| 1 | /* $Id$Revision: */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | #include "config.h" |
| 15 | |
| 16 | #include "SparseMatrix.h" |
| 17 | #include "spring_electrical.h" |
| 18 | #include "QuadTree.h" |
| 19 | #include "Multilevel.h" |
| 20 | #include "post_process.h" |
| 21 | #include "overlap.h" |
| 22 | #include "types.h" |
| 23 | #include "memory.h" |
| 24 | #include "arith.h" |
| 25 | #include "logic.h" |
| 26 | #include "math.h" |
| 27 | #include "globals.h" |
| 28 | #include <string.h> |
| 29 | #include <time.h> |
| 30 | |
| 31 | #define PI M_PI |
| 32 | |
| 33 | spring_electrical_control spring_electrical_control_new(){ |
| 34 | spring_electrical_control ctrl; |
| 35 | ctrl = MALLOC(sizeof(struct spring_electrical_control_struct)); |
| 36 | ctrl->p = AUTOP;/*a negativve number default to -1. repulsive force = dist^p */ |
| 37 | ctrl->q = 1;/*a positive number default to 1. Only apply to maxent. |
| 38 | attractive force = dist^q. Stress energy = (||x_i-x_j||-d_ij)^{q+1} */ |
| 39 | ctrl->random_start = TRUE;/* whether to apply SE from a random layout, or from exisiting layout */ |
| 40 | ctrl->K = -1;/* the natural distance. If K < 0, K will be set to the average distance of an edge */ |
| 41 | ctrl->C = 0.2;/* another parameter. f_a(i,j) = C*dist(i,j)^2/K * d_ij, f_r(i,j) = K^(3-p)/dist(i,j)^(-p). By default C = 0.2. */ |
| 42 | ctrl->multilevels = FALSE;/* if <=1, single level */ |
| 43 | |
| 44 | //ctrl->multilevel_coarsen_scheme = COARSEN_INDEPENDENT_EDGE_SET; |
| 45 | //ctrl->multilevel_coarsen_mode = COARSEN_MODE_GENTLE; |
| 46 | |
| 47 | ctrl->multilevel_coarsen_scheme = COARSEN_INDEPENDENT_EDGE_SET_HEAVEST_EDGE_PERNODE_SUPERNODES_FIRST; /* pass on to Multilevel_control->coarsen_scheme */ |
| 48 | ctrl->multilevel_coarsen_mode = COARSEN_MODE_FORCEFUL;/*alternative: COARSEN_MODE_GENTLE. pass on to Multilevel_control->coarsen_mode */ |
| 49 | |
| 50 | |
| 51 | ctrl->quadtree_size = 45;/* cut off size above which quadtree approximation is used */ |
| 52 | ctrl->max_qtree_level = 10;/* max level of quadtree */ |
| 53 | ctrl->bh = 0.6;/* Barnes-Hutt constant, if width(snode)/dist[i,snode] < bh, treat snode as a supernode.*/ |
| 54 | ctrl->tol = 0.001;/* minimum different between two subsequence config before terminating. ||x-xold||_infinity < tol/K */ |
| 55 | ctrl->maxiter = 500; |
| 56 | ctrl->cool = 0.90;/* default 0.9 */ |
| 57 | ctrl->step = 0.1; |
| 58 | ctrl->adaptive_cooling = TRUE; |
| 59 | ctrl->random_seed = 123; |
| 60 | ctrl->beautify_leaves = FALSE; |
| 61 | ctrl->use_node_weights = FALSE; |
| 62 | ctrl->smoothing = SMOOTHING_NONE; |
| 63 | ctrl->overlap = 0; |
| 64 | ctrl->do_shrinking = 1; |
| 65 | ctrl->tscheme = QUAD_TREE_HYBRID; |
| 66 | ctrl->method = METHOD_SPRING_ELECTRICAL; |
| 67 | ctrl->initial_scaling = -4; |
| 68 | ctrl->rotation = 0.; |
| 69 | ctrl->edge_labeling_scheme = 0; |
| 70 | return ctrl; |
| 71 | } |
| 72 | |
| 73 | void spring_electrical_control_delete(spring_electrical_control ctrl){ |
| 74 | FREE(ctrl); |
| 75 | } |
| 76 | |
| 77 | static char* smoothings[] = { |
| 78 | "NONE" , "STRESS_MAJORIZATION_GRAPH_DIST" , "STRESS_MAJORIZATION_AVG_DIST" , "STRESS_MAJORIZATION_POWER_DIST" , "SPRING" , "TRIANGLE" , "RNG" |
| 79 | }; |
| 80 | |
| 81 | static char* tschemes[] = { |
| 82 | "NONE" , "NORMAL" , "FAST" , "HYBRID" |
| 83 | }; |
| 84 | |
| 85 | static char* methods[] = { |
| 86 | "SPRING_ELECTRICAL" , "SPRING_MAXENT" , "STRESS_MAXENT" , "STRESS_APPROX" , "STRESS" , "UNIFORM_STRESS" , "FULL_STRESS" , "NONE" |
| 87 | }; |
| 88 | |
| 89 | void spring_electrical_control_print(spring_electrical_control ctrl){ |
| 90 | fprintf (stderr, "spring_electrical_control:\n" ); |
| 91 | fprintf (stderr, " repulsive and attractive exponents: %.03f %.03f\n" , ctrl->p, ctrl->q); |
| 92 | fprintf (stderr, " random start %d seed %d\n" , ctrl->random_start, ctrl->random_seed); |
| 93 | fprintf (stderr, " K : %.03f C : %.03f\n" , ctrl->K, ctrl->C); |
| 94 | fprintf (stderr, " max levels %d coarsen_scheme %d coarsen_node %d\n" , ctrl->multilevels, |
| 95 | ctrl->multilevel_coarsen_scheme,ctrl->multilevel_coarsen_mode); |
| 96 | fprintf (stderr, " quadtree size %d max_level %d\n" , ctrl->quadtree_size, ctrl->max_qtree_level); |
| 97 | fprintf (stderr, " Barnes-Hutt constant %.03f tolerance %.03f maxiter %d\n" , ctrl->bh, ctrl->tol, ctrl->maxiter); |
| 98 | fprintf (stderr, " cooling %.03f step size %.03f adaptive %d\n" , ctrl->cool, ctrl->step, ctrl->adaptive_cooling); |
| 99 | fprintf (stderr, " beautify_leaves %d node weights %d rotation %.03f\n" , |
| 100 | ctrl->beautify_leaves, ctrl->use_node_weights, ctrl->rotation); |
| 101 | fprintf (stderr, " smoothing %s overlap %d initial_scaling %.03f do_shrinking %d\n" , |
| 102 | smoothings[ctrl->smoothing], ctrl->overlap, ctrl->initial_scaling, ctrl->do_shrinking); |
| 103 | fprintf (stderr, " octree scheme %s method %s\n" , tschemes[ctrl->tscheme], methods[ctrl->method]); |
| 104 | fprintf (stderr, " edge_labeling_scheme %d\n" , ctrl->edge_labeling_scheme); |
| 105 | } |
| 106 | |
| 107 | void oned_optimizer_delete(oned_optimizer opt){ |
| 108 | FREE(opt); |
| 109 | } |
| 110 | |
| 111 | oned_optimizer oned_optimizer_new(int i){ |
| 112 | oned_optimizer opt; |
| 113 | opt = MALLOC(sizeof(struct oned_optimizer_struct)); |
| 114 | opt->i = i; |
| 115 | opt->direction = OPT_INIT; |
| 116 | return opt; |
| 117 | } |
| 118 | |
| 119 | void oned_optimizer_train(oned_optimizer opt, real work){ |
| 120 | int i = opt->i; |
| 121 | |
| 122 | assert(i >= 0); |
| 123 | opt->work[i] = work; |
| 124 | if (opt->direction == OPT_INIT){ |
| 125 | if (opt->i == MAX_I){ |
| 126 | opt->direction = OPT_DOWN; |
| 127 | opt->i = opt->i - 1; |
| 128 | } else { |
| 129 | opt->direction = OPT_UP; |
| 130 | opt->i = MIN(MAX_I, opt->i + 1); |
| 131 | } |
| 132 | } else if (opt->direction == OPT_UP){ |
| 133 | /* fprintf(stderr, "{current_level, prev_level} = {%d,%d}, {work, work_prev} = {%f,%f}",i,i-1,opt->work[i], opt->work[i-1]);*/ |
| 134 | assert(i >= 1); |
| 135 | if (opt->work[i] < opt->work[i-1] && opt->i < MAX_I){ |
| 136 | /* fprintf(stderr, "keep going up to level %d\n",opt->i+1);*/ |
| 137 | opt->i = MIN(MAX_I, opt->i + 1); |
| 138 | } else { |
| 139 | /* fprintf(stderr, "going down to level %d\n",opt->i-1);*/ |
| 140 | (opt->i)--; |
| 141 | opt->direction = OPT_DOWN; |
| 142 | } |
| 143 | } else { |
| 144 | assert(i < MAX_I); |
| 145 | /* fprintf(stderr, "{current_level, prev_level} = {%d,%d}, {work, work_prev} = {%f,%f}",i,i+1,opt->work[i], opt->work[i+1]);*/ |
| 146 | if (opt->work[i] < opt->work[i+1] && opt->i > 0){ |
| 147 | /* fprintf(stderr, "keep going down to level %d\n",opt->i-1);*/ |
| 148 | opt->i = MAX(0, opt->i-1); |
| 149 | } else { |
| 150 | /* fprintf(stderr, "keep up to level %d\n",opt->i+1);*/ |
| 151 | (opt->i)++; |
| 152 | opt->direction = OPT_UP; |
| 153 | } |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | int oned_optimizer_get(oned_optimizer opt){ |
| 158 | return opt->i; |
| 159 | } |
| 160 | |
| 161 | |
| 162 | real average_edge_length(SparseMatrix A, int dim, real *coord){ |
| 163 | real dist = 0, d; |
| 164 | int *ia = A->ia, *ja = A->ja, i, j, k; |
| 165 | assert(SparseMatrix_is_symmetric(A, TRUE)); |
| 166 | |
| 167 | if (ia[A->m] == 0) return 1; |
| 168 | for (i = 0; i < A->m; i++){ |
| 169 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 170 | d = 0; |
| 171 | for (k = 0; k < dim; k++){ |
| 172 | d += (coord[dim*i+k] - coord[dim*ja[j]])*(coord[dim*i+k] - coord[dim*ja[j]]); |
| 173 | } |
| 174 | dist += sqrt(d); |
| 175 | } |
| 176 | } |
| 177 | return dist/ia[A->m]; |
| 178 | } |
| 179 | |
| 180 | #ifdef ENERGY |
| 181 | static real spring_electrical_energy(int dim, SparseMatrix A, real *x, real p, real CRK, real KP){ |
| 182 | /* 1. Grad[||x-y||^k,x] = k||x-y||^(k-1)*0.5*(x-y)/||x-y|| = k/2*||x-y||^(k-2) (x-y) |
| 183 | which should equal to -force (force = -gradient), |
| 184 | hence energy for force ||x-y||^m (y-x) is ||x-y||^(m+2)*2/(m+2) where m != 2 |
| 185 | 2. Grad[Log[||x-y||],x] = 1/||x-y||*0.5*(x-y)/||x-y|| = 0.5*(x-y)/||x-y||^2, |
| 186 | hence the energy to give force ||x-y||^-2 (x-y) is -2*Log[||x-y||] |
| 187 | |
| 188 | */ |
| 189 | int i, j, k, *ia = A->ia, *ja = A->ja, n = A->m; |
| 190 | real energy = 0, dist; |
| 191 | |
| 192 | for (i = 0; i < n; i++){ |
| 193 | /* attractive force C^((2-p)/3) ||x_i-x_j||/K * (x_j - x_i) */ |
| 194 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 195 | if (ja[j] == i) continue; |
| 196 | dist = distance(x, dim, i, ja[j]); |
| 197 | energy += CRK*pow(dist, 3.)*2./3.; |
| 198 | } |
| 199 | |
| 200 | /* repulsive force K^(1 - p)/||x_i-x_j||^(1 - p) (x_i - x_j) */ |
| 201 | for (j = 0; j < n; j++){ |
| 202 | if (j == i) continue; |
| 203 | dist = distance_cropped(x, dim, i, j); |
| 204 | for (k = 0; k < dim; k++){ |
| 205 | if (p == -1){ |
| 206 | energy += -KP*2*log(dist); |
| 207 | } else { |
| 208 | energy += -KP*pow(dist,p+1)*2/(p+1); |
| 209 | } |
| 210 | } |
| 211 | } |
| 212 | } |
| 213 | return energy; |
| 214 | } |
| 215 | |
| 216 | #endif |
| 217 | |
| 218 | void export_embedding(FILE *fp, int dim, SparseMatrix A, real *x, real *width){ |
| 219 | int i, j, k, *ia=A->ia, *ja = A->ja; |
| 220 | int ne = 0; |
| 221 | real xsize, ysize, xmin, xmax, ymin, ymax; |
| 222 | |
| 223 | xmax = xmin = x[0]; |
| 224 | ymax = ymin = x[1]; |
| 225 | for (i = 0; i < A->m; i++){ |
| 226 | xmax = MAX(xmax, x[i*dim]); |
| 227 | xmin = MIN(xmin, x[i*dim]); |
| 228 | ymax = MAX(ymax, x[i*dim+1]); |
| 229 | ymin = MIN(ymin, x[i*dim+1]); |
| 230 | } |
| 231 | xsize = xmax-xmin; |
| 232 | ysize = ymax-ymin; |
| 233 | xsize = MAX(xsize, ysize); |
| 234 | |
| 235 | if (dim == 2){ |
| 236 | fprintf(fp,"Graphics[{GrayLevel[0.5],Line[{" ); |
| 237 | } else { |
| 238 | fprintf(fp,"Graphics3D[{GrayLevel[0.5],Line[{" ); |
| 239 | } |
| 240 | for (i = 0; i < A->m; i++){ |
| 241 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 242 | if (ja[j] == i) continue; |
| 243 | ne++; |
| 244 | if (ne > 1) fprintf(fp, "," ); |
| 245 | fprintf(fp, "{{" ); |
| 246 | for (k = 0; k < dim; k++) { |
| 247 | if (k > 0) fprintf(fp,"," ); |
| 248 | fprintf(fp, "%f" ,x[i*dim+k]); |
| 249 | } |
| 250 | fprintf(fp, "},{" ); |
| 251 | for (k = 0; k < dim; k++) { |
| 252 | if (k > 0) fprintf(fp,"," ); |
| 253 | fprintf(fp, "%f" ,x[ja[j]*dim+k]); |
| 254 | } |
| 255 | fprintf(fp, "}}" ); |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | fprintf(fp,"}],Hue[%f]" ,/*drand()*/1.); |
| 260 | |
| 261 | if (width && dim == 2){ |
| 262 | for (i = 0; i < A->m; i++){ |
| 263 | if (i >= 0) fprintf(fp,"," ); |
| 264 | fprintf(fp,"(*width={%f,%f}, x = {%f,%f}*){GrayLevel[.5,.5],Rectangle[{%f,%f},{%f,%f}]}" , width[i*dim], width[i*dim+1], x[i*dim], x[i*dim + 1], |
| 265 | x[i*dim] - width[i*dim], x[i*dim+1] - width[i*dim+1], |
| 266 | x[i*dim] + width[i*dim], x[i*dim+1] + width[i*dim+1]); |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | if (A->m < 100){ |
| 271 | for (i = 0; i < A->m; i++){ |
| 272 | if (i >= 0) fprintf(fp,"," ); |
| 273 | fprintf(fp,"Text[%d,{" ,i+1); |
| 274 | for (k = 0; k < dim; k++) { |
| 275 | if (k > 0) fprintf(fp,"," ); |
| 276 | fprintf(fp, "%f" ,x[i*dim+k]); |
| 277 | } |
| 278 | fprintf(fp,"}]" ); |
| 279 | } |
| 280 | } else if (A->m < 500000){ |
| 281 | fprintf(fp, ", Point[{" ); |
| 282 | for (i = 0; i < A->m; i++){ |
| 283 | if (i > 0) fprintf(fp,"," ); |
| 284 | fprintf(fp,"{" ); |
| 285 | for (k = 0; k < dim; k++) { |
| 286 | if (k > 0) fprintf(fp,"," ); |
| 287 | fprintf(fp, "%f" ,x[i*dim+k]); |
| 288 | } |
| 289 | fprintf(fp,"}" ); |
| 290 | } |
| 291 | fprintf(fp, "}]" ); |
| 292 | } else { |
| 293 | fprintf(fp,"{}" ); |
| 294 | } |
| 295 | |
| 296 | |
| 297 | fprintf(fp,"},ImageSize->%f]\n" , 2*xsize/2); |
| 298 | |
| 299 | } |
| 300 | |
| 301 | static real update_step(int adaptive_cooling, real step, real Fnorm, real Fnorm0, real cool){ |
| 302 | |
| 303 | if (!adaptive_cooling) { |
| 304 | return cool*step; |
| 305 | } |
| 306 | if (Fnorm >= Fnorm0){ |
| 307 | step = cool*step; |
| 308 | } else if (Fnorm > 0.95*Fnorm0){ |
| 309 | // step = step; |
| 310 | } else { |
| 311 | step = 0.99*step/cool; |
| 312 | } |
| 313 | return step; |
| 314 | } |
| 315 | |
| 316 | |
| 317 | #define node_degree(i) (ia[(i)+1] - ia[(i)]) |
| 318 | |
| 319 | void check_real_array_size(real **a, int len, int *lenmax){ |
| 320 | if (len >= *lenmax){ |
| 321 | *lenmax = len + MAX((int) 0.2*len, 10); |
| 322 | *a = REALLOC(*a, sizeof(real)*(*lenmax)); |
| 323 | } |
| 324 | |
| 325 | } |
| 326 | void check_int_array_size(int **a, int len, int *lenmax){ |
| 327 | if (len >= *lenmax){ |
| 328 | *lenmax = len + MAX((int) 0.2*len, 10); |
| 329 | *a = REALLOC(*a, sizeof(int)*(*lenmax)); |
| 330 | } |
| 331 | |
| 332 | } |
| 333 | |
| 334 | real get_angle(real *x, int dim, int i, int j){ |
| 335 | /* between [0, 2Pi)*/ |
| 336 | int k; |
| 337 | real y[2], res; |
| 338 | real eps = 0.00001; |
| 339 | for (k = 0; k < 2; k++){ |
| 340 | y[k] = x[j*dim+k] - x[i*dim+k]; |
| 341 | } |
| 342 | if (ABS(y[0]) <= ABS(y[1])*eps){ |
| 343 | if (y[1] > 0) return 0.5*PI; |
| 344 | return 1.5*PI; |
| 345 | } |
| 346 | res = atan(y[1]/y[0]); |
| 347 | if (y[0] > 0){ |
| 348 | if (y[1] < 0) res = 2*PI+res; |
| 349 | } else if (y[0] < 0){ |
| 350 | res = res + PI; |
| 351 | } |
| 352 | return res; |
| 353 | } |
| 354 | |
| 355 | int comp_real(const void *x, const void *y){ |
| 356 | real *xx = (real*) x; |
| 357 | real *yy = (real*) y; |
| 358 | |
| 359 | if (*xx > *yy){ |
| 360 | return 1; |
| 361 | } else if (*xx < *yy){ |
| 362 | return -1; |
| 363 | } |
| 364 | return 0; |
| 365 | } |
| 366 | static void sort_real(int n, real *a){ |
| 367 | qsort(a, n, sizeof(real), comp_real); |
| 368 | } |
| 369 | |
| 370 | |
| 371 | static void set_leaves(real *x, int dim, real dist, real ang, int i, int j){ |
| 372 | x[dim*j] = cos(ang)*dist + x[dim*i]; |
| 373 | x[dim*j+1] = sin(ang)*dist + x[dim*i+1]; |
| 374 | } |
| 375 | |
| 376 | static void beautify_leaves(int dim, SparseMatrix A, real *x){ |
| 377 | int m = A->m, i, j, *ia = A->ia, *ja = A->ja, k; |
| 378 | int *checked, p; |
| 379 | real dist; |
| 380 | int nleaves, nleaves_max = 10; |
| 381 | real *angles, maxang, ang1 = 0, ang2 = 0, pad, step; |
| 382 | int *leaves, nangles_max = 10, nangles; |
| 383 | |
| 384 | assert(!SparseMatrix_has_diagonal(A)); |
| 385 | |
| 386 | checked = MALLOC(sizeof(int)*m); |
| 387 | angles = MALLOC(sizeof(real)*nangles_max); |
| 388 | leaves = MALLOC(sizeof(int)*nleaves_max); |
| 389 | |
| 390 | |
| 391 | for (i = 0; i < m; i++) checked[i] = FALSE; |
| 392 | |
| 393 | for (i = 0; i < m; i++){ |
| 394 | if (ia[i+1] - ia[i] != 1) continue; |
| 395 | if (checked[i]) continue; |
| 396 | p = ja[ia[i]]; |
| 397 | if (!checked[p]){ |
| 398 | checked[p] = TRUE; |
| 399 | dist = 0; nleaves = 0; nangles = 0; |
| 400 | for (j = ia[p]; j < ia[p+1]; j++){ |
| 401 | if (node_degree(ja[j]) == 1){ |
| 402 | checked[ja[j]] = TRUE; |
| 403 | check_int_array_size(&leaves, nleaves, &nleaves_max); |
| 404 | dist += distance(x, dim, p, ja[j]); |
| 405 | leaves[nleaves] = ja[j]; |
| 406 | nleaves++; |
| 407 | } else { |
| 408 | check_real_array_size(&angles, nangles, &nangles_max); |
| 409 | angles[nangles++] = get_angle(x, dim, p, ja[j]); |
| 410 | } |
| 411 | } |
| 412 | assert(nleaves > 0); |
| 413 | dist /= nleaves; |
| 414 | if (nangles > 0){ |
| 415 | sort_real(nangles, angles); |
| 416 | maxang = 0; |
| 417 | for (k = 0; k < nangles - 1; k++){ |
| 418 | if (angles[k+1] - angles[k] > maxang){ |
| 419 | maxang = angles[k+1] - angles[k]; |
| 420 | ang1 = angles[k]; ang2 = angles[k+1]; |
| 421 | } |
| 422 | } |
| 423 | if (2*PI + angles[0] - angles[nangles - 1] > maxang){ |
| 424 | maxang = 2*PI + angles[0] - angles[nangles - 1]; |
| 425 | ang1 = angles[nangles - 1]; |
| 426 | ang2 = 2*PI + angles[0]; |
| 427 | } |
| 428 | } else { |
| 429 | ang1 = 0; ang2 = 2*PI; maxang = 2*PI; |
| 430 | } |
| 431 | pad = MAX(maxang - PI*0.166667*(nleaves-1), 0)*0.5; |
| 432 | ang1 += pad*0.95; |
| 433 | ang2 -= pad*0.95; |
| 434 | ang1 = 0; ang2 = 2*PI; maxang = 2*PI; |
| 435 | assert(ang2 >= ang1); |
| 436 | step = 0.; |
| 437 | if (nleaves > 1) step = (ang2 - ang1)/(nleaves - 1); |
| 438 | for (i = 0; i < nleaves; i++) { |
| 439 | set_leaves(x, dim, dist, ang1, p, leaves[i]); |
| 440 | ang1 += step; |
| 441 | } |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | |
| 446 | FREE(checked); |
| 447 | FREE(angles); |
| 448 | FREE(leaves); |
| 449 | } |
| 450 | |
| 451 | void force_print(FILE *fp, int n, int dim, real *x, real *force){ |
| 452 | int i, k; |
| 453 | |
| 454 | fprintf(fp,"Graphics[{" ); |
| 455 | for (i = 0; i < n; i++){ |
| 456 | if (i > 0) fprintf(fp, "," ); |
| 457 | fprintf(fp, "Arrow[{{" ); |
| 458 | for (k = 0; k < dim; k++){ |
| 459 | if (k > 0) fprintf(fp, "," ); |
| 460 | fprintf(fp, "%f" ,x[i*dim+k]); |
| 461 | } |
| 462 | fprintf(fp, "},{" ); |
| 463 | for (k = 0; k < dim; k++){ |
| 464 | if (k > 0) fprintf(fp, "," ); |
| 465 | fprintf(fp, "%f" ,x[i*dim+k]+0.5*force[i*dim+k]); |
| 466 | } |
| 467 | fprintf(fp, "}}]" ); |
| 468 | } |
| 469 | fprintf(fp,"," ); |
| 470 | for (i = 0; i < n; i++){ |
| 471 | if (i > 0) fprintf(fp, "," ); |
| 472 | fprintf(fp, "Tooltip[Point[{" ); |
| 473 | for (k = 0; k < dim; k++){ |
| 474 | if (k > 0) fprintf(fp, "," ); |
| 475 | fprintf(fp, "%f" ,x[i*dim+k]); |
| 476 | } |
| 477 | fprintf(fp, "}],%d]" ,i); |
| 478 | } |
| 479 | |
| 480 | |
| 481 | |
| 482 | |
| 483 | fprintf(fp,"}]\n" ); |
| 484 | |
| 485 | } |
| 486 | |
| 487 | |
| 488 | void spring_electrical_embedding_fast(int dim, SparseMatrix A0, spring_electrical_control ctrl, real *node_weights, real *x, int *flag){ |
| 489 | /* x is a point to a 1D array, x[i*dim+j] gives the coordinate of the i-th node at dimension j. */ |
| 490 | SparseMatrix A = A0; |
| 491 | int m, n; |
| 492 | int i, j, k; |
| 493 | real p = ctrl->p, K = ctrl->K, C = ctrl->C, CRK, tol = ctrl->tol, maxiter = ctrl->maxiter, cool = ctrl->cool, step = ctrl->step, KP; |
| 494 | int *ia = NULL, *ja = NULL; |
| 495 | real *xold = NULL; |
| 496 | real *f = NULL, dist, F, Fnorm = 0, Fnorm0; |
| 497 | int iter = 0; |
| 498 | int adaptive_cooling = ctrl->adaptive_cooling; |
| 499 | QuadTree qt = NULL; |
| 500 | real counts[4], *force = NULL; |
| 501 | #ifdef TIME |
| 502 | clock_t start, end, start0; |
| 503 | real qtree_cpu = 0, qtree_cpu0 = 0, qtree_new_cpu = 0, qtree_new_cpu0 = 0; |
| 504 | real total_cpu = 0; |
| 505 | start0 = clock(); |
| 506 | #endif |
| 507 | int max_qtree_level = ctrl->max_qtree_level; |
| 508 | oned_optimizer qtree_level_optimizer = NULL; |
| 509 | |
| 510 | if (!A || maxiter <= 0) return; |
| 511 | |
| 512 | m = A->m, n = A->n; |
| 513 | if (n <= 0 || dim <= 0) return; |
| 514 | |
| 515 | qtree_level_optimizer = oned_optimizer_new(max_qtree_level); |
| 516 | |
| 517 | *flag = 0; |
| 518 | if (m != n) { |
| 519 | *flag = ERROR_NOT_SQUARE_MATRIX; |
| 520 | goto RETURN; |
| 521 | } |
| 522 | assert(A->format == FORMAT_CSR); |
| 523 | A = SparseMatrix_symmetrize(A, TRUE); |
| 524 | ia = A->ia; |
| 525 | ja = A->ja; |
| 526 | |
| 527 | if (ctrl->random_start){ |
| 528 | srand(ctrl->random_seed); |
| 529 | for (i = 0; i < dim*n; i++) x[i] = drand(); |
| 530 | } |
| 531 | if (K < 0){ |
| 532 | ctrl->K = K = average_edge_length(A, dim, x); |
| 533 | } |
| 534 | if (C < 0) ctrl->C = C = 0.2; |
| 535 | if (p >= 0) ctrl->p = p = -1; |
| 536 | KP = pow(K, 1 - p); |
| 537 | CRK = pow(C, (2.-p)/3.)/K; |
| 538 | |
| 539 | xold = MALLOC(sizeof(real)*dim*n); |
| 540 | force = MALLOC(sizeof(real)*dim*n); |
| 541 | |
| 542 | do { |
| 543 | #ifdef TIME |
| 544 | //start2 = clock(); |
| 545 | #endif |
| 546 | |
| 547 | #ifdef GVIEWER |
| 548 | if (Gviewer){ |
| 549 | char *lab; |
| 550 | lab = MALLOC(sizeof(char)*100); |
| 551 | sprintf(lab,"sfdp, iter=%d" , iter); |
| 552 | gviewer_set_label(lab); |
| 553 | gviewer_reset_graph_coord(A, dim, x); |
| 554 | drawScene(); |
| 555 | gviewer_dump_current_frame(); |
| 556 | //if ((adaptive_cooling && iter%100 == 0) || (!adaptive_cooling && iter%10 == 0)) gviewer_dump_current_frame(); |
| 557 | FREE(lab); |
| 558 | } |
| 559 | #endif |
| 560 | |
| 561 | iter++; |
| 562 | xold = MEMCPY(xold, x, sizeof(real)*dim*n); |
| 563 | Fnorm0 = Fnorm; |
| 564 | Fnorm = 0.; |
| 565 | |
| 566 | max_qtree_level = oned_optimizer_get(qtree_level_optimizer); |
| 567 | |
| 568 | #ifdef TIME |
| 569 | start = clock(); |
| 570 | #endif |
| 571 | if (ctrl->use_node_weights){ |
| 572 | qt = QuadTree_new_from_point_list(dim, n, max_qtree_level, x, node_weights); |
| 573 | } else { |
| 574 | qt = QuadTree_new_from_point_list(dim, n, max_qtree_level, x, NULL); |
| 575 | } |
| 576 | |
| 577 | #ifdef TIME |
| 578 | qtree_new_cpu += ((real) (clock() - start))/CLOCKS_PER_SEC; |
| 579 | #endif |
| 580 | |
| 581 | /* repulsive force */ |
| 582 | #ifdef TIME |
| 583 | start = clock(); |
| 584 | #endif |
| 585 | |
| 586 | QuadTree_get_repulsive_force(qt, force, x, ctrl->bh, p, KP, counts, flag); |
| 587 | |
| 588 | assert(!(*flag)); |
| 589 | |
| 590 | #ifdef TIME |
| 591 | end = clock(); |
| 592 | qtree_cpu += ((real) (end - start)) / CLOCKS_PER_SEC; |
| 593 | #endif |
| 594 | |
| 595 | /* attractive force C^((2-p)/3) ||x_i-x_j||/K * (x_j - x_i) */ |
| 596 | for (i = 0; i < n; i++){ |
| 597 | f = &(force[i*dim]); |
| 598 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 599 | if (ja[j] == i) continue; |
| 600 | dist = distance(x, dim, i, ja[j]); |
| 601 | for (k = 0; k < dim; k++){ |
| 602 | f[k] -= CRK*(x[i*dim+k] - x[ja[j]*dim+k])*dist; |
| 603 | } |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | |
| 608 | /* move */ |
| 609 | for (i = 0; i < n; i++){ |
| 610 | f = &(force[i*dim]); |
| 611 | F = 0.; |
| 612 | for (k = 0; k < dim; k++) F += f[k]*f[k]; |
| 613 | F = sqrt(F); |
| 614 | Fnorm += F; |
| 615 | if (F > 0) for (k = 0; k < dim; k++) f[k] /= F; |
| 616 | for (k = 0; k < dim; k++) x[i*dim+k] += step*f[k]; |
| 617 | }/* done vertex i */ |
| 618 | |
| 619 | |
| 620 | |
| 621 | if (qt) { |
| 622 | #ifdef TIME |
| 623 | start = clock(); |
| 624 | #endif |
| 625 | QuadTree_delete(qt); |
| 626 | #ifdef TIME |
| 627 | end = clock(); |
| 628 | qtree_new_cpu += ((real) (end - start)) / CLOCKS_PER_SEC; |
| 629 | #endif |
| 630 | |
| 631 | #ifdef TIME |
| 632 | qtree_cpu0 = qtree_cpu - qtree_cpu0; |
| 633 | qtree_new_cpu0 = qtree_new_cpu - qtree_new_cpu0; |
| 634 | /* if (Verbose) fprintf(stderr, "\r iter=%d cpu=%.2f, quadtree=%.2f quad_force=%.2f other=%.2f counts={%.2f,%.2f,%.2f} step=%f Fnorm=%f nz=%d K=%f qtree_lev = %d", |
| 635 | iter, ((real) (clock() - start2)) / CLOCKS_PER_SEC, qtree_new_cpu0, |
| 636 | qtree_cpu0,((real) (clock() - start2))/CLOCKS_PER_SEC - qtree_cpu0 - qtree_new_cpu0, |
| 637 | counts[0], counts[1], counts[2], |
| 638 | step, Fnorm, A->nz,K,max_qtree_level); |
| 639 | */ |
| 640 | qtree_cpu0 = qtree_cpu; |
| 641 | qtree_new_cpu0 = qtree_new_cpu; |
| 642 | #endif |
| 643 | oned_optimizer_train(qtree_level_optimizer, counts[0]+0.85*counts[1]+3.3*counts[2]); |
| 644 | } else { |
| 645 | if (Verbose) { |
| 646 | fprintf(stderr, "\r iter = %d, step = %f Fnorm = %f nz = %d K = %f " ,iter, step, Fnorm, A->nz,K); |
| 647 | #ifdef ENERGY |
| 648 | fprintf(stderr, "energy = %f\n" ,spring_electrical_energy(dim, A, x, p, CRK, KP)); |
| 649 | #endif |
| 650 | } |
| 651 | } |
| 652 | |
| 653 | step = update_step(adaptive_cooling, step, Fnorm, Fnorm0, cool); |
| 654 | } while (step > tol && iter < maxiter); |
| 655 | |
| 656 | #ifdef DEBUG_PRINT |
| 657 | if (Verbose && 0) fputs("\n" , stderr); |
| 658 | #endif |
| 659 | |
| 660 | |
| 661 | #ifdef DEBUG_PRINT |
| 662 | if (Verbose) { |
| 663 | fprintf(stderr, "\n iter = %d, step = %f Fnorm = %f nz = %d K = %f " ,iter, step, Fnorm, A->nz, K); |
| 664 | } |
| 665 | #endif |
| 666 | |
| 667 | if (ctrl->beautify_leaves) beautify_leaves(dim, A, x); |
| 668 | |
| 669 | #ifdef TIME |
| 670 | total_cpu += ((real) (clock() - start0)) / CLOCKS_PER_SEC; |
| 671 | if (Verbose) fprintf(stderr, "\n time for qtree = %f, qtree_force = %f, total cpu = %f\n" ,qtree_new_cpu, qtree_cpu, total_cpu); |
| 672 | #endif |
| 673 | |
| 674 | |
| 675 | RETURN: |
| 676 | oned_optimizer_delete(qtree_level_optimizer); |
| 677 | ctrl->max_qtree_level = max_qtree_level; |
| 678 | |
| 679 | if (xold) FREE(xold); |
| 680 | if (A != A0) SparseMatrix_delete(A); |
| 681 | if (force) FREE(force); |
| 682 | |
| 683 | } |
| 684 | |
| 685 | |
| 686 | void spring_electrical_embedding_slow(int dim, SparseMatrix A0, spring_electrical_control ctrl, real *node_weights, real *x, int *flag){ |
| 687 | /* a version that does vertex moves in one go, instead of one at a time, use for debugging the fast version. Quadtree is not used. */ |
| 688 | /* x is a point to a 1D array, x[i*dim+j] gives the coordinate of the i-th node at dimension j. */ |
| 689 | SparseMatrix A = A0; |
| 690 | int m, n; |
| 691 | int i, j, k; |
| 692 | real p = ctrl->p, K = ctrl->K, C = ctrl->C, CRK, tol = ctrl->tol, maxiter = ctrl->maxiter, cool = ctrl->cool, step = ctrl->step, KP; |
| 693 | int *ia = NULL, *ja = NULL; |
| 694 | real *xold = NULL; |
| 695 | real *f = NULL, dist, F, Fnorm = 0, Fnorm0; |
| 696 | int iter = 0; |
| 697 | int adaptive_cooling = ctrl->adaptive_cooling; |
| 698 | QuadTree qt = NULL; |
| 699 | int USE_QT = FALSE; |
| 700 | int nsuper = 0, nsupermax = 10; |
| 701 | real *center = NULL, *supernode_wgts = NULL, *distances = NULL, nsuper_avg, counts = 0, counts_avg = 0; |
| 702 | real *force; |
| 703 | #ifdef TIME |
| 704 | clock_t start, end, start0, start2; |
| 705 | real qtree_cpu = 0, qtree_cpu0 = 0; |
| 706 | real total_cpu = 0; |
| 707 | start0 = clock(); |
| 708 | #endif |
| 709 | int max_qtree_level = ctrl->max_qtree_level; |
| 710 | oned_optimizer qtree_level_optimizer = NULL; |
| 711 | |
| 712 | fprintf(stderr,"spring_electrical_embedding_slow" ); |
| 713 | if (!A || maxiter <= 0) return; |
| 714 | |
| 715 | m = A->m, n = A->n; |
| 716 | if (n <= 0 || dim <= 0) return; |
| 717 | force = MALLOC(sizeof(real)*n*dim); |
| 718 | |
| 719 | if (n >= ctrl->quadtree_size) { |
| 720 | USE_QT = TRUE; |
| 721 | qtree_level_optimizer = oned_optimizer_new(max_qtree_level); |
| 722 | center = MALLOC(sizeof(real)*nsupermax*dim); |
| 723 | supernode_wgts = MALLOC(sizeof(real)*nsupermax); |
| 724 | distances = MALLOC(sizeof(real)*nsupermax); |
| 725 | } |
| 726 | USE_QT = FALSE; |
| 727 | *flag = 0; |
| 728 | if (m != n) { |
| 729 | *flag = ERROR_NOT_SQUARE_MATRIX; |
| 730 | goto RETURN; |
| 731 | } |
| 732 | assert(A->format == FORMAT_CSR); |
| 733 | A = SparseMatrix_symmetrize(A, TRUE); |
| 734 | ia = A->ia; |
| 735 | ja = A->ja; |
| 736 | |
| 737 | if (ctrl->random_start){ |
| 738 | srand(ctrl->random_seed); |
| 739 | for (i = 0; i < dim*n; i++) x[i] = drand(); |
| 740 | } |
| 741 | if (K < 0){ |
| 742 | ctrl->K = K = average_edge_length(A, dim, x); |
| 743 | } |
| 744 | if (C < 0) ctrl->C = C = 0.2; |
| 745 | if (p >= 0) ctrl->p = p = -1; |
| 746 | KP = pow(K, 1 - p); |
| 747 | CRK = pow(C, (2.-p)/3.)/K; |
| 748 | |
| 749 | #ifdef DEBUG_0 |
| 750 | { |
| 751 | FILE *f; |
| 752 | char fname[10000]; |
| 753 | strcpy(fname,"/tmp/graph_layout_0_" ); |
| 754 | sprintf(&(fname[strlen(fname)]), "%d" ,n); |
| 755 | f = fopen(fname,"w" ); |
| 756 | export_embedding(f, dim, A, x, NULL); |
| 757 | fclose(f); |
| 758 | } |
| 759 | #endif |
| 760 | |
| 761 | f = MALLOC(sizeof(real)*dim); |
| 762 | xold = MALLOC(sizeof(real)*dim*n); |
| 763 | do { |
| 764 | for (i = 0; i < dim*n; i++) force[i] = 0; |
| 765 | |
| 766 | iter++; |
| 767 | xold = MEMCPY(xold, x, sizeof(real)*dim*n); |
| 768 | Fnorm0 = Fnorm; |
| 769 | Fnorm = 0.; |
| 770 | nsuper_avg = 0; |
| 771 | |
| 772 | if (USE_QT) { |
| 773 | max_qtree_level = oned_optimizer_get(qtree_level_optimizer); |
| 774 | if (ctrl->use_node_weights){ |
| 775 | qt = QuadTree_new_from_point_list(dim, n, max_qtree_level, x, node_weights); |
| 776 | } else { |
| 777 | qt = QuadTree_new_from_point_list(dim, n, max_qtree_level, x, NULL); |
| 778 | } |
| 779 | } |
| 780 | #ifdef TIME |
| 781 | start2 = clock(); |
| 782 | #endif |
| 783 | |
| 784 | |
| 785 | for (i = 0; i < n; i++){ |
| 786 | for (k = 0; k < dim; k++) f[k] = 0.; |
| 787 | /* repulsive force K^(1 - p)/||x_i-x_j||^(1 - p) (x_i - x_j) */ |
| 788 | if (USE_QT){ |
| 789 | #ifdef TIME |
| 790 | start = clock(); |
| 791 | #endif |
| 792 | QuadTree_get_supernodes(qt, ctrl->bh, &(x[dim*i]), i, &nsuper, &nsupermax, |
| 793 | ¢er, &supernode_wgts, &distances, &counts, flag); |
| 794 | #ifdef TIME |
| 795 | end = clock(); |
| 796 | qtree_cpu += ((real) (end - start)) / CLOCKS_PER_SEC; |
| 797 | #endif |
| 798 | counts_avg += counts; |
| 799 | nsuper_avg += nsuper; |
| 800 | if (*flag) goto RETURN; |
| 801 | for (j = 0; j < nsuper; j++){ |
| 802 | dist = MAX(distances[j], MINDIST); |
| 803 | for (k = 0; k < dim; k++){ |
| 804 | if (p == -1){ |
| 805 | f[k] += supernode_wgts[j]*KP*(x[i*dim+k] - center[j*dim+k])/(dist*dist); |
| 806 | } else { |
| 807 | f[k] += supernode_wgts[j]*KP*(x[i*dim+k] - center[j*dim+k])/pow(dist, 1.- p); |
| 808 | } |
| 809 | } |
| 810 | } |
| 811 | } else { |
| 812 | if (ctrl->use_node_weights && node_weights){ |
| 813 | for (j = 0; j < n; j++){ |
| 814 | if (j == i) continue; |
| 815 | dist = distance_cropped(x, dim, i, j); |
| 816 | for (k = 0; k < dim; k++){ |
| 817 | if (p == -1){ |
| 818 | f[k] += node_weights[j]*KP*(x[i*dim+k] - x[j*dim+k])/(dist*dist); |
| 819 | } else { |
| 820 | f[k] += node_weights[j]*KP*(x[i*dim+k] - x[j*dim+k])/pow(dist, 1.- p); |
| 821 | } |
| 822 | } |
| 823 | } |
| 824 | } else { |
| 825 | for (j = 0; j < n; j++){ |
| 826 | if (j == i) continue; |
| 827 | dist = distance_cropped(x, dim, i, j); |
| 828 | for (k = 0; k < dim; k++){ |
| 829 | if (p == -1){ |
| 830 | f[k] += KP*(x[i*dim+k] - x[j*dim+k])/(dist*dist); |
| 831 | } else { |
| 832 | f[k] += KP*(x[i*dim+k] - x[j*dim+k])/pow(dist, 1.- p); |
| 833 | } |
| 834 | } |
| 835 | } |
| 836 | } |
| 837 | } |
| 838 | for (k = 0; k < dim; k++) force[i*dim+k] += f[k]; |
| 839 | } |
| 840 | |
| 841 | |
| 842 | |
| 843 | for (i = 0; i < n; i++){ |
| 844 | for (k = 0; k < dim; k++) f[k] = 0.; |
| 845 | /* attractive force C^((2-p)/3) ||x_i-x_j||/K * (x_j - x_i) */ |
| 846 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 847 | if (ja[j] == i) continue; |
| 848 | dist = distance(x, dim, i, ja[j]); |
| 849 | for (k = 0; k < dim; k++){ |
| 850 | f[k] -= CRK*(x[i*dim+k] - x[ja[j]*dim+k])*dist; |
| 851 | } |
| 852 | } |
| 853 | for (k = 0; k < dim; k++) force[i*dim+k] += f[k]; |
| 854 | } |
| 855 | |
| 856 | |
| 857 | |
| 858 | for (i = 0; i < n; i++){ |
| 859 | /* normalize force */ |
| 860 | for (k = 0; k < dim; k++) f[k] = force[i*dim+k]; |
| 861 | |
| 862 | F = 0.; |
| 863 | for (k = 0; k < dim; k++) F += f[k]*f[k]; |
| 864 | F = sqrt(F); |
| 865 | Fnorm += F; |
| 866 | |
| 867 | if (F > 0) for (k = 0; k < dim; k++) f[k] /= F; |
| 868 | |
| 869 | for (k = 0; k < dim; k++) x[i*dim+k] += step*f[k]; |
| 870 | |
| 871 | }/* done vertex i */ |
| 872 | |
| 873 | if (qt) { |
| 874 | QuadTree_delete(qt); |
| 875 | nsuper_avg /= n; |
| 876 | counts_avg /= n; |
| 877 | #ifdef TIME |
| 878 | qtree_cpu0 = qtree_cpu - qtree_cpu0; |
| 879 | if (Verbose && 0) fprintf(stderr, "\n cpu this outer iter = %f, quadtree time = %f other time = %f\n" ,((real) (clock() - start2)) / CLOCKS_PER_SEC, qtree_cpu0,((real) (clock() - start2))/CLOCKS_PER_SEC - qtree_cpu0); |
| 880 | qtree_cpu0 = qtree_cpu; |
| 881 | #endif |
| 882 | if (Verbose && 0) fprintf(stderr, "nsuper_avg=%f, counts_avg = %f 2*nsuper+counts=%f\n" ,nsuper_avg,counts_avg, 2*nsuper_avg+counts_avg); |
| 883 | oned_optimizer_train(qtree_level_optimizer, 5*nsuper_avg + counts_avg); |
| 884 | } |
| 885 | |
| 886 | #ifdef ENERGY |
| 887 | if (Verbose) { |
| 888 | fprintf(stderr, "\r iter = %d, step = %f Fnorm = %f nsuper = %d nz = %d K = %f " ,iter, step, Fnorm, (int) nsuper_avg,A->nz,K); |
| 889 | fprintf(stderr, "energy = %f\n" ,spring_electrical_energy(dim, A, x, p, CRK, KP)); |
| 890 | } |
| 891 | #endif |
| 892 | |
| 893 | |
| 894 | step = update_step(adaptive_cooling, step, Fnorm, Fnorm0, cool); |
| 895 | } while (step > tol && iter < maxiter); |
| 896 | |
| 897 | #ifdef DEBUG_PRINT |
| 898 | if (Verbose && 0) fputs("\n" , stderr); |
| 899 | #endif |
| 900 | |
| 901 | #ifdef DEBUG_PRINT_0 |
| 902 | { |
| 903 | FILE *f; |
| 904 | char fname[10000]; |
| 905 | strcpy(fname,"/tmp/graph_layout" ); |
| 906 | sprintf(&(fname[strlen(fname)]), "%d" ,n); |
| 907 | f = fopen(fname,"w" ); |
| 908 | export_embedding(f, dim, A, x, NULL); |
| 909 | fclose(f); |
| 910 | } |
| 911 | #endif |
| 912 | |
| 913 | |
| 914 | #ifdef DEBUG_PRINT |
| 915 | if (Verbose) { |
| 916 | if (USE_QT){ |
| 917 | fprintf(stderr, "iter = %d, step = %f Fnorm = %f qt_level = %d nsuper = %d nz = %d K = %f " ,iter, step, Fnorm, max_qtree_level, (int) nsuper_avg,A->nz,K); |
| 918 | } else { |
| 919 | fprintf(stderr, "iter = %d, step = %f Fnorm = %f nsuper = %d nz = %d K = %f " ,iter, step, Fnorm, (int) nsuper_avg,A->nz,K); |
| 920 | } |
| 921 | } |
| 922 | #endif |
| 923 | |
| 924 | if (ctrl->beautify_leaves) beautify_leaves(dim, A, x); |
| 925 | |
| 926 | #ifdef TIME |
| 927 | total_cpu += ((real) (clock() - start0)) / CLOCKS_PER_SEC; |
| 928 | if (Verbose) fprintf(stderr, "time for supernode = %f, total cpu = %f\n" ,qtree_cpu, total_cpu); |
| 929 | #endif |
| 930 | |
| 931 | RETURN: |
| 932 | if (USE_QT) { |
| 933 | oned_optimizer_delete(qtree_level_optimizer); |
| 934 | ctrl->max_qtree_level = max_qtree_level; |
| 935 | } |
| 936 | if (xold) FREE(xold); |
| 937 | if (A != A0) SparseMatrix_delete(A); |
| 938 | if (f) FREE(f); |
| 939 | if (center) FREE(center); |
| 940 | if (supernode_wgts) FREE(supernode_wgts); |
| 941 | if (distances) FREE(distances); |
| 942 | FREE(force); |
| 943 | |
| 944 | } |
| 945 | |
| 946 | |
| 947 | |
| 948 | void spring_electrical_embedding(int dim, SparseMatrix A0, spring_electrical_control ctrl, real *node_weights, real *x, int *flag){ |
| 949 | /* x is a point to a 1D array, x[i*dim+j] gives the coordinate of the i-th node at dimension j. */ |
| 950 | SparseMatrix A = A0; |
| 951 | int m, n; |
| 952 | int i, j, k; |
| 953 | real p = ctrl->p, K = ctrl->K, C = ctrl->C, CRK, tol = ctrl->tol, maxiter = ctrl->maxiter, cool = ctrl->cool, step = ctrl->step, KP; |
| 954 | int *ia = NULL, *ja = NULL; |
| 955 | real *xold = NULL; |
| 956 | real *f = NULL, dist, F, Fnorm = 0, Fnorm0; |
| 957 | int iter = 0; |
| 958 | int adaptive_cooling = ctrl->adaptive_cooling; |
| 959 | QuadTree qt = NULL; |
| 960 | int USE_QT = FALSE; |
| 961 | int nsuper = 0, nsupermax = 10; |
| 962 | real *center = NULL, *supernode_wgts = NULL, *distances = NULL, nsuper_avg, counts = 0, counts_avg = 0; |
| 963 | #ifdef TIME |
| 964 | clock_t start, end, start0, start2; |
| 965 | real qtree_cpu = 0, qtree_cpu0 = 0; |
| 966 | real total_cpu = 0; |
| 967 | start0 = clock(); |
| 968 | #endif |
| 969 | int max_qtree_level = ctrl->max_qtree_level; |
| 970 | oned_optimizer qtree_level_optimizer = NULL; |
| 971 | |
| 972 | if (!A || maxiter <= 0) return; |
| 973 | |
| 974 | m = A->m, n = A->n; |
| 975 | if (n <= 0 || dim <= 0) return; |
| 976 | |
| 977 | if (n >= ctrl->quadtree_size) { |
| 978 | USE_QT = TRUE; |
| 979 | qtree_level_optimizer = oned_optimizer_new(max_qtree_level); |
| 980 | center = MALLOC(sizeof(real)*nsupermax*dim); |
| 981 | supernode_wgts = MALLOC(sizeof(real)*nsupermax); |
| 982 | distances = MALLOC(sizeof(real)*nsupermax); |
| 983 | } |
| 984 | *flag = 0; |
| 985 | if (m != n) { |
| 986 | *flag = ERROR_NOT_SQUARE_MATRIX; |
| 987 | goto RETURN; |
| 988 | } |
| 989 | assert(A->format == FORMAT_CSR); |
| 990 | A = SparseMatrix_symmetrize(A, TRUE); |
| 991 | ia = A->ia; |
| 992 | ja = A->ja; |
| 993 | |
| 994 | if (ctrl->random_start){ |
| 995 | srand(ctrl->random_seed); |
| 996 | for (i = 0; i < dim*n; i++) x[i] = drand(); |
| 997 | } |
| 998 | if (K < 0){ |
| 999 | ctrl->K = K = average_edge_length(A, dim, x); |
| 1000 | } |
| 1001 | if (C < 0) ctrl->C = C = 0.2; |
| 1002 | if (p >= 0) ctrl->p = p = -1; |
| 1003 | KP = pow(K, 1 - p); |
| 1004 | CRK = pow(C, (2.-p)/3.)/K; |
| 1005 | |
| 1006 | #ifdef DEBUG_0 |
| 1007 | { |
| 1008 | FILE *f; |
| 1009 | char fname[10000]; |
| 1010 | strcpy(fname,"/tmp/graph_layout_0_" ); |
| 1011 | sprintf(&(fname[strlen(fname)]), "%d" ,n); |
| 1012 | f = fopen(fname,"w" ); |
| 1013 | export_embedding(f, dim, A, x, NULL); |
| 1014 | fclose(f); |
| 1015 | } |
| 1016 | #endif |
| 1017 | |
| 1018 | f = MALLOC(sizeof(real)*dim); |
| 1019 | xold = MALLOC(sizeof(real)*dim*n); |
| 1020 | do { |
| 1021 | |
| 1022 | //#define VIS_MULTILEVEL |
| 1023 | #ifdef VIS_MULTILEVEL |
| 1024 | { |
| 1025 | FILE *f; |
| 1026 | char fname[10000]; |
| 1027 | static int count = 0; |
| 1028 | sprintf(fname, "/tmp/multilevel_%d" ,count++); |
| 1029 | f = fopen(fname,"w" ); |
| 1030 | export_embedding(f, dim, A, x, NULL); |
| 1031 | fclose(f); |
| 1032 | } |
| 1033 | #endif |
| 1034 | #ifdef GVIEWER |
| 1035 | if (Gviewer){ |
| 1036 | char *lab; |
| 1037 | lab = MALLOC(sizeof(char)*100); |
| 1038 | sprintf(lab,"sfdp, adaptive_cooling = %d iter=%d" , adaptive_cooling, iter); |
| 1039 | gviewer_set_label(lab); |
| 1040 | gviewer_reset_graph_coord(A, dim, x); |
| 1041 | drawScene(); |
| 1042 | gviewer_dump_current_frame(); |
| 1043 | //if ((adaptive_cooling && iter%100 == 0) || (!adaptive_cooling && iter%10 == 0)) gviewer_dump_current_frame(); |
| 1044 | FREE(lab); |
| 1045 | } |
| 1046 | #endif |
| 1047 | |
| 1048 | iter++; |
| 1049 | xold = MEMCPY(xold, x, sizeof(real)*dim*n); |
| 1050 | Fnorm0 = Fnorm; |
| 1051 | Fnorm = 0.; |
| 1052 | nsuper_avg = 0; |
| 1053 | counts_avg = 0; |
| 1054 | |
| 1055 | if (USE_QT) { |
| 1056 | |
| 1057 | max_qtree_level = oned_optimizer_get(qtree_level_optimizer); |
| 1058 | if (ctrl->use_node_weights){ |
| 1059 | qt = QuadTree_new_from_point_list(dim, n, max_qtree_level, x, node_weights); |
| 1060 | } else { |
| 1061 | qt = QuadTree_new_from_point_list(dim, n, max_qtree_level, x, NULL); |
| 1062 | } |
| 1063 | |
| 1064 | |
| 1065 | } |
| 1066 | #ifdef TIME |
| 1067 | start2 = clock(); |
| 1068 | #endif |
| 1069 | |
| 1070 | for (i = 0; i < n; i++){ |
| 1071 | for (k = 0; k < dim; k++) f[k] = 0.; |
| 1072 | /* attractive force C^((2-p)/3) ||x_i-x_j||/K * (x_j - x_i) */ |
| 1073 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1074 | if (ja[j] == i) continue; |
| 1075 | dist = distance(x, dim, i, ja[j]); |
| 1076 | for (k = 0; k < dim; k++){ |
| 1077 | f[k] -= CRK*(x[i*dim+k] - x[ja[j]*dim+k])*dist; |
| 1078 | } |
| 1079 | } |
| 1080 | |
| 1081 | /* repulsive force K^(1 - p)/||x_i-x_j||^(1 - p) (x_i - x_j) */ |
| 1082 | if (USE_QT){ |
| 1083 | #ifdef TIME |
| 1084 | start = clock(); |
| 1085 | #endif |
| 1086 | QuadTree_get_supernodes(qt, ctrl->bh, &(x[dim*i]), i, &nsuper, &nsupermax, |
| 1087 | ¢er, &supernode_wgts, &distances, &counts, flag); |
| 1088 | |
| 1089 | #ifdef TIME |
| 1090 | end = clock(); |
| 1091 | qtree_cpu += ((real) (end - start)) / CLOCKS_PER_SEC; |
| 1092 | #endif |
| 1093 | counts_avg += counts; |
| 1094 | nsuper_avg += nsuper; |
| 1095 | if (*flag) goto RETURN; |
| 1096 | for (j = 0; j < nsuper; j++){ |
| 1097 | dist = MAX(distances[j], MINDIST); |
| 1098 | for (k = 0; k < dim; k++){ |
| 1099 | if (p == -1){ |
| 1100 | f[k] += supernode_wgts[j]*KP*(x[i*dim+k] - center[j*dim+k])/(dist*dist); |
| 1101 | } else { |
| 1102 | f[k] += supernode_wgts[j]*KP*(x[i*dim+k] - center[j*dim+k])/pow(dist, 1.- p); |
| 1103 | } |
| 1104 | } |
| 1105 | } |
| 1106 | } else { |
| 1107 | if (ctrl->use_node_weights && node_weights){ |
| 1108 | for (j = 0; j < n; j++){ |
| 1109 | if (j == i) continue; |
| 1110 | dist = distance_cropped(x, dim, i, j); |
| 1111 | for (k = 0; k < dim; k++){ |
| 1112 | if (p == -1){ |
| 1113 | f[k] += node_weights[j]*KP*(x[i*dim+k] - x[j*dim+k])/(dist*dist); |
| 1114 | } else { |
| 1115 | f[k] += node_weights[j]*KP*(x[i*dim+k] - x[j*dim+k])/pow(dist, 1.- p); |
| 1116 | } |
| 1117 | } |
| 1118 | } |
| 1119 | } else { |
| 1120 | for (j = 0; j < n; j++){ |
| 1121 | if (j == i) continue; |
| 1122 | dist = distance_cropped(x, dim, i, j); |
| 1123 | for (k = 0; k < dim; k++){ |
| 1124 | if (p == -1){ |
| 1125 | f[k] += KP*(x[i*dim+k] - x[j*dim+k])/(dist*dist); |
| 1126 | } else { |
| 1127 | f[k] += KP*(x[i*dim+k] - x[j*dim+k])/pow(dist, 1.- p); |
| 1128 | } |
| 1129 | } |
| 1130 | } |
| 1131 | } |
| 1132 | } |
| 1133 | |
| 1134 | /* normalize force */ |
| 1135 | F = 0.; |
| 1136 | for (k = 0; k < dim; k++) F += f[k]*f[k]; |
| 1137 | F = sqrt(F); |
| 1138 | Fnorm += F; |
| 1139 | |
| 1140 | if (F > 0) for (k = 0; k < dim; k++) f[k] /= F; |
| 1141 | |
| 1142 | for (k = 0; k < dim; k++) x[i*dim+k] += step*f[k]; |
| 1143 | |
| 1144 | }/* done vertex i */ |
| 1145 | |
| 1146 | if (qt) { |
| 1147 | QuadTree_delete(qt); |
| 1148 | nsuper_avg /= n; |
| 1149 | counts_avg /= n; |
| 1150 | #ifdef TIME |
| 1151 | qtree_cpu0 = qtree_cpu - qtree_cpu0; |
| 1152 | if (Verbose && 0) fprintf(stderr, "\n cpu this outer iter = %f, quadtree time = %f other time = %f\n" ,((real) (clock() - start2)) / CLOCKS_PER_SEC, qtree_cpu0,((real) (clock() - start2))/CLOCKS_PER_SEC - qtree_cpu0); |
| 1153 | qtree_cpu0 = qtree_cpu; |
| 1154 | #endif |
| 1155 | if (Verbose & 0) fprintf(stderr, "nsuper_avg=%f, counts_avg = %f 2*nsuper+counts=%f\n" ,nsuper_avg,counts_avg, 2*nsuper_avg+counts_avg); |
| 1156 | oned_optimizer_train(qtree_level_optimizer, 5*nsuper_avg + counts_avg); |
| 1157 | } |
| 1158 | |
| 1159 | #ifdef ENERGY |
| 1160 | if (Verbose) { |
| 1161 | fprintf(stderr, "\r iter = %d, step = %f Fnorm = %f nsuper = %d nz = %d K = %f " ,iter, step, Fnorm, (int) nsuper_avg,A->nz,K); |
| 1162 | fprintf(stderr, "energy = %f\n" ,spring_electrical_energy(dim, A, x, p, CRK, KP)); |
| 1163 | } |
| 1164 | #endif |
| 1165 | |
| 1166 | |
| 1167 | step = update_step(adaptive_cooling, step, Fnorm, Fnorm0, cool); |
| 1168 | } while (step > tol && iter < maxiter); |
| 1169 | |
| 1170 | #ifdef DEBUG_PRINT |
| 1171 | if (Verbose && 0) fputs("\n" , stderr); |
| 1172 | #endif |
| 1173 | |
| 1174 | #ifdef DEBUG_PRINT_0 |
| 1175 | { |
| 1176 | FILE *f; |
| 1177 | char fname[10000]; |
| 1178 | strcpy(fname,"/tmp/graph_layout" ); |
| 1179 | sprintf(&(fname[strlen(fname)]), "%d" ,n); |
| 1180 | f = fopen(fname,"w" ); |
| 1181 | export_embedding(f, dim, A, x, NULL); |
| 1182 | fclose(f); |
| 1183 | } |
| 1184 | #endif |
| 1185 | |
| 1186 | |
| 1187 | #ifdef DEBUG_PRINT |
| 1188 | if (Verbose) { |
| 1189 | if (USE_QT){ |
| 1190 | fprintf(stderr, "iter = %d, step = %f Fnorm = %f qt_level = %d nsuper = %d nz = %d K = %f " ,iter, step, Fnorm, max_qtree_level, (int) nsuper_avg,A->nz,K); |
| 1191 | } else { |
| 1192 | fprintf(stderr, "iter = %d, step = %f Fnorm = %f nsuper = %d nz = %d K = %f " ,iter, step, Fnorm, (int) nsuper_avg,A->nz,K); |
| 1193 | } |
| 1194 | } |
| 1195 | #endif |
| 1196 | |
| 1197 | if (ctrl->beautify_leaves) beautify_leaves(dim, A, x); |
| 1198 | |
| 1199 | #ifdef TIME |
| 1200 | total_cpu += ((real) (clock() - start0)) / CLOCKS_PER_SEC; |
| 1201 | if (Verbose) fprintf(stderr, "time for supernode = %f, total cpu = %f\n" ,qtree_cpu, total_cpu); |
| 1202 | #endif |
| 1203 | |
| 1204 | RETURN: |
| 1205 | if (USE_QT) { |
| 1206 | oned_optimizer_delete(qtree_level_optimizer); |
| 1207 | ctrl->max_qtree_level = max_qtree_level; |
| 1208 | } |
| 1209 | if (xold) FREE(xold); |
| 1210 | if (A != A0) SparseMatrix_delete(A); |
| 1211 | if (f) FREE(f); |
| 1212 | if (center) FREE(center); |
| 1213 | if (supernode_wgts) FREE(supernode_wgts); |
| 1214 | if (distances) FREE(distances); |
| 1215 | |
| 1216 | } |
| 1217 | |
| 1218 | static void scale_coord(int n, int dim, real *x, int *id, int *jd, real *d, real dj){ |
| 1219 | int i, j, k; |
| 1220 | real w_ij, dist, s = 0, stop = 0, sbot = 0., nz = 0; |
| 1221 | |
| 1222 | if (dj == 0.) return; |
| 1223 | for (i = 0; i < n; i++){ |
| 1224 | for (j = id[i]; j < id[i+1]; j++){ |
| 1225 | if (jd[j] == i) continue; |
| 1226 | dist = distance_cropped(x, dim, i, jd[j]); |
| 1227 | if (d){ |
| 1228 | dj = d[j]; |
| 1229 | } |
| 1230 | assert(dj > 0); |
| 1231 | w_ij = 1./(dj*dj); |
| 1232 | /* spring force */ |
| 1233 | for (k = 0; k < dim; k++){ |
| 1234 | stop += w_ij*dj*dist; |
| 1235 | sbot += w_ij*dist*dist; |
| 1236 | } |
| 1237 | s += dist; nz++; |
| 1238 | } |
| 1239 | } |
| 1240 | s = stop/sbot; |
| 1241 | for (i = 0; i < n*dim; i++) x[i] *= s; |
| 1242 | fprintf(stderr,"scaling factor = %f\n" ,s); |
| 1243 | } |
| 1244 | |
| 1245 | static real dmean_get(int n, int *id, int *jd, real* d){ |
| 1246 | real dmean = 0; |
| 1247 | int i, j; |
| 1248 | |
| 1249 | if (!d) return 1.; |
| 1250 | for (i = 0; i < n; i++){ |
| 1251 | for (j = id[i]; j < id[i+1]; j++){ |
| 1252 | dmean += d[j]; |
| 1253 | } |
| 1254 | } |
| 1255 | return dmean/((real) id[n]); |
| 1256 | } |
| 1257 | |
| 1258 | void spring_maxent_embedding(int dim, SparseMatrix A0, SparseMatrix D, spring_electrical_control ctrl, real *node_weights, real *x, real rho, int *flag){ |
| 1259 | /* x is a point to a 1D array, x[i*dim+j] gives the coordinate of the i-th node at dimension j. |
| 1260 | |
| 1261 | Minimize \Sum_{(i,j)\in E} w_ij (||x_i-x_j||-d_ij)^2 - \rho \Sum_{(i,j)\NotIn E} Log ||x_i-x_j|| |
| 1262 | |
| 1263 | or |
| 1264 | |
| 1265 | Minimize \Sum_{(i,j)\in E} w_ij (||x_i-x_j||-d_ij)^2 - \rho \Sum_{(i,j)\NotIn E} ||x_i-x_j||^p |
| 1266 | |
| 1267 | The derivatives are |
| 1268 | |
| 1269 | d E/d x_i = \Sum_{(i,j)\in E} w_ij (||x_i-x_j||-d_ij) (x_i-x_j)/||x_i-x_j|| - \rho \Sum_{(i,j)\NotIn E} (x_i-x_j)/||x_i-x_j||^2 |
| 1270 | |
| 1271 | or |
| 1272 | |
| 1273 | d E/d x_i = \Sum_{(i,j)\in E} w_ij (||x_i-x_j||-d_ij) (x_i-x_j)/||x_i-x_j|| - \rho \Sum_{(i,j)\NotIn E} ||x_i-x_j||^(p-2) (x_i-x_j) |
| 1274 | |
| 1275 | if D == NULL, unit weight assumed |
| 1276 | |
| 1277 | */ |
| 1278 | SparseMatrix A = A0; |
| 1279 | int m, n; |
| 1280 | int i, j, k; |
| 1281 | real p = ctrl->p, C = ctrl->C, tol = ctrl->tol, maxiter = ctrl->maxiter, cool = ctrl->cool, step = ctrl->step, w_ij, dj = 1.; |
| 1282 | int *ia = NULL, *ja = NULL; |
| 1283 | int *id = NULL, *jd = NULL; |
| 1284 | real *d, dmean; |
| 1285 | real *xold = NULL; |
| 1286 | real *f = NULL, dist, F, Fnorm = 0, Fnorm0; |
| 1287 | int iter = 0; |
| 1288 | int adaptive_cooling = ctrl->adaptive_cooling; |
| 1289 | QuadTree qt = NULL; |
| 1290 | int USE_QT = FALSE; |
| 1291 | int nsuper = 0, nsupermax = 10; |
| 1292 | real *center = NULL, *supernode_wgts = NULL, *distances = NULL, nsuper_avg, counts = 0; |
| 1293 | int max_qtree_level = 10; |
| 1294 | #ifdef DEBUG |
| 1295 | double stress = 0; |
| 1296 | #endif |
| 1297 | |
| 1298 | if (!A || maxiter <= 0) return; |
| 1299 | m = A->m, n = A->n; |
| 1300 | if (n <= 0 || dim <= 0) return; |
| 1301 | |
| 1302 | if (ctrl->tscheme != QUAD_TREE_NONE && n >= ctrl->quadtree_size) { |
| 1303 | USE_QT = TRUE; |
| 1304 | center = MALLOC(sizeof(real)*nsupermax*dim); |
| 1305 | supernode_wgts = MALLOC(sizeof(real)*nsupermax); |
| 1306 | distances = MALLOC(sizeof(real)*nsupermax); |
| 1307 | } |
| 1308 | |
| 1309 | *flag = 0; |
| 1310 | if (m != n) { |
| 1311 | *flag = ERROR_NOT_SQUARE_MATRIX; |
| 1312 | goto RETURN; |
| 1313 | } |
| 1314 | |
| 1315 | |
| 1316 | assert(A->format == FORMAT_CSR); |
| 1317 | A = SparseMatrix_symmetrize(A, TRUE); |
| 1318 | ia = A->ia; |
| 1319 | ja = A->ja; |
| 1320 | if (D){ |
| 1321 | id = D->ia; |
| 1322 | jd = D->ja; |
| 1323 | d = (real*) D->a; |
| 1324 | } else { |
| 1325 | id = ia; jd = ja; d = NULL; |
| 1326 | } |
| 1327 | if (rho < 0) { |
| 1328 | dmean = dmean_get(n, id, jd, d); |
| 1329 | rho = rho*(id[n]/((((real) n)*((real) n)) - id[n]))/pow(dmean, p+1); |
| 1330 | fprintf(stderr,"dmean = %f, rho = %f\n" ,dmean, rho); |
| 1331 | } |
| 1332 | |
| 1333 | if (ctrl->random_start){ |
| 1334 | fprintf(stderr, "send random coordinates\n" ); |
| 1335 | srand(ctrl->random_seed); |
| 1336 | for (i = 0; i < dim*n; i++) x[i] = drand(); |
| 1337 | /* rescale x to give minimum stress: |
| 1338 | Min \Sum_{(i,j)\in E} w_ij (s ||x_i-x_j||-d_ij)^2 |
| 1339 | thus |
| 1340 | s = (\Sum_{(ij)\in E} w_ij d_ij ||x_i-x_j||)/(\Sum_{(i,j)\in E} w_ij ||x_i-x_j||^2) |
| 1341 | */ |
| 1342 | |
| 1343 | } |
| 1344 | scale_coord(n, dim, x, id, jd, d, dj); |
| 1345 | |
| 1346 | |
| 1347 | |
| 1348 | if (C < 0) ctrl->C = C = 0.2; |
| 1349 | if (p >= 0) ctrl->p = p = -1; |
| 1350 | |
| 1351 | #ifdef DEBUG_0 |
| 1352 | { |
| 1353 | FILE *f; |
| 1354 | char fname[10000]; |
| 1355 | strcpy(fname,"/tmp/graph_layout_0_" ); |
| 1356 | sprintf(&(fname[strlen(fname)]), "%d" ,n); |
| 1357 | f = fopen(fname,"w" ); |
| 1358 | export_embedding(f, dim, A, x, NULL); |
| 1359 | fclose(f); |
| 1360 | } |
| 1361 | #endif |
| 1362 | |
| 1363 | f = MALLOC(sizeof(real)*dim); |
| 1364 | xold = MALLOC(sizeof(real)*dim*n); |
| 1365 | do { |
| 1366 | iter++; |
| 1367 | xold = MEMCPY(xold, x, sizeof(real)*dim*n); |
| 1368 | Fnorm0 = Fnorm; |
| 1369 | Fnorm = 0.; |
| 1370 | nsuper_avg = 0; |
| 1371 | #ifdef DEBUG |
| 1372 | stress = 0; |
| 1373 | #endif |
| 1374 | |
| 1375 | if (USE_QT) { |
| 1376 | if (ctrl->use_node_weights){ |
| 1377 | qt = QuadTree_new_from_point_list(dim, n, max_qtree_level, x, node_weights); |
| 1378 | } else { |
| 1379 | qt = QuadTree_new_from_point_list(dim, n, max_qtree_level, x, NULL); |
| 1380 | } |
| 1381 | } |
| 1382 | |
| 1383 | /* |
| 1384 | . d E/d x_i = \Sum_{(i,j)\in E} w_ij (||x_i-x_j||-d_ij) (x_i-x_j)/||x_i-x_j|| - \rho \Sum_{(i,j)\NotIn E} (x_i-x_j)/||x_i-x_j||^2 |
| 1385 | or |
| 1386 | . d E/d x_i = \Sum_{(i,j)\in E} w_ij (||x_i-x_j||-d_ij) (x_i-x_j)/||x_i-x_j|| - \rho \Sum_{(i,j)\NotIn E} ||x_i-x_j||^(p-2) (x_i-x_j) |
| 1387 | */ |
| 1388 | for (i = 0; i < n; i++){ |
| 1389 | for (k = 0; k < dim; k++) f[k] = 0.; |
| 1390 | |
| 1391 | /* spring (attractive or repulsive) force w_ij (||x_i-x_j||-d_ij) (x_i-x_j)/||x_i-x_j|| */ |
| 1392 | for (j = id[i]; j < id[i+1]; j++){ |
| 1393 | if (jd[j] == i) continue; |
| 1394 | dist = distance_cropped(x, dim, i, jd[j]); |
| 1395 | if (d){ |
| 1396 | dj = d[j]; |
| 1397 | } |
| 1398 | assert(dj > 0); |
| 1399 | /* spring force */ |
| 1400 | if (ctrl->q == 2){ |
| 1401 | w_ij = 1./(dj*dj*dj); |
| 1402 | for (k = 0; k < dim; k++){ |
| 1403 | f[k] += -w_ij*(x[i*dim+k] - x[jd[j]*dim+k])*(dist - dj)*(dist - dj)/dist; |
| 1404 | } |
| 1405 | } else if (ctrl->q == 1){/* square stress force */ |
| 1406 | w_ij = 1./(dj*dj); |
| 1407 | for (k = 0; k < dim; k++){ |
| 1408 | f[k] += -w_ij*(x[i*dim+k] - x[jd[j]*dim+k])*(dist - dj)/dist; |
| 1409 | } |
| 1410 | } else { |
| 1411 | w_ij = 1./pow(dj, ctrl->q + 1); |
| 1412 | for (k = 0; k < dim; k++){ |
| 1413 | f[k] += -w_ij*(x[i*dim+k] - x[jd[j]*dim+k])*pow(dist - dj, ctrl->q)/dist; |
| 1414 | } |
| 1415 | } |
| 1416 | |
| 1417 | #ifdef DEBUG |
| 1418 | w_ij = 1./(dj*dj); |
| 1419 | for (k = 0; k < dim; k++){ |
| 1420 | stress += (dist - dj)*(dist - dj)*w_ij; |
| 1421 | } |
| 1422 | #endif |
| 1423 | |
| 1424 | |
| 1425 | /* discount repulsive force between neighboring vertices which will be applied next, that way there is no |
| 1426 | repulsive forces between neighboring vertices */ |
| 1427 | if (ctrl->use_node_weights && node_weights){ |
| 1428 | for (k = 0; k < dim; k++){ |
| 1429 | if (p == -1){ |
| 1430 | f[k] -= rho*node_weights[j]*(x[i*dim+k] - x[jd[j]*dim+k])/(dist*dist); |
| 1431 | } else { |
| 1432 | f[k] -= rho*node_weights[j]*(x[i*dim+k] - x[jd[j]*dim+k])/pow(dist, 1.- p); |
| 1433 | } |
| 1434 | } |
| 1435 | } else { |
| 1436 | for (k = 0; k < dim; k++){ |
| 1437 | if (p == -1){ |
| 1438 | f[k] -= rho*(x[i*dim+k] - x[jd[j]*dim+k])/(dist*dist); |
| 1439 | } else { |
| 1440 | f[k] -= rho*(x[i*dim+k] - x[jd[j]*dim+k])/pow(dist, 1.- p); |
| 1441 | } |
| 1442 | } |
| 1443 | |
| 1444 | } |
| 1445 | |
| 1446 | } |
| 1447 | |
| 1448 | /* repulsive force ||x_i-x_j||^(1 - p) (x_i - x_j) */ |
| 1449 | if (USE_QT){ |
| 1450 | QuadTree_get_supernodes(qt, ctrl->bh, &(x[dim*i]), i, &nsuper, &nsupermax, |
| 1451 | ¢er, &supernode_wgts, &distances, &counts, flag); |
| 1452 | nsuper_avg += nsuper; |
| 1453 | if (*flag) goto RETURN; |
| 1454 | for (j = 0; j < nsuper; j++){ |
| 1455 | dist = MAX(distances[j], MINDIST); |
| 1456 | for (k = 0; k < dim; k++){ |
| 1457 | if (p == -1){ |
| 1458 | f[k] += rho*supernode_wgts[j]*(x[i*dim+k] - center[j*dim+k])/(dist*dist); |
| 1459 | } else { |
| 1460 | f[k] += rho*supernode_wgts[j]*(x[i*dim+k] - center[j*dim+k])/pow(dist, 1.- p); |
| 1461 | } |
| 1462 | } |
| 1463 | } |
| 1464 | } else { |
| 1465 | if (ctrl->use_node_weights && node_weights){ |
| 1466 | for (j = 0; j < n; j++){ |
| 1467 | if (j == i) continue; |
| 1468 | dist = distance_cropped(x, dim, i, j); |
| 1469 | for (k = 0; k < dim; k++){ |
| 1470 | if (p == -1){ |
| 1471 | f[k] += rho*node_weights[j]*(x[i*dim+k] - x[j*dim+k])/(dist*dist); |
| 1472 | } else { |
| 1473 | f[k] += rho*node_weights[j]*(x[i*dim+k] - x[j*dim+k])/pow(dist, 1.- p); |
| 1474 | } |
| 1475 | } |
| 1476 | } |
| 1477 | } else { |
| 1478 | for (j = 0; j < n; j++){ |
| 1479 | if (j == i) continue; |
| 1480 | dist = distance_cropped(x, dim, i, j); |
| 1481 | for (k = 0; k < dim; k++){ |
| 1482 | if (p == -1){ |
| 1483 | f[k] += rho*(x[i*dim+k] - x[j*dim+k])/(dist*dist); |
| 1484 | } else { |
| 1485 | f[k] += rho*(x[i*dim+k] - x[j*dim+k])/pow(dist, 1.- p); |
| 1486 | } |
| 1487 | } |
| 1488 | } |
| 1489 | } |
| 1490 | } |
| 1491 | |
| 1492 | /* normalize force */ |
| 1493 | F = 0.; |
| 1494 | for (k = 0; k < dim; k++) F += f[k]*f[k]; |
| 1495 | F = sqrt(F); |
| 1496 | Fnorm += F; |
| 1497 | |
| 1498 | if (F > 0) for (k = 0; k < dim; k++) f[k] /= F; |
| 1499 | |
| 1500 | for (k = 0; k < dim; k++) x[i*dim+k] += step*f[k]; |
| 1501 | |
| 1502 | }/* done vertex i */ |
| 1503 | |
| 1504 | if (qt) QuadTree_delete(qt); |
| 1505 | nsuper_avg /= n; |
| 1506 | #ifdef DEBUG_PRINT |
| 1507 | stress /= (double) A->nz; |
| 1508 | if (Verbose) { |
| 1509 | fprintf(stderr, "\r iter = %d, step = %f Fnorm = %f nsuper = %d nz = %d stress = %f " ,iter, step, Fnorm, (int) nsuper_avg,A->nz, stress); |
| 1510 | } |
| 1511 | #endif |
| 1512 | |
| 1513 | step = update_step(adaptive_cooling, step, Fnorm, Fnorm0, cool); |
| 1514 | } while (step > tol && iter < maxiter); |
| 1515 | |
| 1516 | #ifdef DEBUG_PRINT |
| 1517 | if (Verbose) fputs("\n" , stderr); |
| 1518 | #endif |
| 1519 | |
| 1520 | |
| 1521 | if (ctrl->beautify_leaves) beautify_leaves(dim, A, x); |
| 1522 | |
| 1523 | RETURN: |
| 1524 | if (xold) FREE(xold); |
| 1525 | if (A != A0) SparseMatrix_delete(A); |
| 1526 | if (f) FREE(f); |
| 1527 | if (center) FREE(center); |
| 1528 | if (supernode_wgts) FREE(supernode_wgts); |
| 1529 | if (distances) FREE(distances); |
| 1530 | |
| 1531 | } |
| 1532 | |
| 1533 | |
| 1534 | |
| 1535 | void spring_electrical_spring_embedding(int dim, SparseMatrix A0, SparseMatrix D, spring_electrical_control ctrl, real *node_weights, real *x, int *flag){ |
| 1536 | /* x is a point to a 1D array, x[i*dim+j] gives the coordinate of the i-th node at dimension j. Same as the spring-electrical except we also |
| 1537 | introduce force due to spring length |
| 1538 | */ |
| 1539 | SparseMatrix A = A0; |
| 1540 | int m, n; |
| 1541 | int i, j, k; |
| 1542 | real p = ctrl->p, K = ctrl->K, C = ctrl->C, CRK, tol = ctrl->tol, maxiter = ctrl->maxiter, cool = ctrl->cool, step = ctrl->step, KP; |
| 1543 | int *ia = NULL, *ja = NULL; |
| 1544 | int *id = NULL, *jd = NULL; |
| 1545 | real *d; |
| 1546 | real *xold = NULL; |
| 1547 | real *f = NULL, dist, F, Fnorm = 0, Fnorm0; |
| 1548 | int iter = 0; |
| 1549 | int adaptive_cooling = ctrl->adaptive_cooling; |
| 1550 | QuadTree qt = NULL; |
| 1551 | int USE_QT = FALSE; |
| 1552 | int nsuper = 0, nsupermax = 10; |
| 1553 | real *center = NULL, *supernode_wgts = NULL, *distances = NULL, nsuper_avg, counts = 0; |
| 1554 | int max_qtree_level = 10; |
| 1555 | |
| 1556 | if (!A || maxiter <= 0) return; |
| 1557 | m = A->m, n = A->n; |
| 1558 | if (n <= 0 || dim <= 0) return; |
| 1559 | |
| 1560 | if (n >= ctrl->quadtree_size) { |
| 1561 | USE_QT = TRUE; |
| 1562 | center = MALLOC(sizeof(real)*nsupermax*dim); |
| 1563 | supernode_wgts = MALLOC(sizeof(real)*nsupermax); |
| 1564 | distances = MALLOC(sizeof(real)*nsupermax); |
| 1565 | } |
| 1566 | *flag = 0; |
| 1567 | if (m != n) { |
| 1568 | *flag = ERROR_NOT_SQUARE_MATRIX; |
| 1569 | goto RETURN; |
| 1570 | } |
| 1571 | assert(A->format == FORMAT_CSR); |
| 1572 | A = SparseMatrix_symmetrize(A, TRUE); |
| 1573 | ia = A->ia; |
| 1574 | ja = A->ja; |
| 1575 | id = D->ia; |
| 1576 | jd = D->ja; |
| 1577 | d = (real*) D->a; |
| 1578 | |
| 1579 | if (ctrl->random_start){ |
| 1580 | srand(ctrl->random_seed); |
| 1581 | for (i = 0; i < dim*n; i++) x[i] = drand(); |
| 1582 | } |
| 1583 | if (K < 0){ |
| 1584 | ctrl->K = K = average_edge_length(A, dim, x); |
| 1585 | } |
| 1586 | if (C < 0) ctrl->C = C = 0.2; |
| 1587 | if (p >= 0) ctrl->p = p = -1; |
| 1588 | KP = pow(K, 1 - p); |
| 1589 | CRK = pow(C, (2.-p)/3.)/K; |
| 1590 | |
| 1591 | #ifdef DEBUG_0 |
| 1592 | { |
| 1593 | FILE *f; |
| 1594 | char fname[10000]; |
| 1595 | strcpy(fname,"/tmp/graph_layout_0_" ); |
| 1596 | sprintf(&(fname[strlen(fname)]), "%d" ,n); |
| 1597 | f = fopen(fname,"w" ); |
| 1598 | export_embedding(f, dim, A, x, NULL); |
| 1599 | fclose(f); |
| 1600 | } |
| 1601 | #endif |
| 1602 | |
| 1603 | f = MALLOC(sizeof(real)*dim); |
| 1604 | xold = MALLOC(sizeof(real)*dim*n); |
| 1605 | do { |
| 1606 | iter++; |
| 1607 | xold = MEMCPY(xold, x, sizeof(real)*dim*n); |
| 1608 | Fnorm0 = Fnorm; |
| 1609 | Fnorm = 0.; |
| 1610 | nsuper_avg = 0; |
| 1611 | |
| 1612 | if (USE_QT) { |
| 1613 | if (ctrl->use_node_weights){ |
| 1614 | qt = QuadTree_new_from_point_list(dim, n, max_qtree_level, x, node_weights); |
| 1615 | } else { |
| 1616 | qt = QuadTree_new_from_point_list(dim, n, max_qtree_level, x, NULL); |
| 1617 | } |
| 1618 | } |
| 1619 | |
| 1620 | for (i = 0; i < n; i++){ |
| 1621 | for (k = 0; k < dim; k++) f[k] = 0.; |
| 1622 | /* attractive force C^((2-p)/3) ||x_i-x_j||/K * (x_j - x_i) */ |
| 1623 | |
| 1624 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1625 | if (ja[j] == i) continue; |
| 1626 | dist = distance(x, dim, i, ja[j]); |
| 1627 | for (k = 0; k < dim; k++){ |
| 1628 | f[k] -= CRK*(x[i*dim+k] - x[ja[j]*dim+k])*dist; |
| 1629 | } |
| 1630 | } |
| 1631 | |
| 1632 | for (j = id[i]; j < id[i+1]; j++){ |
| 1633 | if (jd[j] == i) continue; |
| 1634 | dist = distance_cropped(x, dim, i, jd[j]); |
| 1635 | for (k = 0; k < dim; k++){ |
| 1636 | if (dist < d[j]){ |
| 1637 | f[k] += 0.2*CRK*(x[i*dim+k] - x[jd[j]*dim+k])*(dist - d[j])*(dist - d[j])/dist; |
| 1638 | } else { |
| 1639 | f[k] -= 0.2*CRK*(x[i*dim+k] - x[jd[j]*dim+k])*(dist - d[j])*(dist - d[j])/dist; |
| 1640 | } |
| 1641 | /* f[k] -= 0.2*CRK*(x[i*dim+k] - x[jd[j]*dim+k])*(dist - d[j]);*/ |
| 1642 | } |
| 1643 | } |
| 1644 | |
| 1645 | /* repulsive force K^(1 - p)/||x_i-x_j||^(1 - p) (x_i - x_j) */ |
| 1646 | if (USE_QT){ |
| 1647 | QuadTree_get_supernodes(qt, ctrl->bh, &(x[dim*i]), i, &nsuper, &nsupermax, |
| 1648 | ¢er, &supernode_wgts, &distances, &counts, flag); |
| 1649 | nsuper_avg += nsuper; |
| 1650 | if (*flag) goto RETURN; |
| 1651 | for (j = 0; j < nsuper; j++){ |
| 1652 | dist = MAX(distances[j], MINDIST); |
| 1653 | for (k = 0; k < dim; k++){ |
| 1654 | if (p == -1){ |
| 1655 | f[k] += supernode_wgts[j]*KP*(x[i*dim+k] - center[j*dim+k])/(dist*dist); |
| 1656 | } else { |
| 1657 | f[k] += supernode_wgts[j]*KP*(x[i*dim+k] - center[j*dim+k])/pow(dist, 1.- p); |
| 1658 | } |
| 1659 | } |
| 1660 | } |
| 1661 | } else { |
| 1662 | if (ctrl->use_node_weights && node_weights){ |
| 1663 | for (j = 0; j < n; j++){ |
| 1664 | if (j == i) continue; |
| 1665 | dist = distance_cropped(x, dim, i, j); |
| 1666 | for (k = 0; k < dim; k++){ |
| 1667 | if (p == -1){ |
| 1668 | f[k] += node_weights[j]*KP*(x[i*dim+k] - x[j*dim+k])/(dist*dist); |
| 1669 | } else { |
| 1670 | f[k] += node_weights[j]*KP*(x[i*dim+k] - x[j*dim+k])/pow(dist, 1.- p); |
| 1671 | } |
| 1672 | } |
| 1673 | } |
| 1674 | } else { |
| 1675 | for (j = 0; j < n; j++){ |
| 1676 | if (j == i) continue; |
| 1677 | dist = distance_cropped(x, dim, i, j); |
| 1678 | for (k = 0; k < dim; k++){ |
| 1679 | if (p == -1){ |
| 1680 | f[k] += KP*(x[i*dim+k] - x[j*dim+k])/(dist*dist); |
| 1681 | } else { |
| 1682 | f[k] += KP*(x[i*dim+k] - x[j*dim+k])/pow(dist, 1.- p); |
| 1683 | } |
| 1684 | } |
| 1685 | } |
| 1686 | } |
| 1687 | } |
| 1688 | |
| 1689 | /* normalize force */ |
| 1690 | F = 0.; |
| 1691 | for (k = 0; k < dim; k++) F += f[k]*f[k]; |
| 1692 | F = sqrt(F); |
| 1693 | Fnorm += F; |
| 1694 | |
| 1695 | if (F > 0) for (k = 0; k < dim; k++) f[k] /= F; |
| 1696 | |
| 1697 | for (k = 0; k < dim; k++) x[i*dim+k] += step*f[k]; |
| 1698 | |
| 1699 | }/* done vertex i */ |
| 1700 | |
| 1701 | if (qt) QuadTree_delete(qt); |
| 1702 | nsuper_avg /= n; |
| 1703 | #ifdef DEBUG_PRINT |
| 1704 | if (Verbose && 0) { |
| 1705 | fprintf(stderr, "\r iter = %d, step = %f Fnorm = %f nsuper = %d nz = %d K = %f " ,iter, step, Fnorm, (int) nsuper_avg,A->nz,K); |
| 1706 | #ifdef ENERGY |
| 1707 | fprintf(stderr, "energy = %f\n" ,spring_electrical_energy(dim, A, x, p, CRK, KP)); |
| 1708 | #endif |
| 1709 | } |
| 1710 | #endif |
| 1711 | |
| 1712 | step = update_step(adaptive_cooling, step, Fnorm, Fnorm0, cool); |
| 1713 | } while (step > tol && iter < maxiter); |
| 1714 | |
| 1715 | #ifdef DEBUG_PRINT |
| 1716 | if (Verbose && 0) fputs("\n" , stderr); |
| 1717 | #endif |
| 1718 | |
| 1719 | #ifdef DEBUG_PRINT_0 |
| 1720 | { |
| 1721 | FILE *f; |
| 1722 | char fname[10000]; |
| 1723 | strcpy(fname,"/tmp/graph_layout" ); |
| 1724 | sprintf(&(fname[strlen(fname)]), "%d" ,n); |
| 1725 | f = fopen(fname,"w" ); |
| 1726 | export_embedding(f, dim, A, x, NULL); |
| 1727 | fclose(f); |
| 1728 | } |
| 1729 | #endif |
| 1730 | |
| 1731 | if (ctrl->beautify_leaves) beautify_leaves(dim, A, x); |
| 1732 | |
| 1733 | RETURN: |
| 1734 | if (xold) FREE(xold); |
| 1735 | if (A != A0) SparseMatrix_delete(A); |
| 1736 | if (f) FREE(f); |
| 1737 | if (center) FREE(center); |
| 1738 | if (supernode_wgts) FREE(supernode_wgts); |
| 1739 | if (distances) FREE(distances); |
| 1740 | |
| 1741 | } |
| 1742 | |
| 1743 | |
| 1744 | |
| 1745 | |
| 1746 | void print_matrix(real *x, int n, int dim){ |
| 1747 | int i, k; |
| 1748 | printf("{" ); |
| 1749 | for (i = 0; i < n; i++){ |
| 1750 | if (i != 0) printf("," ); |
| 1751 | printf("{" ); |
| 1752 | for (k = 0; k < dim; k++) { |
| 1753 | if (k != 0) printf("," ); |
| 1754 | printf("%f" ,x[i*dim+k]); |
| 1755 | } |
| 1756 | printf("}" ); |
| 1757 | } |
| 1758 | printf("}\n" ); |
| 1759 | } |
| 1760 | |
| 1761 | /* |
| 1762 | static void interpolate2(int dim, SparseMatrix A, real *x){ |
| 1763 | int i, j, k, *ia = A->ia, *ja = A->ja, nz, m = A->m; |
| 1764 | real alpha = 0.5, beta, *y; |
| 1765 | |
| 1766 | y = MALLOC(sizeof(real)*dim*m); |
| 1767 | for (k = 0; k < dim*m; k++) y[k] = 0; |
| 1768 | for (i = 0; i < m; i++){ |
| 1769 | nz = 0; |
| 1770 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1771 | if (ja[j] == i) continue; |
| 1772 | nz++; |
| 1773 | for (k = 0; k < dim; k++){ |
| 1774 | y[i*dim+k] += x[ja[j]*dim + k]; |
| 1775 | } |
| 1776 | } |
| 1777 | if (nz > 0){ |
| 1778 | beta = (1-alpha)/nz; |
| 1779 | for (k = 0; k < dim; k++) y[i*dim+k] = alpha*x[i*dim+k] + beta*y[i*dim+k]; |
| 1780 | } |
| 1781 | } |
| 1782 | for (k = 0; k < dim*m; k++) x[k] = y[k]; |
| 1783 | |
| 1784 | FREE(y); |
| 1785 | } |
| 1786 | |
| 1787 | */ |
| 1788 | |
| 1789 | void interpolate_coord(int dim, SparseMatrix A, real *x){ |
| 1790 | int i, j, k, *ia = A->ia, *ja = A->ja, nz; |
| 1791 | real alpha = 0.5, beta, *y; |
| 1792 | |
| 1793 | y = MALLOC(sizeof(real)*dim); |
| 1794 | for (i = 0; i < A->m; i++){ |
| 1795 | for (k = 0; k < dim; k++) y[k] = 0; |
| 1796 | nz = 0; |
| 1797 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1798 | if (ja[j] == i) continue; |
| 1799 | nz++; |
| 1800 | for (k = 0; k < dim; k++){ |
| 1801 | y[k] += x[ja[j]*dim + k]; |
| 1802 | } |
| 1803 | } |
| 1804 | if (nz > 0){ |
| 1805 | beta = (1-alpha)/nz; |
| 1806 | for (k = 0; k < dim; k++) x[i*dim+k] = alpha*x[i*dim+k] + beta*y[k]; |
| 1807 | } |
| 1808 | } |
| 1809 | |
| 1810 | FREE(y); |
| 1811 | } |
| 1812 | static void prolongate(int dim, SparseMatrix A, SparseMatrix P, SparseMatrix R, real *x, real *y, int coarsen_scheme_used, real delta){ |
| 1813 | int nc, *ia, *ja, i, j, k; |
| 1814 | SparseMatrix_multiply_dense(P, FALSE, x, FALSE, &y, FALSE, dim); |
| 1815 | |
| 1816 | /* xu yao rao dong */ |
| 1817 | if (coarsen_scheme_used > EDGE_BASED_STA && coarsen_scheme_used < EDGE_BASED_STO){ |
| 1818 | interpolate_coord(dim, A, y); |
| 1819 | nc = R->m; |
| 1820 | ia = R->ia; |
| 1821 | ja = R->ja; |
| 1822 | for (i = 0; i < nc; i++){ |
| 1823 | for (j = ia[i]+1; j < ia[i+1]; j++){ |
| 1824 | for (k = 0; k < dim; k++){ |
| 1825 | y[ja[j]*dim + k] += delta*(drand() - 0.5); |
| 1826 | } |
| 1827 | } |
| 1828 | } |
| 1829 | } |
| 1830 | } |
| 1831 | |
| 1832 | |
| 1833 | |
| 1834 | int power_law_graph(SparseMatrix A){ |
| 1835 | int *mask, m, max = 0, i, *ia = A->ia, *ja = A->ja, j, deg; |
| 1836 | int res = FALSE; |
| 1837 | m = A->m; |
| 1838 | mask = MALLOC(sizeof(int)*(m+1)); |
| 1839 | |
| 1840 | for (i = 0; i < m + 1; i++){ |
| 1841 | mask[i] = 0; |
| 1842 | } |
| 1843 | |
| 1844 | for (i = 0; i < m; i++){ |
| 1845 | deg = 0; |
| 1846 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1847 | if (i == ja[j]) continue; |
| 1848 | deg++; |
| 1849 | } |
| 1850 | mask[deg]++; |
| 1851 | max = MAX(max, mask[deg]); |
| 1852 | } |
| 1853 | if (mask[1] > 0.8*max && mask[1] > 0.3*m) res = TRUE; |
| 1854 | FREE(mask); |
| 1855 | return res; |
| 1856 | } |
| 1857 | |
| 1858 | void pcp_rotate(int n, int dim, real *x){ |
| 1859 | int i, k,l; |
| 1860 | real y[4], axis[2], center[2], dist, x0, x1; |
| 1861 | |
| 1862 | assert(dim == 2); |
| 1863 | for (i = 0; i < dim*dim; i++) y[i] = 0; |
| 1864 | for (i = 0; i < dim; i++) center[i] = 0; |
| 1865 | for (i = 0; i < n; i++){ |
| 1866 | for (k = 0; k < dim; k++){ |
| 1867 | center[k] += x[i*dim+k]; |
| 1868 | } |
| 1869 | } |
| 1870 | for (i = 0; i < dim; i++) center[i] /= n; |
| 1871 | for (i = 0; i < n; i++){ |
| 1872 | for (k = 0; k < dim; k++){ |
| 1873 | x[dim*i+k] = x[dim*i+k] - center[k]; |
| 1874 | } |
| 1875 | } |
| 1876 | |
| 1877 | for (i = 0; i < n; i++){ |
| 1878 | for (k = 0; k < dim; k++){ |
| 1879 | for (l = 0; l < dim; l++){ |
| 1880 | y[dim*k+l] += x[i*dim+k]*x[i*dim+l]; |
| 1881 | } |
| 1882 | } |
| 1883 | } |
| 1884 | if (y[1] == 0) { |
| 1885 | axis[0] = 0; axis[1] = 1; |
| 1886 | } else { |
| 1887 | /* Eigensystem[{{x0, x1}, {x1, x3}}] = |
| 1888 | {{(x0 + x3 - Sqrt[x0^2 + 4*x1^2 - 2*x0*x3 + x3^2])/2, |
| 1889 | (x0 + x3 + Sqrt[x0^2 + 4*x1^2 - 2*x0*x3 + x3^2])/2}, |
| 1890 | {{-(-x0 + x3 + Sqrt[x0^2 + 4*x1^2 - 2*x0*x3 + x3^2])/(2*x1), 1}, |
| 1891 | {-(-x0 + x3 - Sqrt[x0^2 + 4*x1^2 - 2*x0*x3 + x3^2])/(2*x1), 1}}} |
| 1892 | */ |
| 1893 | axis[0] = -(-y[0] + y[3] - sqrt(y[0]*y[0]+4*y[1]*y[1]-2*y[0]*y[3]+y[3]*y[3]))/(2*y[1]); |
| 1894 | axis[1] = 1; |
| 1895 | } |
| 1896 | dist = sqrt(1+axis[0]*axis[0]); |
| 1897 | axis[0] = axis[0]/dist; |
| 1898 | axis[1] = axis[1]/dist; |
| 1899 | for (i = 0; i < n; i++){ |
| 1900 | x0 = x[dim*i]*axis[0]+x[dim*i+1]*axis[1]; |
| 1901 | x1 = -x[dim*i]*axis[1]+x[dim*i+1]*axis[0]; |
| 1902 | x[dim*i] = x0; |
| 1903 | x[dim*i + 1] = x1; |
| 1904 | |
| 1905 | } |
| 1906 | |
| 1907 | |
| 1908 | } |
| 1909 | |
| 1910 | static void rotate(int n, int dim, real *x, real angle){ |
| 1911 | int i, k; |
| 1912 | real axis[2], center[2], x0, x1; |
| 1913 | real radian = 3.14159/180; |
| 1914 | |
| 1915 | assert(dim == 2); |
| 1916 | for (i = 0; i < dim; i++) center[i] = 0; |
| 1917 | for (i = 0; i < n; i++){ |
| 1918 | for (k = 0; k < dim; k++){ |
| 1919 | center[k] += x[i*dim+k]; |
| 1920 | } |
| 1921 | } |
| 1922 | for (i = 0; i < dim; i++) center[i] /= n; |
| 1923 | for (i = 0; i < n; i++){ |
| 1924 | for (k = 0; k < dim; k++){ |
| 1925 | x[dim*i+k] = x[dim*i+k] - center[k]; |
| 1926 | } |
| 1927 | } |
| 1928 | axis[0] = cos(-angle*radian); |
| 1929 | axis[1] = sin(-angle*radian); |
| 1930 | for (i = 0; i < n; i++){ |
| 1931 | x0 = x[dim*i]*axis[0]+x[dim*i+1]*axis[1]; |
| 1932 | x1 = -x[dim*i]*axis[1]+x[dim*i+1]*axis[0]; |
| 1933 | x[dim*i] = x0; |
| 1934 | x[dim*i + 1] = x1; |
| 1935 | } |
| 1936 | |
| 1937 | |
| 1938 | } |
| 1939 | |
| 1940 | static void attach_edge_label_coordinates(int dim, SparseMatrix A, int n_edge_label_nodes, int *edge_label_nodes, real *x, real *x2){ |
| 1941 | int *mask; |
| 1942 | int i, ii, j, k; |
| 1943 | int nnodes = 0; |
| 1944 | real len; |
| 1945 | |
| 1946 | mask = MALLOC(sizeof(int)*A->m); |
| 1947 | |
| 1948 | for (i = 0; i < A->m; i++) mask[i] = 1; |
| 1949 | for (i = 0; i < n_edge_label_nodes; i++) { |
| 1950 | if (edge_label_nodes[i] >= 0 && edge_label_nodes[i] < A->m) mask[edge_label_nodes[i]] = -1; |
| 1951 | } |
| 1952 | |
| 1953 | for (i = 0; i < A->m; i++) { |
| 1954 | if (mask[i] >= 0) mask[i] = nnodes++; |
| 1955 | } |
| 1956 | |
| 1957 | |
| 1958 | for (i = 0; i < A->m; i++){ |
| 1959 | if (mask[i] >= 0){ |
| 1960 | for (k = 0; k < dim; k++) x[i*dim+k] = x2[mask[i]*dim+k]; |
| 1961 | } |
| 1962 | } |
| 1963 | |
| 1964 | for (i = 0; i < n_edge_label_nodes; i++){ |
| 1965 | ii = edge_label_nodes[i]; |
| 1966 | len = A->ia[ii+1] - A->ia[ii]; |
| 1967 | assert(len >= 2); /* should just be 2 */ |
| 1968 | assert(mask[ii] < 0); |
| 1969 | for (k = 0; k < dim; k++) { |
| 1970 | x[ii*dim+k] = 0; |
| 1971 | } |
| 1972 | for (j = A->ia[ii]; j < A->ia[ii+1]; j++){ |
| 1973 | for (k = 0; k < dim; k++){ |
| 1974 | x[ii*dim+k] += x[(A->ja[j])*dim+k]; |
| 1975 | } |
| 1976 | } |
| 1977 | for (k = 0; k < dim; k++) { |
| 1978 | x[ii*dim+k] /= len; |
| 1979 | } |
| 1980 | } |
| 1981 | |
| 1982 | FREE(mask); |
| 1983 | } |
| 1984 | |
| 1985 | static SparseMatrix shorting_edge_label_nodes(SparseMatrix A, int n_edge_label_nodes, int *edge_label_nodes){ |
| 1986 | int *mask; |
| 1987 | int i, id = 0, nz, j, jj, ii; |
| 1988 | int *ia = A->ia, *ja = A->ja, *irn = NULL, *jcn = NULL; |
| 1989 | SparseMatrix B; |
| 1990 | |
| 1991 | mask = MALLOC(sizeof(int)*A->m); |
| 1992 | |
| 1993 | for (i = 0; i < A->m; i++) mask[i] = 1; |
| 1994 | |
| 1995 | for (i = 0; i < n_edge_label_nodes; i++){ |
| 1996 | mask[edge_label_nodes[i]] = -1; |
| 1997 | } |
| 1998 | |
| 1999 | for (i = 0; i < A->m; i++) { |
| 2000 | if (mask[i] > 0) mask[i] = id++; |
| 2001 | } |
| 2002 | |
| 2003 | nz = 0; |
| 2004 | for (i = 0; i < A->m; i++){ |
| 2005 | if (mask[i] < 0) continue; |
| 2006 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 2007 | if (mask[ja[j]] >= 0) { |
| 2008 | nz++; |
| 2009 | continue; |
| 2010 | } |
| 2011 | ii = ja[j]; |
| 2012 | for (jj = ia[ii]; jj < ia[ii+1]; jj++){ |
| 2013 | if (ja[jj] != i && mask[ja[jj]] >= 0) nz++; |
| 2014 | } |
| 2015 | } |
| 2016 | } |
| 2017 | |
| 2018 | if (nz > 0) { |
| 2019 | irn = MALLOC(sizeof(int)*nz); |
| 2020 | jcn = MALLOC(sizeof(int)*nz); |
| 2021 | } |
| 2022 | |
| 2023 | nz = 0; |
| 2024 | for (i = 0; i < A->m; i++){ |
| 2025 | if (mask[i] < 0) continue; |
| 2026 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 2027 | if (mask[ja[j]] >= 0) { |
| 2028 | irn[nz] = mask[i]; |
| 2029 | jcn[nz++] = mask[ja[j]]; |
| 2030 | continue; |
| 2031 | } |
| 2032 | ii = ja[j]; |
| 2033 | for (jj = ia[ii]; jj < ia[ii+1]; jj++){ |
| 2034 | if (ja[jj] != i && mask[ja[jj]] >= 0) { |
| 2035 | irn[nz] = mask[i]; |
| 2036 | jcn[nz++] = mask[ja[jj]]; |
| 2037 | if (mask[i] == 68 || mask[ja[jj]] == 68){ |
| 2038 | fprintf(stderr, "%d %d\n" ,mask[i], mask[ja[jj]]); |
| 2039 | mask[i] = mask[i]; |
| 2040 | } |
| 2041 | } |
| 2042 | } |
| 2043 | } |
| 2044 | } |
| 2045 | |
| 2046 | B = SparseMatrix_from_coordinate_arrays(nz, id, id, irn, jcn, NULL, MATRIX_TYPE_PATTERN, sizeof(real)); |
| 2047 | |
| 2048 | FREE(irn); |
| 2049 | FREE(jcn); |
| 2050 | FREE(mask); |
| 2051 | return B; |
| 2052 | |
| 2053 | } |
| 2054 | |
| 2055 | static void multilevel_spring_electrical_embedding_core(int dim, SparseMatrix A0, SparseMatrix D0, spring_electrical_control ctrl, real *node_weights, real *label_sizes, |
| 2056 | real *x, int n_edge_label_nodes, int *edge_label_nodes, int *flag){ |
| 2057 | |
| 2058 | |
| 2059 | Multilevel_control mctrl = NULL; |
| 2060 | int n, plg, coarsen_scheme_used; |
| 2061 | SparseMatrix A = A0, D = D0, P = NULL; |
| 2062 | Multilevel grid, grid0; |
| 2063 | real *xc = NULL, *xf = NULL; |
| 2064 | struct spring_electrical_control_struct ctrl0; |
| 2065 | #ifdef TIME |
| 2066 | clock_t cpu; |
| 2067 | #endif |
| 2068 | |
| 2069 | ctrl0 = *ctrl; |
| 2070 | |
| 2071 | #ifdef TIME |
| 2072 | cpu = clock(); |
| 2073 | #endif |
| 2074 | |
| 2075 | *flag = 0; |
| 2076 | if (!A) return; |
| 2077 | n = A->n; |
| 2078 | if (n <= 0 || dim <= 0) return; |
| 2079 | |
| 2080 | if (!SparseMatrix_is_symmetric(A, FALSE) || A->type != MATRIX_TYPE_REAL){ |
| 2081 | if (ctrl->method == METHOD_SPRING_MAXENT){ |
| 2082 | A = SparseMatrix_symmetrize_nodiag(A, FALSE); |
| 2083 | assert(D0); |
| 2084 | D = SparseMatrix_symmetrize_nodiag(D, FALSE); |
| 2085 | } else { |
| 2086 | A = SparseMatrix_get_real_adjacency_matrix_symmetrized(A); |
| 2087 | } |
| 2088 | } else { |
| 2089 | if (ctrl->method == METHOD_SPRING_MAXENT){ |
| 2090 | assert(D0); |
| 2091 | D = SparseMatrix_remove_diagonal(D); |
| 2092 | } |
| 2093 | A = SparseMatrix_remove_diagonal(A); |
| 2094 | } |
| 2095 | |
| 2096 | /* we first generate a layout discarding (shorting) the edge labels nodes, then assign the edge label nodes at the average of their neighbors */ |
| 2097 | if ((ctrl->edge_labeling_scheme == ELSCHEME_STRAIGHTLINE_PENALTY || ctrl->edge_labeling_scheme == ELSCHEME_STRAIGHTLINE_PENALTY2) |
| 2098 | && n_edge_label_nodes > 0){ |
| 2099 | SparseMatrix A2; |
| 2100 | |
| 2101 | real *x2 = MALLOC(sizeof(real)*(A->m)*dim); |
| 2102 | A2 = shorting_edge_label_nodes(A, n_edge_label_nodes, edge_label_nodes); |
| 2103 | multilevel_spring_electrical_embedding(dim, A2, NULL, ctrl, NULL, NULL, x2, 0, NULL, flag); |
| 2104 | |
| 2105 | assert(!(*flag)); |
| 2106 | attach_edge_label_coordinates(dim, A, n_edge_label_nodes, edge_label_nodes, x, x2); |
| 2107 | remove_overlap(dim, A, x, label_sizes, ctrl->overlap, ctrl->initial_scaling, |
| 2108 | ctrl->edge_labeling_scheme, n_edge_label_nodes, edge_label_nodes, A, ctrl->do_shrinking, flag); |
| 2109 | SparseMatrix_delete(A2); |
| 2110 | FREE(x2); |
| 2111 | if (A != A0) SparseMatrix_delete(A); |
| 2112 | |
| 2113 | return; |
| 2114 | } |
| 2115 | |
| 2116 | mctrl = Multilevel_control_new(ctrl->multilevel_coarsen_scheme, ctrl->multilevel_coarsen_mode); |
| 2117 | mctrl->maxlevel = ctrl->multilevels; |
| 2118 | grid0 = Multilevel_new(A, D, node_weights, mctrl); |
| 2119 | |
| 2120 | grid = Multilevel_get_coarsest(grid0); |
| 2121 | if (Multilevel_is_finest(grid)){ |
| 2122 | xc = x; |
| 2123 | } else { |
| 2124 | xc = MALLOC(sizeof(real)*grid->n*dim); |
| 2125 | } |
| 2126 | |
| 2127 | plg = power_law_graph(A); |
| 2128 | if (ctrl->p == AUTOP){ |
| 2129 | ctrl->p = -1; |
| 2130 | if (plg) ctrl->p = -1.8; |
| 2131 | } |
| 2132 | |
| 2133 | do { |
| 2134 | #ifdef DEBUG_PRINT |
| 2135 | if (Verbose) { |
| 2136 | print_padding(grid->level); |
| 2137 | if (Multilevel_is_coarsest(grid)){ |
| 2138 | fprintf(stderr, "coarsest level -- %d, n = %d\n" , grid->level, grid->n); |
| 2139 | } else { |
| 2140 | fprintf(stderr, "level -- %d, n = %d\n" , grid->level, grid->n); |
| 2141 | } |
| 2142 | } |
| 2143 | #endif |
| 2144 | if (ctrl->method == METHOD_SPRING_ELECTRICAL){ |
| 2145 | if (ctrl->tscheme == QUAD_TREE_NONE){ |
| 2146 | spring_electrical_embedding_slow(dim, grid->A, ctrl, grid->node_weights, xc, flag); |
| 2147 | } else if (ctrl->tscheme == QUAD_TREE_FAST || (ctrl->tscheme == QUAD_TREE_HYBRID && grid->A->m > QUAD_TREE_HYBRID_SIZE)){ |
| 2148 | if (ctrl->tscheme == QUAD_TREE_HYBRID && grid->A->m > 10 && Verbose){ |
| 2149 | fprintf(stderr, "QUAD_TREE_HYBRID, size larger than %d, switch to fast quadtree" , QUAD_TREE_HYBRID_SIZE); |
| 2150 | } |
| 2151 | spring_electrical_embedding_fast(dim, grid->A, ctrl, grid->node_weights, xc, flag); |
| 2152 | } else if (ctrl->tscheme == QUAD_TREE_NORMAL){ |
| 2153 | spring_electrical_embedding(dim, grid->A, ctrl, grid->node_weights, xc, flag); |
| 2154 | } else { |
| 2155 | spring_electrical_embedding(dim, grid->A, ctrl, grid->node_weights, xc, flag); |
| 2156 | } |
| 2157 | } else if (ctrl->method == METHOD_SPRING_MAXENT){ |
| 2158 | double rho = 0.05; |
| 2159 | |
| 2160 | ctrl->step = 1; |
| 2161 | ctrl->adaptive_cooling = TRUE; |
| 2162 | if (Multilevel_is_coarsest(grid)){ |
| 2163 | ctrl->maxiter=500; |
| 2164 | rho = 0.5; |
| 2165 | } else { |
| 2166 | ctrl->maxiter=100; |
| 2167 | } |
| 2168 | |
| 2169 | if (Multilevel_is_finest(grid)) {/* gradually reduce influence of entropy */ |
| 2170 | spring_maxent_embedding(dim, grid->A, grid->D, ctrl, grid->node_weights, xc, rho, flag); |
| 2171 | ctrl->random_start = FALSE; |
| 2172 | ctrl->step = .05; |
| 2173 | ctrl->adaptive_cooling = FALSE; |
| 2174 | spring_maxent_embedding(dim, grid->A, grid->D, ctrl, grid->node_weights, xc, rho/2, flag); |
| 2175 | spring_maxent_embedding(dim, grid->A, grid->D, ctrl, grid->node_weights, xc, rho/8, flag); |
| 2176 | spring_maxent_embedding(dim, grid->A, grid->D, ctrl, grid->node_weights, xc, rho/32, flag); |
| 2177 | } else { |
| 2178 | spring_maxent_embedding(dim, grid->A, grid->D, ctrl, grid->node_weights, xc, rho, flag); |
| 2179 | } |
| 2180 | } else { |
| 2181 | assert(0); |
| 2182 | } |
| 2183 | if (Multilevel_is_finest(grid)) break; |
| 2184 | if (*flag) { |
| 2185 | FREE(xc); |
| 2186 | goto RETURN; |
| 2187 | } |
| 2188 | P = grid->P; |
| 2189 | coarsen_scheme_used = grid->coarsen_scheme_used; |
| 2190 | grid = grid->prev; |
| 2191 | if (Multilevel_is_finest(grid)){ |
| 2192 | xf = x; |
| 2193 | } else { |
| 2194 | xf = MALLOC(sizeof(real)*grid->n*dim); |
| 2195 | } |
| 2196 | prolongate(dim, grid->A, P, grid->R, xc, xf, coarsen_scheme_used, (ctrl->K)*0.001); |
| 2197 | FREE(xc); |
| 2198 | xc = xf; |
| 2199 | ctrl->random_start = FALSE; |
| 2200 | ctrl->K = ctrl->K * 0.75; |
| 2201 | ctrl->adaptive_cooling = FALSE; |
| 2202 | if (grid->next->coarsen_scheme_used > VERTEX_BASED_STA && |
| 2203 | grid->next->coarsen_scheme_used < VERTEX_BASED_STO){ |
| 2204 | ctrl->step = 1; |
| 2205 | } else { |
| 2206 | ctrl->step = .1; |
| 2207 | } |
| 2208 | } while (grid); |
| 2209 | |
| 2210 | #ifdef TIME |
| 2211 | if (Verbose) |
| 2212 | fprintf(stderr, "layout time %f\n" ,((real) (clock() - cpu)) / CLOCKS_PER_SEC); |
| 2213 | cpu = clock(); |
| 2214 | #endif |
| 2215 | |
| 2216 | post_process_smoothing(dim, A, ctrl, node_weights, x, flag); |
| 2217 | |
| 2218 | if (Verbose) fprintf(stderr, "ctrl->overlap=%d\n" ,ctrl->overlap); |
| 2219 | |
| 2220 | /* rotation has to be done before overlap removal, since rotation could induce overlaps */ |
| 2221 | if (dim == 2){ |
| 2222 | pcp_rotate(n, dim, x); |
| 2223 | } |
| 2224 | if (ctrl->rotation != 0) rotate(n, dim, x, ctrl->rotation); |
| 2225 | |
| 2226 | |
| 2227 | remove_overlap(dim, A, x, label_sizes, ctrl->overlap, ctrl->initial_scaling, |
| 2228 | ctrl->edge_labeling_scheme, n_edge_label_nodes, edge_label_nodes, A, ctrl->do_shrinking, flag); |
| 2229 | |
| 2230 | RETURN: |
| 2231 | *ctrl = ctrl0; |
| 2232 | if (A != A0) SparseMatrix_delete(A); |
| 2233 | if (D && D != D0) SparseMatrix_delete(D); |
| 2234 | Multilevel_control_delete(mctrl); |
| 2235 | Multilevel_delete(grid0); |
| 2236 | } |
| 2237 | |
| 2238 | #ifdef GVIEWER |
| 2239 | struct multilevel_spring_electrical_embedding_data { |
| 2240 | int dim; |
| 2241 | SparseMatrix A; |
| 2242 | SparseMatrix D; |
| 2243 | spring_electrical_control ctrl; |
| 2244 | real *node_weights; |
| 2245 | real *label_sizes; |
| 2246 | real *x; |
| 2247 | int n_edge_label_nodes; |
| 2248 | int *edge_label_nodes; |
| 2249 | int *flag; |
| 2250 | }; |
| 2251 | |
| 2252 | void multilevel_spring_electrical_embedding_gv(void* data){ |
| 2253 | struct multilevel_spring_electrical_embedding_data* d; |
| 2254 | |
| 2255 | d = (struct multilevel_spring_electrical_embedding_data*) data; |
| 2256 | multilevel_spring_electrical_embedding_core(d->dim, d->A, d->D, d->ctrl, d->node_weights, d->label_sizes, d->x, d->n_edge_label_nodes, d->edge_label_nodes, d->flag); |
| 2257 | gviewer_reset_graph_coord(d->A, d->dim, d->x);/* A inside spring_electrical gets deleted */ |
| 2258 | } |
| 2259 | void multilevel_spring_electrical_embedding(int dim, SparseMatrix A, SparseMatrix D, spring_electrical_control ctrl, real *node_weights, real *label_sizes, |
| 2260 | real *x, int n_edge_label_nodes, int *edge_label_nodes, int *flag){ |
| 2261 | struct multilevel_spring_electrical_embedding_data data = {dim, A, D, ctrl, node_weights, label_sizes, x, n_edge_label_nodes, edge_label_nodes, flag}; |
| 2262 | |
| 2263 | int argcc = 1; |
| 2264 | char **argvv; |
| 2265 | |
| 2266 | if (!Gviewer) return multilevel_spring_electrical_embedding_core(dim, A, D, ctrl, node_weights, label_sizes, x, n_edge_label_nodes, edge_label_nodes, flag); |
| 2267 | |
| 2268 | argcc = 1; |
| 2269 | argvv = malloc(sizeof(char*)*argcc); |
| 2270 | argvv[0] = malloc(sizeof(char)); |
| 2271 | argvv[0][0] = '1'; |
| 2272 | |
| 2273 | gviewer_set_edge_color_scheme(COLOR_SCHEME_NO); |
| 2274 | //gviewer_set_edge_color_scheme(COLOR_SCHEME_MEDIAN_AS_GREEN); |
| 2275 | gviewer_toggle_bgcolor(); |
| 2276 | //gviewer_toggle_vertex(); |
| 2277 | //gviewer_init(&argcc, argvv, 0.01, 20, 60, 2*1010, 2*770, A, dim, x, &(data), multilevel_spring_electrical_embedding_gv); |
| 2278 | gviewer_init(&argcc, argvv, 0.01, 20, 60, 320, 320, A, dim, x, &(data), multilevel_spring_electrical_embedding_gv); |
| 2279 | free(argvv); |
| 2280 | |
| 2281 | } |
| 2282 | #else |
| 2283 | void multilevel_spring_electrical_embedding(int dim, SparseMatrix A, SparseMatrix D, spring_electrical_control ctrl, real *node_weights, real *label_sizes, |
| 2284 | real *x, int n_edge_label_nodes, int *edge_label_nodes, int *flag){ |
| 2285 | multilevel_spring_electrical_embedding_core(dim, A, D, ctrl, node_weights, label_sizes, x, n_edge_label_nodes, edge_label_nodes, flag); |
| 2286 | } |
| 2287 | #endif |
| 2288 | |