix */ |
| 856 | ic = asignment[i]; |
| 857 | for (j = id[i]; j < id[i+1]; j++){ |
| 858 | if (i != jd[j] && ic == assignment[jd[j]]) { |
| 859 | nz[ic]++; |
| 860 | } |
| 861 | } |
| 862 | } |
| 863 | for (i = 0; i < ncluster; i++) { |
| 864 | irn[i] = N_GNEW(nz[i],int); |
| 865 | jcn[i] = N_GNEW(nz[i],int); |
| 866 | val[i] = N_GNEW(nz[i],int); |
| 867 | val[i] = NULL; |
| 868 | } |
| 869 | |
| 870 | |
| 871 | for (i = 0; i < ncluster; i++) nz[i] = 0;/* get subgraphs */ |
| 872 | for (i = 0; i < n; i++) mask[i] = -1; |
| 873 | for (i = 0; i < ncluster; i++) nnodes[i] = -1; |
| 874 | for (i = 0; i < n; i++){ |
| 875 | ic = asignment[i]; |
| 876 | ii = mask[i]; |
| 877 | if (ii < 0){ |
| 878 | mask[i] = ii = nnodes[ic]; |
| 879 | nnodes[ic]++; |
| 880 | } |
| 881 | for (j = id[i]; j < id[i+1]; j++){ |
| 882 | jc = assignment[jd[j]]; |
| 883 | if (i != jd[j] && ic == jc) { |
| 884 | jj = mask[jd[j]]; |
| 885 | if (jj < 0){ |
| 886 | mask[jd[j]] = jj = nnodes[jc]; |
| 887 | nnodes[jc]++; |
| 888 | } |
| 889 | irn[ic][nz[ic]] = ii; |
| 890 | jcn[ic][nz[ic]] = jj; |
| 891 | if (d) val[ic][nz[ic]] = d[j]; |
| 892 | } |
| 893 | } |
| 894 | } |
| 895 | |
| 896 | for (i = 0; i < ncluster; i++){/* form subgraphs */ |
| 897 | SparseMatrix A; |
| 898 | A = SparseMatrix_from_coordinate_arrays(nz[nz[i]], nnodes[i], nnodes[i], irn[i], jcn[i], (void*) val[i], MATRIX_TYPE_REAL); |
| 899 | |
| 900 | SparseMatrix_delete(A); |
| 901 | } |
| 902 | |
| 903 | |
| 904 | for (i = 0; i < ncluster; i++){ |
| 905 | for (j = clusterp[i]; j < clusterp[i+1]; j++){ |
| 906 | assert(clusterp[i+1] > clusterp[i]); |
| 907 | irn[nzc] = cluster[j]; |
| 908 | jcn[nzc] = i; |
| 909 | val[nzc++] = 1.; |
| 910 | } |
| 911 | } |
| 912 | assert(nzc == n); |
| 913 | cD = SparseMatrix_multiply3(R, D, P); |
| 914 | |
| 915 | SparseMatrix_set_symmetric(cD); |
| 916 | SparseMatrix_set_pattern_symmetric(cD); |
| 917 | cD = SparseMatrix_remove_diagonal(cD); |
| 918 | |
| 919 | FREE(nz); |
| 920 | FREE(assignment); |
| 921 | for (i = 0; i < ncluster; i++){ |
| 922 | FREE(irn[i]); |
| 923 | FREE(jcn[i]); |
| 924 | FREE(val[i]); |
| 925 | } |
| 926 | FREE(irn); FREE(jcn); FREE(val); |
| 927 | FREE(mask); |
| 928 | FREE(nnodes); |
| 929 | |
| 930 | return cD; |
| 931 | #endif |
| 932 | return NULL; |
| 933 | } |
| 934 | |
| 935 | SparseMatrix DistanceMatrix_restrict_matching(int *matching, SparseMatrix D){ |
| 936 | if (!D) return NULL; |
| 937 | assert(0);/* not yet implemented! */ |
| 938 | return NULL; |
| 939 | } |
| 940 | |
| 941 | SparseMatrix DistanceMatrix_restrict_filtering(int *mask, int is_C, int is_F, SparseMatrix D){ |
| 942 | /* max independent vtx set based coarsening. Coarsen nodes has mask >= is_C. Fine nodes == is_F. */ |
| 943 | if (!D) return NULL; |
| 944 | assert(0);/* not yet implemented! */ |
| 945 | return NULL; |
| 946 | } |
| 947 | |
| 948 | static void Multilevel_coarsen_internal(SparseMatrix A, SparseMatrix *cA, SparseMatrix D, SparseMatrix *cD, |
| 949 | real *node_wgt, real **cnode_wgt, |
| 950 | SparseMatrix *P, SparseMatrix *R, Multilevel_control ctrl, int *coarsen_scheme_used){ |
| 951 | int *matching = NULL, nmatch = 0, nc, nzc, n, i; |
| 952 | int *irn = NULL, *jcn = NULL, *ia = NULL, *ja = NULL; |
| 953 | real *val = NULL; |
| 954 | SparseMatrix B = NULL; |
| 955 | int *vset = NULL, nvset, ncov, j; |
| 956 | int *cluster=NULL, *clusterp=NULL, ncluster; |
| 957 | |
| 958 | assert(A->m == A->n); |
| 959 | *cA = NULL; |
| 960 | *cD = NULL; |
| 961 | *P = NULL; |
| 962 | *R = NULL; |
| 963 | n = A->m; |
| 964 | |
| 965 | *coarsen_scheme_used = ctrl->coarsen_scheme; |
| 966 | |
| 967 | switch (ctrl->coarsen_scheme){ |
| 968 | case COARSEN_HYBRID: |
| 969 | #ifdef DEBUG_PRINT |
| 970 | if (Verbose) |
| 971 | fprintf(stderr, "hybrid scheme, try COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_LEAVES_FIRST first\n" ); |
| 972 | #endif |
| 973 | *coarsen_scheme_used = ctrl->coarsen_scheme = COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_LEAVES_FIRST; |
| 974 | Multilevel_coarsen_internal(A, cA, D, cD, node_wgt, cnode_wgt, P, R, ctrl, coarsen_scheme_used); |
| 975 | |
| 976 | if (!(*cA)) { |
| 977 | #ifdef DEBUG_PRINT |
| 978 | if (Verbose) |
| 979 | fprintf(stderr, "switching to COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_SUPERNODES_FIRST\n" ); |
| 980 | #endif |
| 981 | *coarsen_scheme_used = ctrl->coarsen_scheme = COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_SUPERNODES_FIRST; |
| 982 | Multilevel_coarsen_internal(A, cA, D, cD, node_wgt, cnode_wgt, P, R, ctrl, coarsen_scheme_used); |
| 983 | } |
| 984 | |
| 985 | if (!(*cA)) { |
| 986 | #ifdef DEBUG_PRINT |
| 987 | if (Verbose) |
| 988 | fprintf(stderr, "switching to COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_CLUSTER_PERNODE_LEAVES_FIRST\n" ); |
| 989 | #endif |
| 990 | *coarsen_scheme_used = ctrl->coarsen_scheme = COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_CLUSTER_PERNODE_LEAVES_FIRST; |
| 991 | Multilevel_coarsen_internal(A, cA, D, cD, node_wgt, cnode_wgt, P, R, ctrl, coarsen_scheme_used); |
| 992 | } |
| 993 | |
| 994 | if (!(*cA)) { |
| 995 | #ifdef DEBUG_PRINT |
| 996 | if (Verbose) |
| 997 | fprintf(stderr, "switching to COARSEN_INDEPENDENT_VERTEX_SET\n" ); |
| 998 | #endif |
| 999 | *coarsen_scheme_used = ctrl->coarsen_scheme = COARSEN_INDEPENDENT_VERTEX_SET; |
| 1000 | Multilevel_coarsen_internal(A, cA, D, cD, node_wgt, cnode_wgt, P, R, ctrl, coarsen_scheme_used); |
| 1001 | } |
| 1002 | |
| 1003 | |
| 1004 | if (!(*cA)) { |
| 1005 | #ifdef DEBUG_PRINT |
| 1006 | if (Verbose) |
| 1007 | fprintf(stderr, "switching to COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE\n" ); |
| 1008 | #endif |
| 1009 | *coarsen_scheme_used = ctrl->coarsen_scheme = COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE; |
| 1010 | Multilevel_coarsen_internal(A, cA, D, cD, node_wgt, cnode_wgt, P, R, ctrl, coarsen_scheme_used); |
| 1011 | } |
| 1012 | ctrl->coarsen_scheme = COARSEN_HYBRID; |
| 1013 | break; |
| 1014 | case COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_SUPERNODES_FIRST: |
| 1015 | case COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_CLUSTER_PERNODE_LEAVES_FIRST: |
| 1016 | case COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_LEAVES_FIRST: |
| 1017 | if (ctrl->coarsen_scheme == COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_LEAVES_FIRST) { |
| 1018 | maximal_independent_edge_set_heavest_edge_pernode_leaves_first(A, ctrl->randomize, &cluster, &clusterp, &ncluster); |
| 1019 | } else if (ctrl->coarsen_scheme == COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_SUPERNODES_FIRST) { |
| 1020 | maximal_independent_edge_set_heavest_edge_pernode_supernodes_first(A, ctrl->randomize, &cluster, &clusterp, &ncluster); |
| 1021 | } else { |
| 1022 | maximal_independent_edge_set_heavest_cluster_pernode_leaves_first(A, 4, ctrl->randomize, &cluster, &clusterp, &ncluster); |
| 1023 | } |
| 1024 | assert(ncluster <= n); |
| 1025 | nc = ncluster; |
| 1026 | if ((ctrl->coarsen_mode == COARSEN_MODE_GENTLE && nc > ctrl->min_coarsen_factor*n) || nc == n || nc < ctrl->minsize) { |
| 1027 | #ifdef DEBUG_PRINT |
| 1028 | if (Verbose) |
| 1029 | fprintf(stderr, "nc = %d, nf = %d, minsz = %d, coarsen_factor = %f coarsening stops\n" ,nc, n, ctrl->minsize, ctrl->min_coarsen_factor); |
| 1030 | #endif |
| 1031 | goto RETURN; |
| 1032 | } |
| 1033 | irn = N_GNEW(n,int); |
| 1034 | jcn = N_GNEW(n,int); |
| 1035 | val = N_GNEW(n,real); |
| 1036 | nzc = 0; |
| 1037 | for (i = 0; i < ncluster; i++){ |
| 1038 | for (j = clusterp[i]; j < clusterp[i+1]; j++){ |
| 1039 | assert(clusterp[i+1] > clusterp[i]); |
| 1040 | irn[nzc] = cluster[j]; |
| 1041 | jcn[nzc] = i; |
| 1042 | val[nzc++] = 1.; |
| 1043 | } |
| 1044 | } |
| 1045 | assert(nzc == n); |
| 1046 | *P = SparseMatrix_from_coordinate_arrays(nzc, n, nc, irn, jcn, (void *) val, MATRIX_TYPE_REAL, sizeof(real)); |
| 1047 | *R = SparseMatrix_transpose(*P); |
| 1048 | |
| 1049 | *cD = DistanceMatrix_restrict_cluster(ncluster, clusterp, cluster, *P, *R, D); |
| 1050 | |
| 1051 | *cA = SparseMatrix_multiply3(*R, A, *P); |
| 1052 | |
| 1053 | /* |
| 1054 | B = SparseMatrix_multiply(*R, A); |
| 1055 | if (!B) goto RETURN; |
| 1056 | *cA = SparseMatrix_multiply(B, *P); |
| 1057 | */ |
| 1058 | if (!*cA) goto RETURN; |
| 1059 | |
| 1060 | SparseMatrix_multiply_vector(*R, node_wgt, cnode_wgt, FALSE); |
| 1061 | *R = SparseMatrix_divide_row_by_degree(*R); |
| 1062 | SparseMatrix_set_symmetric(*cA); |
| 1063 | SparseMatrix_set_pattern_symmetric(*cA); |
| 1064 | *cA = SparseMatrix_remove_diagonal(*cA); |
| 1065 | |
| 1066 | |
| 1067 | |
| 1068 | break; |
| 1069 | case COARSEN_INDEPENDENT_EDGE_SET: |
| 1070 | maximal_independent_edge_set(A, ctrl->randomize, &matching, &nmatch); |
| 1071 | case COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE: |
| 1072 | if (ctrl->coarsen_scheme == COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE) |
| 1073 | maximal_independent_edge_set_heavest_edge_pernode(A, ctrl->randomize, &matching, &nmatch); |
| 1074 | case COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_DEGREE_SCALED: |
| 1075 | if (ctrl->coarsen_scheme == COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_DEGREE_SCALED) |
| 1076 | maximal_independent_edge_set_heavest_edge_pernode_scaled(A, ctrl->randomize, &matching, &nmatch); |
| 1077 | nc = nmatch; |
| 1078 | if ((ctrl->coarsen_mode == COARSEN_MODE_GENTLE && nc > ctrl->min_coarsen_factor*n) || nc == n || nc < ctrl->minsize) { |
| 1079 | #ifdef DEBUG_PRINT |
| 1080 | if (Verbose) |
| 1081 | fprintf(stderr, "nc = %d, nf = %d, minsz = %d, coarsen_factor = %f coarsening stops\n" ,nc, n, ctrl->minsize, ctrl->min_coarsen_factor); |
| 1082 | #endif |
| 1083 | goto RETURN; |
| 1084 | } |
| 1085 | irn = N_GNEW(n,int); |
| 1086 | jcn = N_GNEW(n,int); |
| 1087 | val = N_GNEW(n,real); |
| 1088 | nzc = 0; nc = 0; |
| 1089 | for (i = 0; i < n; i++){ |
| 1090 | if (matching[i] >= 0){ |
| 1091 | if (matching[i] == i){ |
| 1092 | irn[nzc] = i; |
| 1093 | jcn[nzc] = nc; |
| 1094 | val[nzc++] = 1.; |
| 1095 | } else { |
| 1096 | irn[nzc] = i; |
| 1097 | jcn[nzc] = nc; |
| 1098 | val[nzc++] = 1; |
| 1099 | irn[nzc] = matching[i]; |
| 1100 | jcn[nzc] = nc; |
| 1101 | val[nzc++] = 1; |
| 1102 | matching[matching[i]] = -1; |
| 1103 | } |
| 1104 | nc++; |
| 1105 | matching[i] = -1; |
| 1106 | } |
| 1107 | } |
| 1108 | assert(nc == nmatch); |
| 1109 | assert(nzc == n); |
| 1110 | *P = SparseMatrix_from_coordinate_arrays(nzc, n, nc, irn, jcn, (void *) val, MATRIX_TYPE_REAL, sizeof(real)); |
| 1111 | *R = SparseMatrix_transpose(*P); |
| 1112 | *cA = SparseMatrix_multiply3(*R, A, *P); |
| 1113 | /* |
| 1114 | B = SparseMatrix_multiply(*R, A); |
| 1115 | if (!B) goto RETURN; |
| 1116 | *cA = SparseMatrix_multiply(B, *P); |
| 1117 | */ |
| 1118 | if (!*cA) goto RETURN; |
| 1119 | SparseMatrix_multiply_vector(*R, node_wgt, cnode_wgt, FALSE); |
| 1120 | *R = SparseMatrix_divide_row_by_degree(*R); |
| 1121 | SparseMatrix_set_symmetric(*cA); |
| 1122 | SparseMatrix_set_pattern_symmetric(*cA); |
| 1123 | *cA = SparseMatrix_remove_diagonal(*cA); |
| 1124 | |
| 1125 | |
| 1126 | *cD = DistanceMatrix_restrict_matching(matching, D); |
| 1127 | *cD=NULL; |
| 1128 | |
| 1129 | break; |
| 1130 | case COARSEN_INDEPENDENT_VERTEX_SET: |
| 1131 | case COARSEN_INDEPENDENT_VERTEX_SET_RS: |
| 1132 | if (ctrl->coarsen_scheme == COARSEN_INDEPENDENT_VERTEX_SET){ |
| 1133 | maximal_independent_vertex_set(A, ctrl->randomize, &vset, &nvset, &nzc); |
| 1134 | } else { |
| 1135 | maximal_independent_vertex_set_RS(A, ctrl->randomize, &vset, &nvset, &nzc); |
| 1136 | } |
| 1137 | ia = A->ia; |
| 1138 | ja = A->ja; |
| 1139 | nc = nvset; |
| 1140 | if ((ctrl->coarsen_mode == COARSEN_MODE_GENTLE && nc > ctrl->min_coarsen_factor*n) || nc == n || nc < ctrl->minsize) { |
| 1141 | #ifdef DEBUG_PRINT |
| 1142 | if (Verbose) |
| 1143 | fprintf(stderr, "nc = %d, nf = %d, minsz = %d, coarsen_factor = %f coarsening stops\n" ,nc, n, ctrl->minsize, ctrl->min_coarsen_factor); |
| 1144 | #endif |
| 1145 | goto RETURN; |
| 1146 | } |
| 1147 | irn = N_GNEW(nzc,int); |
| 1148 | jcn = N_GNEW(nzc,int); |
| 1149 | val = N_GNEW(nzc,real); |
| 1150 | nzc = 0; |
| 1151 | for (i = 0; i < n; i++){ |
| 1152 | if (vset[i] == MAX_IND_VTX_SET_F){ |
| 1153 | ncov = 0; |
| 1154 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1155 | if (vset[ja[j]] >= MAX_IND_VTX_SET_C){ |
| 1156 | ncov++; |
| 1157 | } |
| 1158 | } |
| 1159 | assert(ncov > 0); |
| 1160 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1161 | if (vset[ja[j]] >= MAX_IND_VTX_SET_C){ |
| 1162 | irn[nzc] = i; |
| 1163 | jcn[nzc] = vset[ja[j]]; |
| 1164 | val[nzc++] = 1./(double) ncov; |
| 1165 | } |
| 1166 | } |
| 1167 | } else { |
| 1168 | assert(vset[i] >= MAX_IND_VTX_SET_C); |
| 1169 | irn[nzc] = i; |
| 1170 | jcn[nzc] = vset[i]; |
| 1171 | val[nzc++] = 1.; |
| 1172 | } |
| 1173 | } |
| 1174 | |
| 1175 | *P = SparseMatrix_from_coordinate_arrays(nzc, n, nc, irn, jcn, (void *) val, MATRIX_TYPE_REAL, sizeof(real)); |
| 1176 | *R = SparseMatrix_transpose(*P); |
| 1177 | *cA = SparseMatrix_multiply3(*R, A, *P); |
| 1178 | if (!*cA) goto RETURN; |
| 1179 | SparseMatrix_multiply_vector(*R, node_wgt, cnode_wgt, FALSE); |
| 1180 | SparseMatrix_set_symmetric(*cA); |
| 1181 | SparseMatrix_set_pattern_symmetric(*cA); |
| 1182 | *cA = SparseMatrix_remove_diagonal(*cA); |
| 1183 | |
| 1184 | *cD = DistanceMatrix_restrict_filtering(vset, MAX_IND_VTX_SET_C, MAX_IND_VTX_SET_F, D); |
| 1185 | break; |
| 1186 | default: |
| 1187 | goto RETURN; |
| 1188 | } |
| 1189 | RETURN: |
| 1190 | if (matching) FREE(matching); |
| 1191 | if (vset) FREE(vset); |
| 1192 | if (irn) FREE(irn); |
| 1193 | if (jcn) FREE(jcn); |
| 1194 | if (val) FREE(val); |
| 1195 | if (B) SparseMatrix_delete(B); |
| 1196 | |
| 1197 | if(cluster) FREE(cluster); |
| 1198 | if(clusterp) FREE(clusterp); |
| 1199 | } |
| 1200 | |
| 1201 | void Multilevel_coarsen(SparseMatrix A, SparseMatrix *cA, SparseMatrix D, SparseMatrix *cD, real *node_wgt, real **cnode_wgt, |
| 1202 | SparseMatrix *P, SparseMatrix *R, Multilevel_control ctrl, int *coarsen_scheme_used){ |
| 1203 | SparseMatrix cA0 = A, cD0 = NULL, P0 = NULL, R0 = NULL, M; |
| 1204 | real *cnode_wgt0 = NULL; |
| 1205 | int nc = 0, n; |
| 1206 | |
| 1207 | *P = NULL; *R = NULL; *cA = NULL; *cnode_wgt = NULL, *cD = NULL; |
| 1208 | |
| 1209 | n = A->n; |
| 1210 | |
| 1211 | do {/* this loop force a sufficient reduction */ |
| 1212 | node_wgt = cnode_wgt0; |
| 1213 | Multilevel_coarsen_internal(A, &cA0, D, &cD0, node_wgt, &cnode_wgt0, &P0, &R0, ctrl, coarsen_scheme_used); |
| 1214 | if (!cA0) return; |
| 1215 | nc = cA0->n; |
| 1216 | #ifdef DEBUG_PRINT |
| 1217 | if (Verbose) fprintf(stderr,"nc=%d n = %d\n" ,nc,n); |
| 1218 | #endif |
| 1219 | if (*P){ |
| 1220 | assert(*R); |
| 1221 | M = SparseMatrix_multiply(*P, P0); |
| 1222 | SparseMatrix_delete(*P); |
| 1223 | SparseMatrix_delete(P0); |
| 1224 | *P = M; |
| 1225 | M = SparseMatrix_multiply(R0, *R); |
| 1226 | SparseMatrix_delete(*R); |
| 1227 | SparseMatrix_delete(R0); |
| 1228 | *R = M; |
| 1229 | } else { |
| 1230 | *P = P0; |
| 1231 | *R = R0; |
| 1232 | } |
| 1233 | |
| 1234 | if (*cA) SparseMatrix_delete(*cA); |
| 1235 | *cA = cA0; |
| 1236 | if (*cD) SparseMatrix_delete(*cD); |
| 1237 | *cD = cD0; |
| 1238 | |
| 1239 | if (*cnode_wgt) FREE(*cnode_wgt); |
| 1240 | *cnode_wgt = cnode_wgt0; |
| 1241 | A = cA0; |
| 1242 | D = cD0; |
| 1243 | node_wgt = cnode_wgt0; |
| 1244 | cnode_wgt0 = NULL; |
| 1245 | } while (nc > ctrl->min_coarsen_factor*n && ctrl->coarsen_mode == COARSEN_MODE_FORCEFUL); |
| 1246 | |
| 1247 | } |
| 1248 | |
| 1249 | void print_padding(int n){ |
| 1250 | int i; |
| 1251 | for (i = 0; i < n; i++) fputs (" " , stderr); |
| 1252 | } |
| 1253 | static Multilevel Multilevel_establish(Multilevel grid, Multilevel_control ctrl){ |
| 1254 | Multilevel cgrid; |
| 1255 | int coarsen_scheme_used; |
| 1256 | real *cnode_weights = NULL; |
| 1257 | SparseMatrix P, R, A, cA, D, cD; |
| 1258 | |
| 1259 | #ifdef DEBUG_PRINT |
| 1260 | if (Verbose) { |
| 1261 | print_padding(grid->level); |
| 1262 | fprintf(stderr, "level -- %d, n = %d, nz = %d nz/n = %f\n" , grid->level, grid->n, grid->A->nz, grid->A->nz/(double) grid->n); |
| 1263 | } |
| 1264 | #endif |
| 1265 | A = grid->A; |
| 1266 | D = grid->D; |
| 1267 | if (grid->level >= ctrl->maxlevel - 1) { |
| 1268 | #ifdef DEBUG_PRINT |
| 1269 | if (Verbose) { |
| 1270 | print_padding(grid->level); |
| 1271 | fprintf(stderr, " maxlevel reached, coarsening stops\n" ); |
| 1272 | } |
| 1273 | #endif |
| 1274 | return grid; |
| 1275 | } |
| 1276 | Multilevel_coarsen(A, &cA, D, &cD, grid->node_weights, &cnode_weights, &P, &R, ctrl, &coarsen_scheme_used); |
| 1277 | if (!cA) return grid; |
| 1278 | |
| 1279 | cgrid = Multilevel_init(cA, cD, cnode_weights); |
| 1280 | grid->next = cgrid; |
| 1281 | cgrid->coarsen_scheme_used = coarsen_scheme_used; |
| 1282 | cgrid->level = grid->level + 1; |
| 1283 | cgrid->n = cA->m; |
| 1284 | cgrid->A = cA; |
| 1285 | cgrid->D = cD; |
| 1286 | cgrid->P = P; |
| 1287 | grid->R = R; |
| 1288 | cgrid->prev = grid; |
| 1289 | cgrid = Multilevel_establish(cgrid, ctrl); |
| 1290 | return grid; |
| 1291 | |
| 1292 | } |
| 1293 | |
| 1294 | Multilevel Multilevel_new(SparseMatrix A0, SparseMatrix D0, real *node_weights, Multilevel_control ctrl){ |
| 1295 | /* A: the weighting matrix. D: the distance matrix, could be NULL. If not null, the two matrices must have the same sparsity pattern */ |
| 1296 | Multilevel grid; |
| 1297 | SparseMatrix A = A0, D = D0; |
| 1298 | |
| 1299 | if (!SparseMatrix_is_symmetric(A, FALSE) || A->type != MATRIX_TYPE_REAL){ |
| 1300 | A = SparseMatrix_get_real_adjacency_matrix_symmetrized(A); |
| 1301 | } |
| 1302 | if (D && (!SparseMatrix_is_symmetric(D, FALSE) || D->type != MATRIX_TYPE_REAL)){ |
| 1303 | D = SparseMatrix_symmetrize_nodiag(D, FALSE); |
| 1304 | } |
| 1305 | grid = Multilevel_init(A, D, node_weights); |
| 1306 | grid = Multilevel_establish(grid, ctrl); |
| 1307 | if (A != A0) grid->delete_top_level_A = TRUE;/* be sure to clean up later */ |
| 1308 | return grid; |
| 1309 | } |
| 1310 | |
| 1311 | |
| 1312 | Multilevel Multilevel_get_coarsest(Multilevel grid){ |
| 1313 | while (grid->next){ |
| 1314 | grid = grid->next; |
| 1315 | } |
| 1316 | return grid; |
| 1317 | } |
| 1318 | |
| 1319 | |