1 | /* $Id$ $Revision$ */ |
2 | /* vim:set shiftwidth=4 ts=8: */ |
3 | |
4 | /************************************************************************* |
5 | * Copyright (c) 2011 AT&T Intellectual Property |
6 | * All rights reserved. This program and the accompanying materials |
7 | * are made available under the terms of the Eclipse Public License v1.0 |
8 | * which accompanies this distribution, and is available at |
9 | * http://www.eclipse.org/legal/epl-v10.html |
10 | * |
11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
12 | *************************************************************************/ |
13 | |
14 | #include "Multilevel.h" |
15 | #include "PriorityQueue.h" |
16 | #include "memory.h" |
17 | #include "logic.h" |
18 | #include "assert.h" |
19 | #include "arith.h" |
20 | |
21 | |
22 | Multilevel_control Multilevel_control_new(int scheme, int mode){ |
23 | Multilevel_control ctrl; |
24 | |
25 | ctrl = GNEW(struct Multilevel_control_struct); |
26 | ctrl->minsize = 4; |
27 | ctrl->min_coarsen_factor = 0.75; |
28 | ctrl->maxlevel = 1<<30; |
29 | ctrl->randomize = TRUE; |
30 | /* now set in spring_electrical_control_new(), as well as by command line argument -c |
31 | ctrl->coarsen_scheme = COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_CLUSTER_PERNODE_LEAVES_FIRST; |
32 | ctrl->coarsen_scheme = COARSEN_INDEPENDENT_VERTEX_SET_RS; |
33 | ctrl->coarsen_scheme = COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE; |
34 | ctrl->coarsen_scheme = COARSEN_HYBRID; |
35 | ctrl->coarsen_scheme = COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_SUPERNODES_FIRST; |
36 | ctrl->coarsen_mode = COARSEN_MODE_FORCEFUL; or COARSEN_MODE_GENTLE; |
37 | */ |
38 | |
39 | ctrl->coarsen_scheme = scheme; |
40 | ctrl->coarsen_mode = mode; |
41 | return ctrl; |
42 | } |
43 | |
44 | void Multilevel_control_delete(Multilevel_control ctrl){ |
45 | FREE(ctrl); |
46 | } |
47 | |
48 | static Multilevel Multilevel_init(SparseMatrix A, SparseMatrix D, real *node_weights){ |
49 | Multilevel grid; |
50 | if (!A) return NULL; |
51 | assert(A->m == A->n); |
52 | grid = GNEW(struct Multilevel_struct); |
53 | grid->level = 0; |
54 | grid->n = A->n; |
55 | grid->A = A; |
56 | grid->D = D; |
57 | grid->P = NULL; |
58 | grid->R = NULL; |
59 | grid->node_weights = node_weights; |
60 | grid->next = NULL; |
61 | grid->prev = NULL; |
62 | grid->delete_top_level_A = FALSE; |
63 | return grid; |
64 | } |
65 | |
66 | void Multilevel_delete(Multilevel grid){ |
67 | if (!grid) return; |
68 | if (grid->A){ |
69 | if (grid->level == 0) { |
70 | if (grid->delete_top_level_A) { |
71 | SparseMatrix_delete(grid->A); |
72 | if (grid->D) SparseMatrix_delete(grid->D); |
73 | } |
74 | } else { |
75 | SparseMatrix_delete(grid->A); |
76 | if (grid->D) SparseMatrix_delete(grid->D); |
77 | } |
78 | } |
79 | SparseMatrix_delete(grid->P); |
80 | SparseMatrix_delete(grid->R); |
81 | if (grid->node_weights && grid->level > 0) FREE(grid->node_weights); |
82 | Multilevel_delete(grid->next); |
83 | FREE(grid); |
84 | } |
85 | |
86 | static void maximal_independent_vertex_set(SparseMatrix A, int randomize, int **vset, int *nvset, int *nzc){ |
87 | int i, ii, j, *ia, *ja, m, n, *p = NULL; |
88 | assert(A); |
89 | assert(SparseMatrix_known_strucural_symmetric(A)); |
90 | ia = A->ia; |
91 | ja = A->ja; |
92 | m = A->m; |
93 | n = A->n; |
94 | assert(n == m); |
95 | *vset = N_GNEW(m,int); |
96 | for (i = 0; i < m; i++) (*vset)[i] = MAX_IND_VTX_SET_U; |
97 | *nvset = 0; |
98 | *nzc = 0; |
99 | |
100 | if (!randomize){ |
101 | for (i = 0; i < m; i++){ |
102 | if ((*vset)[i] == MAX_IND_VTX_SET_U){ |
103 | (*vset)[i] = (*nvset)++; |
104 | for (j = ia[i]; j < ia[i+1]; j++){ |
105 | if (i == ja[j]) continue; |
106 | (*vset)[ja[j]] = MAX_IND_VTX_SET_F; |
107 | (*nzc)++; |
108 | } |
109 | } |
110 | } |
111 | } else { |
112 | p = random_permutation(m); |
113 | for (ii = 0; ii < m; ii++){ |
114 | i = p[ii]; |
115 | if ((*vset)[i] == MAX_IND_VTX_SET_U){ |
116 | (*vset)[i] = (*nvset)++; |
117 | for (j = ia[i]; j < ia[i+1]; j++){ |
118 | if (i == ja[j]) continue; |
119 | (*vset)[ja[j]] = MAX_IND_VTX_SET_F; |
120 | (*nzc)++; |
121 | } |
122 | } |
123 | } |
124 | FREE(p); |
125 | } |
126 | (*nzc) += *nvset; |
127 | } |
128 | |
129 | |
130 | static void maximal_independent_vertex_set_RS(SparseMatrix A, int randomize, int **vset, int *nvset, int *nzc){ |
131 | /* The Ruge-Stuben coarsening scheme. Initially all vertices are in the U set (with marker MAX_IND_VTX_SET_U), |
132 | with gain equal to their degree. Select vertex with highest gain into a C set (with |
133 | marker >= MAX_IND_VTX_SET_C), and their neighbors j in F set (with marker MAX_IND_VTX_SET_F). The neighbors of |
134 | j that are in the U set get their gains incremented by 1. So overall |
135 | gain[k] = |{neighbor of k in U set}|+2*|{neighbors of k in F set}|. |
136 | nzc is the number of entries in the restriction matrix |
137 | */ |
138 | int i, jj, ii, *p = NULL, j, k, *ia, *ja, m, n, gain, removed, nf = 0; |
139 | PriorityQueue q; |
140 | assert(A); |
141 | assert(SparseMatrix_known_strucural_symmetric(A)); |
142 | |
143 | ia = A->ia; |
144 | ja = A->ja; |
145 | m = A->m; |
146 | n = A->n; |
147 | assert(n == m); |
148 | *vset = N_GNEW(m,int); |
149 | for (i = 0; i < m; i++) { |
150 | (*vset)[i] = MAX_IND_VTX_SET_U; |
151 | } |
152 | *nvset = 0; |
153 | *nzc = 0; |
154 | |
155 | q = PriorityQueue_new(m, 2*(m-1)); |
156 | |
157 | if (!randomize){ |
158 | for (i = 0; i < m; i++) |
159 | PriorityQueue_push(q, i, ia[i+1] - ia[i]); |
160 | } else { |
161 | p = random_permutation(m); |
162 | for (ii = 0; ii < m; ii++){ |
163 | i = p[ii]; |
164 | PriorityQueue_push(q, i, ia[i+1] - ia[i]); |
165 | } |
166 | FREE(p); |
167 | } |
168 | |
169 | while (PriorityQueue_pop(q, &i, &gain)){ |
170 | assert((*vset)[i] == MAX_IND_VTX_SET_U); |
171 | (*vset)[i] = (*nvset)++; |
172 | for (j = ia[i]; j < ia[i+1]; j++){ |
173 | jj = ja[j]; |
174 | assert((*vset)[jj] == MAX_IND_VTX_SET_U || (*vset)[jj] == MAX_IND_VTX_SET_F); |
175 | if (i == jj) continue; |
176 | |
177 | if ((*vset)[jj] == MAX_IND_VTX_SET_U){ |
178 | removed = PriorityQueue_remove(q, jj); |
179 | assert(removed); |
180 | (*vset)[jj] = MAX_IND_VTX_SET_F; |
181 | nf++; |
182 | |
183 | for (k = ia[jj]; k < ia[jj+1]; k++){ |
184 | if (jj == ja[k]) continue; |
185 | if ((*vset)[ja[k]] == MAX_IND_VTX_SET_U){ |
186 | gain = PriorityQueue_get_gain(q, ja[k]); |
187 | assert(gain >= 0); |
188 | PriorityQueue_push(q, ja[k], gain + 1); |
189 | } |
190 | } |
191 | } |
192 | (*nzc)++; |
193 | } |
194 | } |
195 | (*nzc) += *nvset; |
196 | PriorityQueue_delete(q); |
197 | |
198 | } |
199 | |
200 | |
201 | |
202 | static void maximal_independent_edge_set(SparseMatrix A, int randomize, int **matching, int *nmatch){ |
203 | int i, ii, j, *ia, *ja, m, n, *p = NULL; |
204 | assert(A); |
205 | assert(SparseMatrix_known_strucural_symmetric(A)); |
206 | ia = A->ia; |
207 | ja = A->ja; |
208 | m = A->m; |
209 | n = A->n; |
210 | assert(n == m); |
211 | *matching = N_GNEW(m,int); |
212 | for (i = 0; i < m; i++) (*matching)[i] = i; |
213 | *nmatch = n; |
214 | |
215 | if (!randomize){ |
216 | for (i = 0; i < m; i++){ |
217 | for (j = ia[i]; j < ia[i+1]; j++){ |
218 | if (i == ja[j]) continue; |
219 | if ((*matching)[ja[j]] == ja[j] && (*matching)[i] == i){ |
220 | (*matching)[ja[j]] = i; |
221 | (*matching)[i] = ja[j]; |
222 | (*nmatch)--; |
223 | } |
224 | } |
225 | } |
226 | } else { |
227 | p = random_permutation(m); |
228 | for (ii = 0; ii < m; ii++){ |
229 | i = p[ii]; |
230 | for (j = ia[i]; j < ia[i+1]; j++){ |
231 | if (i == ja[j]) continue; |
232 | if ((*matching)[ja[j]] == ja[j] && (*matching)[i] == i){ |
233 | (*matching)[ja[j]] = i; |
234 | (*matching)[i] = ja[j]; |
235 | (*nmatch)--; |
236 | } |
237 | } |
238 | } |
239 | FREE(p); |
240 | } |
241 | } |
242 | |
243 | |
244 | |
245 | static void maximal_independent_edge_set_heavest_edge_pernode(SparseMatrix A, int randomize, int **matching, int *nmatch){ |
246 | int i, ii, j, *ia, *ja, m, n, *p = NULL; |
247 | real *a, amax = 0; |
248 | int first = TRUE, jamax = 0; |
249 | |
250 | assert(A); |
251 | assert(SparseMatrix_known_strucural_symmetric(A)); |
252 | ia = A->ia; |
253 | ja = A->ja; |
254 | m = A->m; |
255 | n = A->n; |
256 | assert(n == m); |
257 | *matching = N_GNEW(m,int); |
258 | for (i = 0; i < m; i++) (*matching)[i] = i; |
259 | *nmatch = n; |
260 | |
261 | assert(SparseMatrix_is_symmetric(A, FALSE)); |
262 | assert(A->type == MATRIX_TYPE_REAL); |
263 | |
264 | a = (real*) A->a; |
265 | if (!randomize){ |
266 | for (i = 0; i < m; i++){ |
267 | first = TRUE; |
268 | for (j = ia[i]; j < ia[i+1]; j++){ |
269 | if (i == ja[j]) continue; |
270 | if ((*matching)[ja[j]] == ja[j] && (*matching)[i] == i){ |
271 | if (first) { |
272 | amax = a[j]; |
273 | jamax = ja[j]; |
274 | first = FALSE; |
275 | } else { |
276 | if (a[j] > amax){ |
277 | amax = a[j]; |
278 | jamax = ja[j]; |
279 | } |
280 | } |
281 | } |
282 | } |
283 | if (!first){ |
284 | (*matching)[jamax] = i; |
285 | (*matching)[i] = jamax; |
286 | (*nmatch)--; |
287 | } |
288 | } |
289 | } else { |
290 | p = random_permutation(m); |
291 | for (ii = 0; ii < m; ii++){ |
292 | i = p[ii]; |
293 | if ((*matching)[i] != i) continue; |
294 | first = TRUE; |
295 | for (j = ia[i]; j < ia[i+1]; j++){ |
296 | if (i == ja[j]) continue; |
297 | if ((*matching)[ja[j]] == ja[j] && (*matching)[i] == i){ |
298 | if (first) { |
299 | amax = a[j]; |
300 | jamax = ja[j]; |
301 | first = FALSE; |
302 | } else { |
303 | if (a[j] > amax){ |
304 | amax = a[j]; |
305 | jamax = ja[j]; |
306 | } |
307 | } |
308 | } |
309 | } |
310 | if (!first){ |
311 | (*matching)[jamax] = i; |
312 | (*matching)[i] = jamax; |
313 | (*nmatch)--; |
314 | } |
315 | } |
316 | FREE(p); |
317 | } |
318 | } |
319 | |
320 | |
321 | |
322 | |
323 | |
324 | #define node_degree(i) (ia[(i)+1] - ia[(i)]) |
325 | |
326 | static void maximal_independent_edge_set_heavest_edge_pernode_leaves_first(SparseMatrix A, int randomize, int **cluster, int **clusterp, int *ncluster){ |
327 | int i, ii, j, *ia, *ja, m, n, *p = NULL, q; |
328 | real *a, amax = 0; |
329 | int first = TRUE, jamax = 0; |
330 | int *matched, nz, ncmax = 0, nz0, nzz,k ; |
331 | enum {UNMATCHED = -2, MATCHED = -1}; |
332 | |
333 | assert(A); |
334 | assert(SparseMatrix_known_strucural_symmetric(A)); |
335 | ia = A->ia; |
336 | ja = A->ja; |
337 | m = A->m; |
338 | n = A->n; |
339 | assert(n == m); |
340 | *cluster = N_GNEW(m,int); |
341 | *clusterp = N_GNEW((m+1),int); |
342 | matched = N_GNEW(m,int); |
343 | |
344 | for (i = 0; i < m; i++) matched[i] = i; |
345 | |
346 | assert(SparseMatrix_is_symmetric(A, FALSE)); |
347 | assert(A->type == MATRIX_TYPE_REAL); |
348 | |
349 | *ncluster = 0; |
350 | (*clusterp)[0] = 0; |
351 | nz = 0; |
352 | a = (real*) A->a; |
353 | if (!randomize){ |
354 | for (i = 0; i < m; i++){ |
355 | if (matched[i] == MATCHED || node_degree(i) != 1) continue; |
356 | q = ja[ia[i]]; |
357 | assert(matched[q] != MATCHED); |
358 | matched[q] = MATCHED; |
359 | (*cluster)[nz++] = q; |
360 | for (j = ia[q]; j < ia[q+1]; j++){ |
361 | if (q == ja[j]) continue; |
362 | if (node_degree(ja[j]) == 1){ |
363 | matched[ja[j]] = MATCHED; |
364 | (*cluster)[nz++] = ja[j]; |
365 | } |
366 | } |
367 | ncmax = MAX(ncmax, nz - (*clusterp)[*ncluster]); |
368 | nz0 = (*clusterp)[*ncluster]; |
369 | if (nz - nz0 <= MAX_CLUSTER_SIZE){ |
370 | (*clusterp)[++(*ncluster)] = nz; |
371 | } else { |
372 | (*clusterp)[++(*ncluster)] = ++nz0; |
373 | nzz = nz0; |
374 | for (k = nz0; k < nz && nzz < nz; k++){ |
375 | nzz += MAX_CLUSTER_SIZE - 1; |
376 | nzz = MIN(nz, nzz); |
377 | (*clusterp)[++(*ncluster)] = nzz; |
378 | } |
379 | } |
380 | |
381 | } |
382 | #ifdef DEBUG_print |
383 | if (Verbose) |
384 | fprintf(stderr, "%d leaves and parents for %d clusters, largest cluster = %d\n" ,nz, *ncluster, ncmax); |
385 | #endif |
386 | for (i = 0; i < m; i++){ |
387 | first = TRUE; |
388 | if (matched[i] == MATCHED) continue; |
389 | for (j = ia[i]; j < ia[i+1]; j++){ |
390 | if (i == ja[j]) continue; |
391 | if (matched[ja[j]] != MATCHED && matched[i] != MATCHED){ |
392 | if (first) { |
393 | amax = a[j]; |
394 | jamax = ja[j]; |
395 | first = FALSE; |
396 | } else { |
397 | if (a[j] > amax){ |
398 | amax = a[j]; |
399 | jamax = ja[j]; |
400 | } |
401 | } |
402 | } |
403 | } |
404 | if (!first){ |
405 | matched[jamax] = MATCHED; |
406 | matched[i] = MATCHED; |
407 | (*cluster)[nz++] = i; |
408 | (*cluster)[nz++] = jamax; |
409 | (*clusterp)[++(*ncluster)] = nz; |
410 | } |
411 | } |
412 | |
413 | /* dan yi dian, wu ban */ |
414 | for (i = 0; i < m; i++){ |
415 | if (matched[i] == i){ |
416 | (*cluster)[nz++] = i; |
417 | (*clusterp)[++(*ncluster)] = nz; |
418 | } |
419 | } |
420 | assert(nz == n); |
421 | |
422 | } else { |
423 | p = random_permutation(m); |
424 | for (ii = 0; ii < m; ii++){ |
425 | i = p[ii]; |
426 | if (matched[i] == MATCHED || node_degree(i) != 1) continue; |
427 | q = ja[ia[i]]; |
428 | assert(matched[q] != MATCHED); |
429 | matched[q] = MATCHED; |
430 | (*cluster)[nz++] = q; |
431 | for (j = ia[q]; j < ia[q+1]; j++){ |
432 | if (q == ja[j]) continue; |
433 | if (node_degree(ja[j]) == 1){ |
434 | matched[ja[j]] = MATCHED; |
435 | (*cluster)[nz++] = ja[j]; |
436 | } |
437 | } |
438 | ncmax = MAX(ncmax, nz - (*clusterp)[*ncluster]); |
439 | nz0 = (*clusterp)[*ncluster]; |
440 | if (nz - nz0 <= MAX_CLUSTER_SIZE){ |
441 | (*clusterp)[++(*ncluster)] = nz; |
442 | } else { |
443 | (*clusterp)[++(*ncluster)] = ++nz0; |
444 | nzz = nz0; |
445 | for (k = nz0; k < nz && nzz < nz; k++){ |
446 | nzz += MAX_CLUSTER_SIZE - 1; |
447 | nzz = MIN(nz, nzz); |
448 | (*clusterp)[++(*ncluster)] = nzz; |
449 | } |
450 | } |
451 | } |
452 | |
453 | #ifdef DEBUG_print |
454 | if (Verbose) |
455 | fprintf(stderr, "%d leaves and parents for %d clusters, largest cluster = %d\n" ,nz, *ncluster, ncmax); |
456 | #endif |
457 | for (ii = 0; ii < m; ii++){ |
458 | i = p[ii]; |
459 | first = TRUE; |
460 | if (matched[i] == MATCHED) continue; |
461 | for (j = ia[i]; j < ia[i+1]; j++){ |
462 | if (i == ja[j]) continue; |
463 | if (matched[ja[j]] != MATCHED && matched[i] != MATCHED){ |
464 | if (first) { |
465 | amax = a[j]; |
466 | jamax = ja[j]; |
467 | first = FALSE; |
468 | } else { |
469 | if (a[j] > amax){ |
470 | amax = a[j]; |
471 | jamax = ja[j]; |
472 | } |
473 | } |
474 | } |
475 | } |
476 | if (!first){ |
477 | matched[jamax] = MATCHED; |
478 | matched[i] = MATCHED; |
479 | (*cluster)[nz++] = i; |
480 | (*cluster)[nz++] = jamax; |
481 | (*clusterp)[++(*ncluster)] = nz; |
482 | } |
483 | } |
484 | |
485 | /* dan yi dian, wu ban */ |
486 | for (i = 0; i < m; i++){ |
487 | if (matched[i] == i){ |
488 | (*cluster)[nz++] = i; |
489 | (*clusterp)[++(*ncluster)] = nz; |
490 | } |
491 | } |
492 | |
493 | FREE(p); |
494 | } |
495 | |
496 | FREE(matched); |
497 | } |
498 | |
499 | |
500 | |
501 | static void maximal_independent_edge_set_heavest_edge_pernode_supernodes_first(SparseMatrix A, int randomize, int **cluster, int **clusterp, int *ncluster){ |
502 | int i, ii, j, *ia, *ja, m, n, *p = NULL; |
503 | real *a, amax = 0; |
504 | int first = TRUE, jamax = 0; |
505 | int *matched, nz, nz0; |
506 | enum {UNMATCHED = -2, MATCHED = -1}; |
507 | int nsuper, *super = NULL, *superp = NULL; |
508 | |
509 | assert(A); |
510 | assert(SparseMatrix_known_strucural_symmetric(A)); |
511 | ia = A->ia; |
512 | ja = A->ja; |
513 | m = A->m; |
514 | n = A->n; |
515 | assert(n == m); |
516 | *cluster = N_GNEW(m,int); |
517 | *clusterp = N_GNEW((m+1),int); |
518 | matched = N_GNEW(m,int); |
519 | |
520 | for (i = 0; i < m; i++) matched[i] = i; |
521 | |
522 | assert(SparseMatrix_is_symmetric(A, FALSE)); |
523 | assert(A->type == MATRIX_TYPE_REAL); |
524 | |
525 | SparseMatrix_decompose_to_supervariables(A, &nsuper, &super, &superp); |
526 | |
527 | *ncluster = 0; |
528 | (*clusterp)[0] = 0; |
529 | nz = 0; |
530 | a = (real*) A->a; |
531 | |
532 | for (i = 0; i < nsuper; i++){ |
533 | if (superp[i+1] - superp[i] <= 1) continue; |
534 | nz0 = (*clusterp)[*ncluster]; |
535 | for (j = superp[i]; j < superp[i+1]; j++){ |
536 | matched[super[j]] = MATCHED; |
537 | (*cluster)[nz++] = super[j]; |
538 | if (nz - nz0 >= MAX_CLUSTER_SIZE){ |
539 | (*clusterp)[++(*ncluster)] = nz; |
540 | nz0 = nz; |
541 | } |
542 | } |
543 | if (nz > nz0) (*clusterp)[++(*ncluster)] = nz; |
544 | } |
545 | |
546 | if (!randomize){ |
547 | for (i = 0; i < m; i++){ |
548 | first = TRUE; |
549 | if (matched[i] == MATCHED) continue; |
550 | for (j = ia[i]; j < ia[i+1]; j++){ |
551 | if (i == ja[j]) continue; |
552 | if (matched[ja[j]] != MATCHED && matched[i] != MATCHED){ |
553 | if (first) { |
554 | amax = a[j]; |
555 | jamax = ja[j]; |
556 | first = FALSE; |
557 | } else { |
558 | if (a[j] > amax){ |
559 | amax = a[j]; |
560 | jamax = ja[j]; |
561 | } |
562 | } |
563 | } |
564 | } |
565 | if (!first){ |
566 | matched[jamax] = MATCHED; |
567 | matched[i] = MATCHED; |
568 | (*cluster)[nz++] = i; |
569 | (*cluster)[nz++] = jamax; |
570 | (*clusterp)[++(*ncluster)] = nz; |
571 | } |
572 | } |
573 | |
574 | /* dan yi dian, wu ban */ |
575 | for (i = 0; i < m; i++){ |
576 | if (matched[i] == i){ |
577 | (*cluster)[nz++] = i; |
578 | (*clusterp)[++(*ncluster)] = nz; |
579 | } |
580 | } |
581 | assert(nz == n); |
582 | |
583 | } else { |
584 | p = random_permutation(m); |
585 | for (ii = 0; ii < m; ii++){ |
586 | i = p[ii]; |
587 | first = TRUE; |
588 | if (matched[i] == MATCHED) continue; |
589 | for (j = ia[i]; j < ia[i+1]; j++){ |
590 | if (i == ja[j]) continue; |
591 | if (matched[ja[j]] != MATCHED && matched[i] != MATCHED){ |
592 | if (first) { |
593 | amax = a[j]; |
594 | jamax = ja[j]; |
595 | first = FALSE; |
596 | } else { |
597 | if (a[j] > amax){ |
598 | amax = a[j]; |
599 | jamax = ja[j]; |
600 | } |
601 | } |
602 | } |
603 | } |
604 | if (!first){ |
605 | matched[jamax] = MATCHED; |
606 | matched[i] = MATCHED; |
607 | (*cluster)[nz++] = i; |
608 | (*cluster)[nz++] = jamax; |
609 | (*clusterp)[++(*ncluster)] = nz; |
610 | } |
611 | } |
612 | |
613 | /* dan yi dian, wu ban */ |
614 | for (i = 0; i < m; i++){ |
615 | if (matched[i] == i){ |
616 | (*cluster)[nz++] = i; |
617 | (*clusterp)[++(*ncluster)] = nz; |
618 | } |
619 | } |
620 | FREE(p); |
621 | |
622 | } |
623 | |
624 | FREE(super); |
625 | |
626 | FREE(superp); |
627 | |
628 | FREE(matched); |
629 | } |
630 | |
631 | static int scomp(const void *s1, const void *s2){ |
632 | real *ss1, *ss2; |
633 | ss1 = (real*) s1; |
634 | ss2 = (real*) s2; |
635 | |
636 | if ((ss1)[1] > (ss2)[1]){ |
637 | return -1; |
638 | } else if ((ss1)[1] < (ss2)[1]){ |
639 | return 1; |
640 | } |
641 | return 0; |
642 | } |
643 | |
644 | static void maximal_independent_edge_set_heavest_cluster_pernode_leaves_first(SparseMatrix A, int csize, |
645 | int randomize, int **cluster, int **clusterp, int *ncluster){ |
646 | int i, ii, j, *ia, *ja, m, n, *p = NULL, q, iv; |
647 | real *a; |
648 | int *matched, nz, nz0, nzz,k, nv; |
649 | enum {UNMATCHED = -2, MATCHED = -1}; |
650 | real *vlist; |
651 | |
652 | assert(A); |
653 | assert(SparseMatrix_known_strucural_symmetric(A)); |
654 | ia = A->ia; |
655 | ja = A->ja; |
656 | m = A->m; |
657 | n = A->n; |
658 | assert(n == m); |
659 | *cluster = N_GNEW(m,int); |
660 | *clusterp = N_GNEW((m+1),int); |
661 | matched = N_GNEW(m,int); |
662 | vlist = N_GNEW(2*m,real); |
663 | |
664 | for (i = 0; i < m; i++) matched[i] = i; |
665 | |
666 | assert(SparseMatrix_is_symmetric(A, FALSE)); |
667 | assert(A->type == MATRIX_TYPE_REAL); |
668 | |
669 | *ncluster = 0; |
670 | (*clusterp)[0] = 0; |
671 | nz = 0; |
672 | a = (real*) A->a; |
673 | |
674 | p = random_permutation(m); |
675 | for (ii = 0; ii < m; ii++){ |
676 | i = p[ii]; |
677 | if (matched[i] == MATCHED || node_degree(i) != 1) continue; |
678 | q = ja[ia[i]]; |
679 | assert(matched[q] != MATCHED); |
680 | matched[q] = MATCHED; |
681 | (*cluster)[nz++] = q; |
682 | for (j = ia[q]; j < ia[q+1]; j++){ |
683 | if (q == ja[j]) continue; |
684 | if (node_degree(ja[j]) == 1){ |
685 | matched[ja[j]] = MATCHED; |
686 | (*cluster)[nz++] = ja[j]; |
687 | } |
688 | } |
689 | nz0 = (*clusterp)[*ncluster]; |
690 | if (nz - nz0 <= MAX_CLUSTER_SIZE){ |
691 | (*clusterp)[++(*ncluster)] = nz; |
692 | } else { |
693 | (*clusterp)[++(*ncluster)] = ++nz0; |
694 | nzz = nz0; |
695 | for (k = nz0; k < nz && nzz < nz; k++){ |
696 | nzz += MAX_CLUSTER_SIZE - 1; |
697 | nzz = MIN(nz, nzz); |
698 | (*clusterp)[++(*ncluster)] = nzz; |
699 | } |
700 | } |
701 | } |
702 | |
703 | for (ii = 0; ii < m; ii++){ |
704 | i = p[ii]; |
705 | if (matched[i] == MATCHED) continue; |
706 | nv = 0; |
707 | for (j = ia[i]; j < ia[i+1]; j++){ |
708 | if (i == ja[j]) continue; |
709 | if (matched[ja[j]] != MATCHED && matched[i] != MATCHED){ |
710 | vlist[2*nv] = ja[j]; |
711 | vlist[2*nv+1] = a[j]; |
712 | nv++; |
713 | } |
714 | } |
715 | if (nv > 0){ |
716 | qsort(vlist, nv, sizeof(real)*2, scomp); |
717 | for (j = 0; j < MIN(csize - 1, nv); j++){ |
718 | iv = (int) vlist[2*j]; |
719 | matched[iv] = MATCHED; |
720 | (*cluster)[nz++] = iv; |
721 | } |
722 | matched[i] = MATCHED; |
723 | (*cluster)[nz++] = i; |
724 | (*clusterp)[++(*ncluster)] = nz; |
725 | } |
726 | } |
727 | |
728 | /* dan yi dian, wu ban */ |
729 | for (i = 0; i < m; i++){ |
730 | if (matched[i] == i){ |
731 | (*cluster)[nz++] = i; |
732 | (*clusterp)[++(*ncluster)] = nz; |
733 | } |
734 | } |
735 | FREE(p); |
736 | |
737 | |
738 | FREE(matched); |
739 | } |
740 | static void maximal_independent_edge_set_heavest_edge_pernode_scaled(SparseMatrix A, int randomize, int **matching, int *nmatch){ |
741 | int i, ii, j, *ia, *ja, m, n, *p = NULL; |
742 | real *a, amax = 0; |
743 | int first = TRUE, jamax = 0; |
744 | |
745 | assert(A); |
746 | assert(SparseMatrix_known_strucural_symmetric(A)); |
747 | ia = A->ia; |
748 | ja = A->ja; |
749 | m = A->m; |
750 | n = A->n; |
751 | assert(n == m); |
752 | *matching = N_GNEW(m,int); |
753 | for (i = 0; i < m; i++) (*matching)[i] = i; |
754 | *nmatch = n; |
755 | |
756 | assert(SparseMatrix_is_symmetric(A, FALSE)); |
757 | assert(A->type == MATRIX_TYPE_REAL); |
758 | |
759 | a = (real*) A->a; |
760 | if (!randomize){ |
761 | for (i = 0; i < m; i++){ |
762 | first = TRUE; |
763 | for (j = ia[i]; j < ia[i+1]; j++){ |
764 | if (i == ja[j]) continue; |
765 | if ((*matching)[ja[j]] == ja[j] && (*matching)[i] == i){ |
766 | if (first) { |
767 | amax = a[j]/(ia[i+1]-ia[i])/(ia[ja[j]+1]-ia[ja[j]]); |
768 | jamax = ja[j]; |
769 | first = FALSE; |
770 | } else { |
771 | if (a[j]/(ia[i+1]-ia[i])/(ia[ja[j]+1]-ia[ja[j]]) > amax){ |
772 | amax = a[j]/(ia[i+1]-ia[i])/(ia[ja[j]+1]-ia[ja[j]]); |
773 | jamax = ja[j]; |
774 | } |
775 | } |
776 | } |
777 | } |
778 | if (!first){ |
779 | (*matching)[jamax] = i; |
780 | (*matching)[i] = jamax; |
781 | (*nmatch)--; |
782 | } |
783 | } |
784 | } else { |
785 | p = random_permutation(m); |
786 | for (ii = 0; ii < m; ii++){ |
787 | i = p[ii]; |
788 | if ((*matching)[i] != i) continue; |
789 | first = TRUE; |
790 | for (j = ia[i]; j < ia[i+1]; j++){ |
791 | if (i == ja[j]) continue; |
792 | if ((*matching)[ja[j]] == ja[j] && (*matching)[i] == i){ |
793 | if (first) { |
794 | amax = a[j]/(ia[i+1]-ia[i])/(ia[ja[j]+1]-ia[ja[j]]); |
795 | jamax = ja[j]; |
796 | first = FALSE; |
797 | } else { |
798 | if (a[j]/(ia[i+1]-ia[i])/(ia[ja[j]+1]-ia[ja[j]]) > amax){ |
799 | amax = a[j]/(ia[i+1]-ia[i])/(ia[ja[j]+1]-ia[ja[j]]); |
800 | jamax = ja[j]; |
801 | } |
802 | } |
803 | } |
804 | } |
805 | if (!first){ |
806 | (*matching)[jamax] = i; |
807 | (*matching)[i] = jamax; |
808 | (*nmatch)--; |
809 | } |
810 | } |
811 | FREE(p); |
812 | } |
813 | } |
814 | |
815 | SparseMatrix DistanceMatrix_restrict_cluster(int ncluster, int *clusterp, int *cluster, SparseMatrix P, SparseMatrix R, SparseMatrix D){ |
816 | #if 0 |
817 | /* this construct a distance matrix of a coarse graph, for a coarsen give by merging all nodes in each cluster */ |
818 | SparseMatrix cD = NULL; |
819 | int i, j, nzc; |
820 | int **irn, **jcn; |
821 | real **val; |
822 | int n = D->m; |
823 | int *assignment = NULL; |
824 | int nz; |
825 | int *id = D->ia, jd = D->ja; |
826 | int *mask = NULL; |
827 | int *nnodes, *mask; |
828 | real *d = NULL; |
829 | |
830 | |
831 | assert(D->m == D->n); |
832 | if (!D) return NULL; |
833 | if (D->a && D->type == MATRIX_TYPE_REAL) d = (real*) D->val; |
834 | |
835 | irn = N_GNEW(ncluster,int*); |
836 | jcn = N_GNEW(ncluster,int*); |
837 | val = N_GNEW(ncluster,real*); |
838 | assignment = N_GNEW(n,int); |
839 | nz = N_GNEW(ncluster,int); |
840 | mask = N_GNEW(n,int); |
841 | nnodes = N_GNEW(ncluster,int); |
842 | |
843 | |
844 | /* find ncluster-subgrahs induced by the ncluster -clusters, find the diameter of each, |
845 | then use the radius as the distance from the supernode to the rest of the "world" |
846 | */ |
847 | for (i = 0; i < ncluster; i++) nz[i] = 0; |
848 | for (i = 0; i < ncluster; i++){ |
849 | for (j = clusterp[i]; j < clusterp[i+1]; j++){ |
850 | assert(clusterp[i+1] > clusterp[i]); |
851 | assignment[cluster[j]] = i; |
852 | } |
853 | } |
854 | |
855 | for (i = 0; i < n; i++){/* figure out how many entries per submatrix */ |
856 | ic = asignment[i]; |
857 | for (j = id[i]; j < id[i+1]; j++){ |
858 | if (i != jd[j] && ic == assignment[jd[j]]) { |
859 | nz[ic]++; |
860 | } |
861 | } |
862 | } |
863 | for (i = 0; i < ncluster; i++) { |
864 | irn[i] = N_GNEW(nz[i],int); |
865 | jcn[i] = N_GNEW(nz[i],int); |
866 | val[i] = N_GNEW(nz[i],int); |
867 | val[i] = NULL; |
868 | } |
869 | |
870 | |
871 | for (i = 0; i < ncluster; i++) nz[i] = 0;/* get subgraphs */ |
872 | for (i = 0; i < n; i++) mask[i] = -1; |
873 | for (i = 0; i < ncluster; i++) nnodes[i] = -1; |
874 | for (i = 0; i < n; i++){ |
875 | ic = asignment[i]; |
876 | ii = mask[i]; |
877 | if (ii < 0){ |
878 | mask[i] = ii = nnodes[ic]; |
879 | nnodes[ic]++; |
880 | } |
881 | for (j = id[i]; j < id[i+1]; j++){ |
882 | jc = assignment[jd[j]]; |
883 | if (i != jd[j] && ic == jc) { |
884 | jj = mask[jd[j]]; |
885 | if (jj < 0){ |
886 | mask[jd[j]] = jj = nnodes[jc]; |
887 | nnodes[jc]++; |
888 | } |
889 | irn[ic][nz[ic]] = ii; |
890 | jcn[ic][nz[ic]] = jj; |
891 | if (d) val[ic][nz[ic]] = d[j]; |
892 | } |
893 | } |
894 | } |
895 | |
896 | for (i = 0; i < ncluster; i++){/* form subgraphs */ |
897 | SparseMatrix A; |
898 | A = SparseMatrix_from_coordinate_arrays(nz[nz[i]], nnodes[i], nnodes[i], irn[i], jcn[i], (void*) val[i], MATRIX_TYPE_REAL); |
899 | |
900 | SparseMatrix_delete(A); |
901 | } |
902 | |
903 | |
904 | for (i = 0; i < ncluster; i++){ |
905 | for (j = clusterp[i]; j < clusterp[i+1]; j++){ |
906 | assert(clusterp[i+1] > clusterp[i]); |
907 | irn[nzc] = cluster[j]; |
908 | jcn[nzc] = i; |
909 | val[nzc++] = 1.; |
910 | } |
911 | } |
912 | assert(nzc == n); |
913 | cD = SparseMatrix_multiply3(R, D, P); |
914 | |
915 | SparseMatrix_set_symmetric(cD); |
916 | SparseMatrix_set_pattern_symmetric(cD); |
917 | cD = SparseMatrix_remove_diagonal(cD); |
918 | |
919 | FREE(nz); |
920 | FREE(assignment); |
921 | for (i = 0; i < ncluster; i++){ |
922 | FREE(irn[i]); |
923 | FREE(jcn[i]); |
924 | FREE(val[i]); |
925 | } |
926 | FREE(irn); FREE(jcn); FREE(val); |
927 | FREE(mask); |
928 | FREE(nnodes); |
929 | |
930 | return cD; |
931 | #endif |
932 | return NULL; |
933 | } |
934 | |
935 | SparseMatrix DistanceMatrix_restrict_matching(int *matching, SparseMatrix D){ |
936 | if (!D) return NULL; |
937 | assert(0);/* not yet implemented! */ |
938 | return NULL; |
939 | } |
940 | |
941 | SparseMatrix DistanceMatrix_restrict_filtering(int *mask, int is_C, int is_F, SparseMatrix D){ |
942 | /* max independent vtx set based coarsening. Coarsen nodes has mask >= is_C. Fine nodes == is_F. */ |
943 | if (!D) return NULL; |
944 | assert(0);/* not yet implemented! */ |
945 | return NULL; |
946 | } |
947 | |
948 | static void Multilevel_coarsen_internal(SparseMatrix A, SparseMatrix *cA, SparseMatrix D, SparseMatrix *cD, |
949 | real *node_wgt, real **cnode_wgt, |
950 | SparseMatrix *P, SparseMatrix *R, Multilevel_control ctrl, int *coarsen_scheme_used){ |
951 | int *matching = NULL, nmatch = 0, nc, nzc, n, i; |
952 | int *irn = NULL, *jcn = NULL, *ia = NULL, *ja = NULL; |
953 | real *val = NULL; |
954 | SparseMatrix B = NULL; |
955 | int *vset = NULL, nvset, ncov, j; |
956 | int *cluster=NULL, *clusterp=NULL, ncluster; |
957 | |
958 | assert(A->m == A->n); |
959 | *cA = NULL; |
960 | *cD = NULL; |
961 | *P = NULL; |
962 | *R = NULL; |
963 | n = A->m; |
964 | |
965 | *coarsen_scheme_used = ctrl->coarsen_scheme; |
966 | |
967 | switch (ctrl->coarsen_scheme){ |
968 | case COARSEN_HYBRID: |
969 | #ifdef DEBUG_PRINT |
970 | if (Verbose) |
971 | fprintf(stderr, "hybrid scheme, try COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_LEAVES_FIRST first\n" ); |
972 | #endif |
973 | *coarsen_scheme_used = ctrl->coarsen_scheme = COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_LEAVES_FIRST; |
974 | Multilevel_coarsen_internal(A, cA, D, cD, node_wgt, cnode_wgt, P, R, ctrl, coarsen_scheme_used); |
975 | |
976 | if (!(*cA)) { |
977 | #ifdef DEBUG_PRINT |
978 | if (Verbose) |
979 | fprintf(stderr, "switching to COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_SUPERNODES_FIRST\n" ); |
980 | #endif |
981 | *coarsen_scheme_used = ctrl->coarsen_scheme = COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_SUPERNODES_FIRST; |
982 | Multilevel_coarsen_internal(A, cA, D, cD, node_wgt, cnode_wgt, P, R, ctrl, coarsen_scheme_used); |
983 | } |
984 | |
985 | if (!(*cA)) { |
986 | #ifdef DEBUG_PRINT |
987 | if (Verbose) |
988 | fprintf(stderr, "switching to COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_CLUSTER_PERNODE_LEAVES_FIRST\n" ); |
989 | #endif |
990 | *coarsen_scheme_used = ctrl->coarsen_scheme = COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_CLUSTER_PERNODE_LEAVES_FIRST; |
991 | Multilevel_coarsen_internal(A, cA, D, cD, node_wgt, cnode_wgt, P, R, ctrl, coarsen_scheme_used); |
992 | } |
993 | |
994 | if (!(*cA)) { |
995 | #ifdef DEBUG_PRINT |
996 | if (Verbose) |
997 | fprintf(stderr, "switching to COARSEN_INDEPENDENT_VERTEX_SET\n" ); |
998 | #endif |
999 | *coarsen_scheme_used = ctrl->coarsen_scheme = COARSEN_INDEPENDENT_VERTEX_SET; |
1000 | Multilevel_coarsen_internal(A, cA, D, cD, node_wgt, cnode_wgt, P, R, ctrl, coarsen_scheme_used); |
1001 | } |
1002 | |
1003 | |
1004 | if (!(*cA)) { |
1005 | #ifdef DEBUG_PRINT |
1006 | if (Verbose) |
1007 | fprintf(stderr, "switching to COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE\n" ); |
1008 | #endif |
1009 | *coarsen_scheme_used = ctrl->coarsen_scheme = COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE; |
1010 | Multilevel_coarsen_internal(A, cA, D, cD, node_wgt, cnode_wgt, P, R, ctrl, coarsen_scheme_used); |
1011 | } |
1012 | ctrl->coarsen_scheme = COARSEN_HYBRID; |
1013 | break; |
1014 | case COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_SUPERNODES_FIRST: |
1015 | case COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_CLUSTER_PERNODE_LEAVES_FIRST: |
1016 | case COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_LEAVES_FIRST: |
1017 | if (ctrl->coarsen_scheme == COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_LEAVES_FIRST) { |
1018 | maximal_independent_edge_set_heavest_edge_pernode_leaves_first(A, ctrl->randomize, &cluster, &clusterp, &ncluster); |
1019 | } else if (ctrl->coarsen_scheme == COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_SUPERNODES_FIRST) { |
1020 | maximal_independent_edge_set_heavest_edge_pernode_supernodes_first(A, ctrl->randomize, &cluster, &clusterp, &ncluster); |
1021 | } else { |
1022 | maximal_independent_edge_set_heavest_cluster_pernode_leaves_first(A, 4, ctrl->randomize, &cluster, &clusterp, &ncluster); |
1023 | } |
1024 | assert(ncluster <= n); |
1025 | nc = ncluster; |
1026 | if ((ctrl->coarsen_mode == COARSEN_MODE_GENTLE && nc > ctrl->min_coarsen_factor*n) || nc == n || nc < ctrl->minsize) { |
1027 | #ifdef DEBUG_PRINT |
1028 | if (Verbose) |
1029 | fprintf(stderr, "nc = %d, nf = %d, minsz = %d, coarsen_factor = %f coarsening stops\n" ,nc, n, ctrl->minsize, ctrl->min_coarsen_factor); |
1030 | #endif |
1031 | goto RETURN; |
1032 | } |
1033 | irn = N_GNEW(n,int); |
1034 | jcn = N_GNEW(n,int); |
1035 | val = N_GNEW(n,real); |
1036 | nzc = 0; |
1037 | for (i = 0; i < ncluster; i++){ |
1038 | for (j = clusterp[i]; j < clusterp[i+1]; j++){ |
1039 | assert(clusterp[i+1] > clusterp[i]); |
1040 | irn[nzc] = cluster[j]; |
1041 | jcn[nzc] = i; |
1042 | val[nzc++] = 1.; |
1043 | } |
1044 | } |
1045 | assert(nzc == n); |
1046 | *P = SparseMatrix_from_coordinate_arrays(nzc, n, nc, irn, jcn, (void *) val, MATRIX_TYPE_REAL, sizeof(real)); |
1047 | *R = SparseMatrix_transpose(*P); |
1048 | |
1049 | *cD = DistanceMatrix_restrict_cluster(ncluster, clusterp, cluster, *P, *R, D); |
1050 | |
1051 | *cA = SparseMatrix_multiply3(*R, A, *P); |
1052 | |
1053 | /* |
1054 | B = SparseMatrix_multiply(*R, A); |
1055 | if (!B) goto RETURN; |
1056 | *cA = SparseMatrix_multiply(B, *P); |
1057 | */ |
1058 | if (!*cA) goto RETURN; |
1059 | |
1060 | SparseMatrix_multiply_vector(*R, node_wgt, cnode_wgt, FALSE); |
1061 | *R = SparseMatrix_divide_row_by_degree(*R); |
1062 | SparseMatrix_set_symmetric(*cA); |
1063 | SparseMatrix_set_pattern_symmetric(*cA); |
1064 | *cA = SparseMatrix_remove_diagonal(*cA); |
1065 | |
1066 | |
1067 | |
1068 | break; |
1069 | case COARSEN_INDEPENDENT_EDGE_SET: |
1070 | maximal_independent_edge_set(A, ctrl->randomize, &matching, &nmatch); |
1071 | case COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE: |
1072 | if (ctrl->coarsen_scheme == COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE) |
1073 | maximal_independent_edge_set_heavest_edge_pernode(A, ctrl->randomize, &matching, &nmatch); |
1074 | case COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_DEGREE_SCALED: |
1075 | if (ctrl->coarsen_scheme == COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_DEGREE_SCALED) |
1076 | maximal_independent_edge_set_heavest_edge_pernode_scaled(A, ctrl->randomize, &matching, &nmatch); |
1077 | nc = nmatch; |
1078 | if ((ctrl->coarsen_mode == COARSEN_MODE_GENTLE && nc > ctrl->min_coarsen_factor*n) || nc == n || nc < ctrl->minsize) { |
1079 | #ifdef DEBUG_PRINT |
1080 | if (Verbose) |
1081 | fprintf(stderr, "nc = %d, nf = %d, minsz = %d, coarsen_factor = %f coarsening stops\n" ,nc, n, ctrl->minsize, ctrl->min_coarsen_factor); |
1082 | #endif |
1083 | goto RETURN; |
1084 | } |
1085 | irn = N_GNEW(n,int); |
1086 | jcn = N_GNEW(n,int); |
1087 | val = N_GNEW(n,real); |
1088 | nzc = 0; nc = 0; |
1089 | for (i = 0; i < n; i++){ |
1090 | if (matching[i] >= 0){ |
1091 | if (matching[i] == i){ |
1092 | irn[nzc] = i; |
1093 | jcn[nzc] = nc; |
1094 | val[nzc++] = 1.; |
1095 | } else { |
1096 | irn[nzc] = i; |
1097 | jcn[nzc] = nc; |
1098 | val[nzc++] = 1; |
1099 | irn[nzc] = matching[i]; |
1100 | jcn[nzc] = nc; |
1101 | val[nzc++] = 1; |
1102 | matching[matching[i]] = -1; |
1103 | } |
1104 | nc++; |
1105 | matching[i] = -1; |
1106 | } |
1107 | } |
1108 | assert(nc == nmatch); |
1109 | assert(nzc == n); |
1110 | *P = SparseMatrix_from_coordinate_arrays(nzc, n, nc, irn, jcn, (void *) val, MATRIX_TYPE_REAL, sizeof(real)); |
1111 | *R = SparseMatrix_transpose(*P); |
1112 | *cA = SparseMatrix_multiply3(*R, A, *P); |
1113 | /* |
1114 | B = SparseMatrix_multiply(*R, A); |
1115 | if (!B) goto RETURN; |
1116 | *cA = SparseMatrix_multiply(B, *P); |
1117 | */ |
1118 | if (!*cA) goto RETURN; |
1119 | SparseMatrix_multiply_vector(*R, node_wgt, cnode_wgt, FALSE); |
1120 | *R = SparseMatrix_divide_row_by_degree(*R); |
1121 | SparseMatrix_set_symmetric(*cA); |
1122 | SparseMatrix_set_pattern_symmetric(*cA); |
1123 | *cA = SparseMatrix_remove_diagonal(*cA); |
1124 | |
1125 | |
1126 | *cD = DistanceMatrix_restrict_matching(matching, D); |
1127 | *cD=NULL; |
1128 | |
1129 | break; |
1130 | case COARSEN_INDEPENDENT_VERTEX_SET: |
1131 | case COARSEN_INDEPENDENT_VERTEX_SET_RS: |
1132 | if (ctrl->coarsen_scheme == COARSEN_INDEPENDENT_VERTEX_SET){ |
1133 | maximal_independent_vertex_set(A, ctrl->randomize, &vset, &nvset, &nzc); |
1134 | } else { |
1135 | maximal_independent_vertex_set_RS(A, ctrl->randomize, &vset, &nvset, &nzc); |
1136 | } |
1137 | ia = A->ia; |
1138 | ja = A->ja; |
1139 | nc = nvset; |
1140 | if ((ctrl->coarsen_mode == COARSEN_MODE_GENTLE && nc > ctrl->min_coarsen_factor*n) || nc == n || nc < ctrl->minsize) { |
1141 | #ifdef DEBUG_PRINT |
1142 | if (Verbose) |
1143 | fprintf(stderr, "nc = %d, nf = %d, minsz = %d, coarsen_factor = %f coarsening stops\n" ,nc, n, ctrl->minsize, ctrl->min_coarsen_factor); |
1144 | #endif |
1145 | goto RETURN; |
1146 | } |
1147 | irn = N_GNEW(nzc,int); |
1148 | jcn = N_GNEW(nzc,int); |
1149 | val = N_GNEW(nzc,real); |
1150 | nzc = 0; |
1151 | for (i = 0; i < n; i++){ |
1152 | if (vset[i] == MAX_IND_VTX_SET_F){ |
1153 | ncov = 0; |
1154 | for (j = ia[i]; j < ia[i+1]; j++){ |
1155 | if (vset[ja[j]] >= MAX_IND_VTX_SET_C){ |
1156 | ncov++; |
1157 | } |
1158 | } |
1159 | assert(ncov > 0); |
1160 | for (j = ia[i]; j < ia[i+1]; j++){ |
1161 | if (vset[ja[j]] >= MAX_IND_VTX_SET_C){ |
1162 | irn[nzc] = i; |
1163 | jcn[nzc] = vset[ja[j]]; |
1164 | val[nzc++] = 1./(double) ncov; |
1165 | } |
1166 | } |
1167 | } else { |
1168 | assert(vset[i] >= MAX_IND_VTX_SET_C); |
1169 | irn[nzc] = i; |
1170 | jcn[nzc] = vset[i]; |
1171 | val[nzc++] = 1.; |
1172 | } |
1173 | } |
1174 | |
1175 | *P = SparseMatrix_from_coordinate_arrays(nzc, n, nc, irn, jcn, (void *) val, MATRIX_TYPE_REAL, sizeof(real)); |
1176 | *R = SparseMatrix_transpose(*P); |
1177 | *cA = SparseMatrix_multiply3(*R, A, *P); |
1178 | if (!*cA) goto RETURN; |
1179 | SparseMatrix_multiply_vector(*R, node_wgt, cnode_wgt, FALSE); |
1180 | SparseMatrix_set_symmetric(*cA); |
1181 | SparseMatrix_set_pattern_symmetric(*cA); |
1182 | *cA = SparseMatrix_remove_diagonal(*cA); |
1183 | |
1184 | *cD = DistanceMatrix_restrict_filtering(vset, MAX_IND_VTX_SET_C, MAX_IND_VTX_SET_F, D); |
1185 | break; |
1186 | default: |
1187 | goto RETURN; |
1188 | } |
1189 | RETURN: |
1190 | if (matching) FREE(matching); |
1191 | if (vset) FREE(vset); |
1192 | if (irn) FREE(irn); |
1193 | if (jcn) FREE(jcn); |
1194 | if (val) FREE(val); |
1195 | if (B) SparseMatrix_delete(B); |
1196 | |
1197 | if(cluster) FREE(cluster); |
1198 | if(clusterp) FREE(clusterp); |
1199 | } |
1200 | |
1201 | void Multilevel_coarsen(SparseMatrix A, SparseMatrix *cA, SparseMatrix D, SparseMatrix *cD, real *node_wgt, real **cnode_wgt, |
1202 | SparseMatrix *P, SparseMatrix *R, Multilevel_control ctrl, int *coarsen_scheme_used){ |
1203 | SparseMatrix cA0 = A, cD0 = NULL, P0 = NULL, R0 = NULL, M; |
1204 | real *cnode_wgt0 = NULL; |
1205 | int nc = 0, n; |
1206 | |
1207 | *P = NULL; *R = NULL; *cA = NULL; *cnode_wgt = NULL, *cD = NULL; |
1208 | |
1209 | n = A->n; |
1210 | |
1211 | do {/* this loop force a sufficient reduction */ |
1212 | node_wgt = cnode_wgt0; |
1213 | Multilevel_coarsen_internal(A, &cA0, D, &cD0, node_wgt, &cnode_wgt0, &P0, &R0, ctrl, coarsen_scheme_used); |
1214 | if (!cA0) return; |
1215 | nc = cA0->n; |
1216 | #ifdef DEBUG_PRINT |
1217 | if (Verbose) fprintf(stderr,"nc=%d n = %d\n" ,nc,n); |
1218 | #endif |
1219 | if (*P){ |
1220 | assert(*R); |
1221 | M = SparseMatrix_multiply(*P, P0); |
1222 | SparseMatrix_delete(*P); |
1223 | SparseMatrix_delete(P0); |
1224 | *P = M; |
1225 | M = SparseMatrix_multiply(R0, *R); |
1226 | SparseMatrix_delete(*R); |
1227 | SparseMatrix_delete(R0); |
1228 | *R = M; |
1229 | } else { |
1230 | *P = P0; |
1231 | *R = R0; |
1232 | } |
1233 | |
1234 | if (*cA) SparseMatrix_delete(*cA); |
1235 | *cA = cA0; |
1236 | if (*cD) SparseMatrix_delete(*cD); |
1237 | *cD = cD0; |
1238 | |
1239 | if (*cnode_wgt) FREE(*cnode_wgt); |
1240 | *cnode_wgt = cnode_wgt0; |
1241 | A = cA0; |
1242 | D = cD0; |
1243 | node_wgt = cnode_wgt0; |
1244 | cnode_wgt0 = NULL; |
1245 | } while (nc > ctrl->min_coarsen_factor*n && ctrl->coarsen_mode == COARSEN_MODE_FORCEFUL); |
1246 | |
1247 | } |
1248 | |
1249 | void print_padding(int n){ |
1250 | int i; |
1251 | for (i = 0; i < n; i++) fputs (" " , stderr); |
1252 | } |
1253 | static Multilevel Multilevel_establish(Multilevel grid, Multilevel_control ctrl){ |
1254 | Multilevel cgrid; |
1255 | int coarsen_scheme_used; |
1256 | real *cnode_weights = NULL; |
1257 | SparseMatrix P, R, A, cA, D, cD; |
1258 | |
1259 | #ifdef DEBUG_PRINT |
1260 | if (Verbose) { |
1261 | print_padding(grid->level); |
1262 | fprintf(stderr, "level -- %d, n = %d, nz = %d nz/n = %f\n" , grid->level, grid->n, grid->A->nz, grid->A->nz/(double) grid->n); |
1263 | } |
1264 | #endif |
1265 | A = grid->A; |
1266 | D = grid->D; |
1267 | if (grid->level >= ctrl->maxlevel - 1) { |
1268 | #ifdef DEBUG_PRINT |
1269 | if (Verbose) { |
1270 | print_padding(grid->level); |
1271 | fprintf(stderr, " maxlevel reached, coarsening stops\n" ); |
1272 | } |
1273 | #endif |
1274 | return grid; |
1275 | } |
1276 | Multilevel_coarsen(A, &cA, D, &cD, grid->node_weights, &cnode_weights, &P, &R, ctrl, &coarsen_scheme_used); |
1277 | if (!cA) return grid; |
1278 | |
1279 | cgrid = Multilevel_init(cA, cD, cnode_weights); |
1280 | grid->next = cgrid; |
1281 | cgrid->coarsen_scheme_used = coarsen_scheme_used; |
1282 | cgrid->level = grid->level + 1; |
1283 | cgrid->n = cA->m; |
1284 | cgrid->A = cA; |
1285 | cgrid->D = cD; |
1286 | cgrid->P = P; |
1287 | grid->R = R; |
1288 | cgrid->prev = grid; |
1289 | cgrid = Multilevel_establish(cgrid, ctrl); |
1290 | return grid; |
1291 | |
1292 | } |
1293 | |
1294 | Multilevel Multilevel_new(SparseMatrix A0, SparseMatrix D0, real *node_weights, Multilevel_control ctrl){ |
1295 | /* A: the weighting matrix. D: the distance matrix, could be NULL. If not null, the two matrices must have the same sparsity pattern */ |
1296 | Multilevel grid; |
1297 | SparseMatrix A = A0, D = D0; |
1298 | |
1299 | if (!SparseMatrix_is_symmetric(A, FALSE) || A->type != MATRIX_TYPE_REAL){ |
1300 | A = SparseMatrix_get_real_adjacency_matrix_symmetrized(A); |
1301 | } |
1302 | if (D && (!SparseMatrix_is_symmetric(D, FALSE) || D->type != MATRIX_TYPE_REAL)){ |
1303 | D = SparseMatrix_symmetrize_nodiag(D, FALSE); |
1304 | } |
1305 | grid = Multilevel_init(A, D, node_weights); |
1306 | grid = Multilevel_establish(grid, ctrl); |
1307 | if (A != A0) grid->delete_top_level_A = TRUE;/* be sure to clean up later */ |
1308 | return grid; |
1309 | } |
1310 | |
1311 | |
1312 | Multilevel Multilevel_get_coarsest(Multilevel grid){ |
1313 | while (grid->next){ |
1314 | grid = grid->next; |
1315 | } |
1316 | return grid; |
1317 | } |
1318 | |
1319 | |