| 1 | /* $Id$Revision: */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | #include <stdio.h> |
| 15 | #include <string.h> |
| 16 | #include <math.h> |
| 17 | #include <assert.h> |
| 18 | #include "logic.h" |
| 19 | #include "memory.h" |
| 20 | #include "arith.h" |
| 21 | #include "SparseMatrix.h" |
| 22 | #include "BinaryHeap.h" |
| 23 | #if PQ |
| 24 | #include "LinkedList.h" |
| 25 | #include "PriorityQueue.h" |
| 26 | #endif |
| 27 | |
| 28 | static size_t size_of_matrix_type(int type){ |
| 29 | int size = 0; |
| 30 | switch (type){ |
| 31 | case MATRIX_TYPE_REAL: |
| 32 | size = sizeof(real); |
| 33 | break; |
| 34 | case MATRIX_TYPE_COMPLEX: |
| 35 | size = 2*sizeof(real); |
| 36 | break; |
| 37 | case MATRIX_TYPE_INTEGER: |
| 38 | size = sizeof(int); |
| 39 | break; |
| 40 | case MATRIX_TYPE_PATTERN: |
| 41 | size = 0; |
| 42 | break; |
| 43 | case MATRIX_TYPE_UNKNOWN: |
| 44 | size = 0; |
| 45 | break; |
| 46 | default: |
| 47 | size = 0; |
| 48 | break; |
| 49 | } |
| 50 | |
| 51 | return size; |
| 52 | } |
| 53 | |
| 54 | SparseMatrix SparseMatrix_sort(SparseMatrix A){ |
| 55 | SparseMatrix B; |
| 56 | B = SparseMatrix_transpose(A); |
| 57 | SparseMatrix_delete(A); |
| 58 | A = SparseMatrix_transpose(B); |
| 59 | SparseMatrix_delete(B); |
| 60 | return A; |
| 61 | } |
| 62 | SparseMatrix SparseMatrix_make_undirected(SparseMatrix A){ |
| 63 | /* make it strictly low diag only, and set flag to undirected */ |
| 64 | SparseMatrix B; |
| 65 | B = SparseMatrix_symmetrize(A, FALSE); |
| 66 | SparseMatrix_set_undirected(B); |
| 67 | return SparseMatrix_remove_upper(B); |
| 68 | } |
| 69 | SparseMatrix SparseMatrix_transpose(SparseMatrix A){ |
| 70 | if (!A) return NULL; |
| 71 | |
| 72 | int *ia = A->ia, *ja = A->ja, *ib, *jb, nz = A->nz, m = A->m, n = A->n, type = A->type, format = A->format; |
| 73 | SparseMatrix B; |
| 74 | int i, j; |
| 75 | |
| 76 | assert(A->format == FORMAT_CSR);/* only implemented for CSR right now */ |
| 77 | |
| 78 | B = SparseMatrix_new(n, m, nz, type, format); |
| 79 | B->nz = nz; |
| 80 | ib = B->ia; |
| 81 | jb = B->ja; |
| 82 | |
| 83 | for (i = 0; i <= n; i++) ib[i] = 0; |
| 84 | for (i = 0; i < m; i++){ |
| 85 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 86 | ib[ja[j]+1]++; |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | for (i = 0; i < n; i++) ib[i+1] += ib[i]; |
| 91 | |
| 92 | switch (A->type){ |
| 93 | case MATRIX_TYPE_REAL:{ |
| 94 | real *a = (real*) A->a; |
| 95 | real *b = (real*) B->a; |
| 96 | for (i = 0; i < m; i++){ |
| 97 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 98 | jb[ib[ja[j]]] = i; |
| 99 | b[ib[ja[j]]++] = a[j]; |
| 100 | } |
| 101 | } |
| 102 | break; |
| 103 | } |
| 104 | case MATRIX_TYPE_COMPLEX:{ |
| 105 | real *a = (real*) A->a; |
| 106 | real *b = (real*) B->a; |
| 107 | for (i = 0; i < m; i++){ |
| 108 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 109 | jb[ib[ja[j]]] = i; |
| 110 | b[2*ib[ja[j]]] = a[2*j]; |
| 111 | b[2*ib[ja[j]]+1] = a[2*j+1]; |
| 112 | ib[ja[j]]++; |
| 113 | } |
| 114 | } |
| 115 | break; |
| 116 | } |
| 117 | case MATRIX_TYPE_INTEGER:{ |
| 118 | int *ai = (int*) A->a; |
| 119 | int *bi = (int*) B->a; |
| 120 | for (i = 0; i < m; i++){ |
| 121 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 122 | jb[ib[ja[j]]] = i; |
| 123 | bi[ib[ja[j]]++] = ai[j]; |
| 124 | } |
| 125 | } |
| 126 | break; |
| 127 | } |
| 128 | case MATRIX_TYPE_PATTERN: |
| 129 | for (i = 0; i < m; i++){ |
| 130 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 131 | jb[ib[ja[j]]++] = i; |
| 132 | } |
| 133 | } |
| 134 | break; |
| 135 | case MATRIX_TYPE_UNKNOWN: |
| 136 | SparseMatrix_delete(B); |
| 137 | return NULL; |
| 138 | default: |
| 139 | SparseMatrix_delete(B); |
| 140 | return NULL; |
| 141 | } |
| 142 | |
| 143 | |
| 144 | for (i = n-1; i >= 0; i--) ib[i+1] = ib[i]; |
| 145 | ib[0] = 0; |
| 146 | |
| 147 | |
| 148 | return B; |
| 149 | } |
| 150 | |
| 151 | SparseMatrix SparseMatrix_symmetrize(SparseMatrix A, int pattern_symmetric_only){ |
| 152 | SparseMatrix B; |
| 153 | if (SparseMatrix_is_symmetric(A, pattern_symmetric_only)) return SparseMatrix_copy(A); |
| 154 | B = SparseMatrix_transpose(A); |
| 155 | if (!B) return NULL; |
| 156 | A = SparseMatrix_add(A, B); |
| 157 | SparseMatrix_delete(B); |
| 158 | SparseMatrix_set_symmetric(A); |
| 159 | SparseMatrix_set_pattern_symmetric(A); |
| 160 | return A; |
| 161 | } |
| 162 | |
| 163 | SparseMatrix SparseMatrix_symmetrize_nodiag(SparseMatrix A, int pattern_symmetric_only){ |
| 164 | SparseMatrix B; |
| 165 | if (SparseMatrix_is_symmetric(A, pattern_symmetric_only)) { |
| 166 | B = SparseMatrix_copy(A); |
| 167 | return SparseMatrix_remove_diagonal(B); |
| 168 | } |
| 169 | B = SparseMatrix_transpose(A); |
| 170 | if (!B) return NULL; |
| 171 | A = SparseMatrix_add(A, B); |
| 172 | SparseMatrix_delete(B); |
| 173 | SparseMatrix_set_symmetric(A); |
| 174 | SparseMatrix_set_pattern_symmetric(A); |
| 175 | return SparseMatrix_remove_diagonal(A); |
| 176 | } |
| 177 | |
| 178 | int SparseMatrix_is_symmetric(SparseMatrix A, int test_pattern_symmetry_only){ |
| 179 | if (!A) return FALSE; |
| 180 | |
| 181 | /* assume no repeated entries! */ |
| 182 | SparseMatrix B; |
| 183 | int *ia, *ja, *ib, *jb, type, m; |
| 184 | int *mask; |
| 185 | int res = FALSE; |
| 186 | int i, j; |
| 187 | assert(A->format == FORMAT_CSR);/* only implemented for CSR right now */ |
| 188 | |
| 189 | if (SparseMatrix_known_symmetric(A)) return TRUE; |
| 190 | if (test_pattern_symmetry_only && SparseMatrix_known_strucural_symmetric(A)) return TRUE; |
| 191 | |
| 192 | if (A->m != A->n) return FALSE; |
| 193 | |
| 194 | B = SparseMatrix_transpose(A); |
| 195 | if (!B) return FALSE; |
| 196 | |
| 197 | ia = A->ia; |
| 198 | ja = A->ja; |
| 199 | ib = B->ia; |
| 200 | jb = B->ja; |
| 201 | m = A->m; |
| 202 | |
| 203 | mask = MALLOC(sizeof(int)*((size_t) m)); |
| 204 | for (i = 0; i < m; i++) mask[i] = -1; |
| 205 | |
| 206 | type = A->type; |
| 207 | if (test_pattern_symmetry_only) type = MATRIX_TYPE_PATTERN; |
| 208 | |
| 209 | switch (type){ |
| 210 | case MATRIX_TYPE_REAL:{ |
| 211 | real *a = (real*) A->a; |
| 212 | real *b = (real*) B->a; |
| 213 | for (i = 0; i <= m; i++) if (ia[i] != ib[i]) goto RETURN; |
| 214 | for (i = 0; i < m; i++){ |
| 215 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 216 | mask[ja[j]] = j; |
| 217 | } |
| 218 | for (j = ib[i]; j < ib[i+1]; j++){ |
| 219 | if (mask[jb[j]] < ia[i]) goto RETURN; |
| 220 | } |
| 221 | for (j = ib[i]; j < ib[i+1]; j++){ |
| 222 | if (ABS(b[j] - a[mask[jb[j]]]) > SYMMETRY_EPSILON) goto RETURN; |
| 223 | } |
| 224 | } |
| 225 | res = TRUE; |
| 226 | break; |
| 227 | } |
| 228 | case MATRIX_TYPE_COMPLEX:{ |
| 229 | real *a = (real*) A->a; |
| 230 | real *b = (real*) B->a; |
| 231 | for (i = 0; i <= m; i++) if (ia[i] != ib[i]) goto RETURN; |
| 232 | for (i = 0; i < m; i++){ |
| 233 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 234 | mask[ja[j]] = j; |
| 235 | } |
| 236 | for (j = ib[i]; j < ib[i+1]; j++){ |
| 237 | if (mask[jb[j]] < ia[i]) goto RETURN; |
| 238 | } |
| 239 | for (j = ib[i]; j < ib[i+1]; j++){ |
| 240 | if (ABS(b[2*j] - a[2*mask[jb[j]]]) > SYMMETRY_EPSILON) goto RETURN; |
| 241 | if (ABS(b[2*j+1] - a[2*mask[jb[j]]+1]) > SYMMETRY_EPSILON) goto RETURN; |
| 242 | } |
| 243 | } |
| 244 | res = TRUE; |
| 245 | break; |
| 246 | } |
| 247 | case MATRIX_TYPE_INTEGER:{ |
| 248 | int *ai = (int*) A->a; |
| 249 | int *bi = (int*) B->a; |
| 250 | for (i = 0; i < m; i++){ |
| 251 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 252 | mask[ja[j]] = j; |
| 253 | } |
| 254 | for (j = ib[i]; j < ib[i+1]; j++){ |
| 255 | if (mask[jb[j]] < ia[i]) goto RETURN; |
| 256 | } |
| 257 | for (j = ib[i]; j < ib[i+1]; j++){ |
| 258 | if (bi[j] != ai[mask[jb[j]]]) goto RETURN; |
| 259 | } |
| 260 | } |
| 261 | res = TRUE; |
| 262 | break; |
| 263 | } |
| 264 | case MATRIX_TYPE_PATTERN: |
| 265 | for (i = 0; i < m; i++){ |
| 266 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 267 | mask[ja[j]] = j; |
| 268 | } |
| 269 | for (j = ib[i]; j < ib[i+1]; j++){ |
| 270 | if (mask[jb[j]] < ia[i]) goto RETURN; |
| 271 | } |
| 272 | } |
| 273 | res = TRUE; |
| 274 | break; |
| 275 | case MATRIX_TYPE_UNKNOWN: |
| 276 | goto RETURN; |
| 277 | break; |
| 278 | default: |
| 279 | goto RETURN; |
| 280 | break; |
| 281 | } |
| 282 | |
| 283 | if (test_pattern_symmetry_only){ |
| 284 | SparseMatrix_set_pattern_symmetric(A); |
| 285 | } else { |
| 286 | SparseMatrix_set_symmetric(A); |
| 287 | SparseMatrix_set_pattern_symmetric(A); |
| 288 | } |
| 289 | RETURN: |
| 290 | FREE(mask); |
| 291 | |
| 292 | SparseMatrix_delete(B); |
| 293 | return res; |
| 294 | } |
| 295 | |
| 296 | static SparseMatrix SparseMatrix_init(int m, int n, int type, size_t sz, int format){ |
| 297 | SparseMatrix A; |
| 298 | |
| 299 | |
| 300 | A = MALLOC(sizeof(struct SparseMatrix_struct)); |
| 301 | A->m = m; |
| 302 | A->n = n; |
| 303 | A->nz = 0; |
| 304 | A->nzmax = 0; |
| 305 | A->type = type; |
| 306 | A->size = sz; |
| 307 | switch (format){ |
| 308 | case FORMAT_COORD: |
| 309 | A->ia = NULL; |
| 310 | break; |
| 311 | case FORMAT_CSC: |
| 312 | case FORMAT_CSR: |
| 313 | default: |
| 314 | A->ia = MALLOC(sizeof(int)*((size_t)(m+1))); |
| 315 | } |
| 316 | A->ja = NULL; |
| 317 | A->a = NULL; |
| 318 | A->format = format; |
| 319 | A->property = 0; |
| 320 | clear_flag(A->property, MATRIX_PATTERN_SYMMETRIC); |
| 321 | clear_flag(A->property, MATRIX_SYMMETRIC); |
| 322 | clear_flag(A->property, MATRIX_SKEW); |
| 323 | clear_flag(A->property, MATRIX_HERMITIAN); |
| 324 | return A; |
| 325 | } |
| 326 | |
| 327 | static SparseMatrix SparseMatrix_alloc(SparseMatrix A, int nz){ |
| 328 | int format = A->format; |
| 329 | size_t nz_t = (size_t) nz; /* size_t is 64 bit on 64 bit machine. Using nz*A->size can overflow. */ |
| 330 | |
| 331 | A->a = NULL; |
| 332 | switch (format){ |
| 333 | case FORMAT_COORD: |
| 334 | A->ia = MALLOC(sizeof(int)*nz_t); |
| 335 | A->ja = MALLOC(sizeof(int)*nz_t); |
| 336 | A->a = MALLOC(A->size*nz_t); |
| 337 | break; |
| 338 | case FORMAT_CSR: |
| 339 | case FORMAT_CSC: |
| 340 | default: |
| 341 | A->ja = MALLOC(sizeof(int)*nz_t); |
| 342 | if (A->size > 0 && nz_t > 0) { |
| 343 | A->a = MALLOC(A->size*nz_t); |
| 344 | } |
| 345 | break; |
| 346 | } |
| 347 | A->nzmax = nz; |
| 348 | return A; |
| 349 | } |
| 350 | |
| 351 | static SparseMatrix SparseMatrix_realloc(SparseMatrix A, int nz){ |
| 352 | int format = A->format; |
| 353 | size_t nz_t = (size_t) nz; /* size_t is 64 bit on 64 bit machine. Using nz*A->size can overflow. */ |
| 354 | |
| 355 | switch (format){ |
| 356 | case FORMAT_COORD: |
| 357 | A->ia = REALLOC(A->ia, sizeof(int)*nz_t); |
| 358 | A->ja = REALLOC(A->ja, sizeof(int)*nz_t); |
| 359 | if (A->size > 0) { |
| 360 | if (A->a){ |
| 361 | A->a = REALLOC(A->a, A->size*nz_t); |
| 362 | } else { |
| 363 | A->a = MALLOC(A->size*nz_t); |
| 364 | } |
| 365 | } |
| 366 | break; |
| 367 | case FORMAT_CSR: |
| 368 | case FORMAT_CSC: |
| 369 | default: |
| 370 | A->ja = REALLOC(A->ja, sizeof(int)*nz_t); |
| 371 | if (A->size > 0) { |
| 372 | if (A->a){ |
| 373 | A->a = REALLOC(A->a, A->size*nz_t); |
| 374 | } else { |
| 375 | A->a = MALLOC(A->size*nz_t); |
| 376 | } |
| 377 | } |
| 378 | break; |
| 379 | } |
| 380 | A->nzmax = nz; |
| 381 | return A; |
| 382 | } |
| 383 | |
| 384 | SparseMatrix SparseMatrix_new(int m, int n, int nz, int type, int format){ |
| 385 | /* return a sparse matrix skeleton with row dimension m and storage nz. If nz == 0, |
| 386 | only row pointers are allocated */ |
| 387 | SparseMatrix A; |
| 388 | size_t sz; |
| 389 | |
| 390 | sz = size_of_matrix_type(type); |
| 391 | A = SparseMatrix_init(m, n, type, sz, format); |
| 392 | |
| 393 | if (nz > 0) A = SparseMatrix_alloc(A, nz); |
| 394 | return A; |
| 395 | |
| 396 | } |
| 397 | SparseMatrix SparseMatrix_general_new(int m, int n, int nz, int type, size_t sz, int format){ |
| 398 | /* return a sparse matrix skeleton with row dimension m and storage nz. If nz == 0, |
| 399 | only row pointers are allocated. this is more general and allow elements to be |
| 400 | any data structure, not just real/int/complex etc |
| 401 | */ |
| 402 | SparseMatrix A; |
| 403 | |
| 404 | A = SparseMatrix_init(m, n, type, sz, format); |
| 405 | |
| 406 | if (nz > 0) A = SparseMatrix_alloc(A, nz); |
| 407 | return A; |
| 408 | |
| 409 | } |
| 410 | |
| 411 | void SparseMatrix_delete(SparseMatrix A){ |
| 412 | /* return a sparse matrix skeleton with row dimension m and storage nz. If nz == 0, |
| 413 | only row pointers are allocated */ |
| 414 | if (!A) return; |
| 415 | if (A->ia) FREE(A->ia); |
| 416 | if (A->ja) FREE(A->ja); |
| 417 | if (A->a) FREE(A->a); |
| 418 | FREE(A); |
| 419 | } |
| 420 | void SparseMatrix_print_csr(char *c, SparseMatrix A){ |
| 421 | int *ia, *ja; |
| 422 | real *a; |
| 423 | int *ai; |
| 424 | int i, j, m = A->m; |
| 425 | |
| 426 | assert (A->format == FORMAT_CSR); |
| 427 | printf("%s\n SparseArray[{" ,c); |
| 428 | ia = A->ia; |
| 429 | ja = A->ja; |
| 430 | a = A->a; |
| 431 | switch (A->type){ |
| 432 | case MATRIX_TYPE_REAL: |
| 433 | a = (real*) A->a; |
| 434 | for (i = 0; i < m; i++){ |
| 435 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 436 | printf("{%d, %d}->%f" ,i+1, ja[j]+1, a[j]); |
| 437 | if (j != ia[m]-1) printf("," ); |
| 438 | } |
| 439 | } |
| 440 | break; |
| 441 | case MATRIX_TYPE_COMPLEX: |
| 442 | a = (real*) A->a; |
| 443 | for (i = 0; i < m; i++){ |
| 444 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 445 | printf("{%d, %d}->%f + %f I" ,i+1, ja[j]+1, a[2*j], a[2*j+1]); |
| 446 | if (j != ia[m]-1) printf("," ); |
| 447 | } |
| 448 | } |
| 449 | printf("\n" ); |
| 450 | break; |
| 451 | case MATRIX_TYPE_INTEGER: |
| 452 | ai = (int*) A->a; |
| 453 | for (i = 0; i < m; i++){ |
| 454 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 455 | printf("{%d, %d}->%d" ,i+1, ja[j]+1, ai[j]); |
| 456 | if (j != ia[m]-1) printf("," ); |
| 457 | } |
| 458 | } |
| 459 | printf("\n" ); |
| 460 | break; |
| 461 | case MATRIX_TYPE_PATTERN: |
| 462 | for (i = 0; i < m; i++){ |
| 463 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 464 | printf("{%d, %d}->_" ,i+1, ja[j]+1); |
| 465 | if (j != ia[m]-1) printf("," ); |
| 466 | } |
| 467 | } |
| 468 | printf("\n" ); |
| 469 | break; |
| 470 | case MATRIX_TYPE_UNKNOWN: |
| 471 | return; |
| 472 | default: |
| 473 | return; |
| 474 | } |
| 475 | printf("},{%d, %d}]\n" , m, A->n); |
| 476 | |
| 477 | } |
| 478 | |
| 479 | |
| 480 | |
| 481 | void SparseMatrix_print_coord(char *c, SparseMatrix A){ |
| 482 | int *ia, *ja; |
| 483 | real *a; |
| 484 | int *ai; |
| 485 | int i, m = A->m; |
| 486 | |
| 487 | assert (A->format == FORMAT_COORD); |
| 488 | printf("%s\n SparseArray[{" ,c); |
| 489 | ia = A->ia; |
| 490 | ja = A->ja; |
| 491 | a = A->a; |
| 492 | switch (A->type){ |
| 493 | case MATRIX_TYPE_REAL: |
| 494 | a = (real*) A->a; |
| 495 | for (i = 0; i < A->nz; i++){ |
| 496 | printf("{%d, %d}->%f" ,ia[i]+1, ja[i]+1, a[i]); |
| 497 | if (i != A->nz - 1) printf("," ); |
| 498 | } |
| 499 | printf("\n" ); |
| 500 | break; |
| 501 | case MATRIX_TYPE_COMPLEX: |
| 502 | a = (real*) A->a; |
| 503 | for (i = 0; i < A->nz; i++){ |
| 504 | printf("{%d, %d}->%f + %f I" ,ia[i]+1, ja[i]+1, a[2*i], a[2*i+1]); |
| 505 | if (i != A->nz - 1) printf("," ); |
| 506 | } |
| 507 | printf("\n" ); |
| 508 | break; |
| 509 | case MATRIX_TYPE_INTEGER: |
| 510 | ai = (int*) A->a; |
| 511 | for (i = 0; i < A->nz; i++){ |
| 512 | printf("{%d, %d}->%d" ,ia[i]+1, ja[i]+1, ai[i]); |
| 513 | if (i != A->nz) printf("," ); |
| 514 | } |
| 515 | printf("\n" ); |
| 516 | break; |
| 517 | case MATRIX_TYPE_PATTERN: |
| 518 | for (i = 0; i < A->nz; i++){ |
| 519 | printf("{%d, %d}->_" ,ia[i]+1, ja[i]+1); |
| 520 | if (i != A->nz - 1) printf("," ); |
| 521 | } |
| 522 | printf("\n" ); |
| 523 | break; |
| 524 | case MATRIX_TYPE_UNKNOWN: |
| 525 | return; |
| 526 | default: |
| 527 | return; |
| 528 | } |
| 529 | printf("},{%d, %d}]\n" , m, A->n); |
| 530 | |
| 531 | } |
| 532 | |
| 533 | |
| 534 | |
| 535 | |
| 536 | void SparseMatrix_print(char *c, SparseMatrix A){ |
| 537 | switch (A->format){ |
| 538 | case FORMAT_CSR: |
| 539 | SparseMatrix_print_csr(c, A); |
| 540 | break; |
| 541 | case FORMAT_CSC: |
| 542 | assert(0);/* not implemented yet... |
| 543 | SparseMatrix_print_csc(c, A);*/ |
| 544 | break; |
| 545 | case FORMAT_COORD: |
| 546 | SparseMatrix_print_coord(c, A); |
| 547 | break; |
| 548 | default: |
| 549 | assert(0); |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | |
| 554 | |
| 555 | |
| 556 | |
| 557 | static void SparseMatrix_export_csr(FILE *f, SparseMatrix A){ |
| 558 | int *ia, *ja; |
| 559 | real *a; |
| 560 | int *ai; |
| 561 | int i, j, m = A->m; |
| 562 | |
| 563 | switch (A->type){ |
| 564 | case MATRIX_TYPE_REAL: |
| 565 | fprintf(f,"%%%%MatrixMarket matrix coordinate real general\n" ); |
| 566 | break; |
| 567 | case MATRIX_TYPE_COMPLEX: |
| 568 | fprintf(f,"%%%%MatrixMarket matrix coordinate complex general\n" ); |
| 569 | break; |
| 570 | case MATRIX_TYPE_INTEGER: |
| 571 | fprintf(f,"%%%%MatrixMarket matrix coordinate integer general\n" ); |
| 572 | break; |
| 573 | case MATRIX_TYPE_PATTERN: |
| 574 | fprintf(f,"%%%%MatrixMarket matrix coordinate pattern general\n" ); |
| 575 | break; |
| 576 | case MATRIX_TYPE_UNKNOWN: |
| 577 | return; |
| 578 | default: |
| 579 | return; |
| 580 | } |
| 581 | |
| 582 | fprintf(f,"%d %d %d\n" ,A->m,A->n,A->nz); |
| 583 | ia = A->ia; |
| 584 | ja = A->ja; |
| 585 | a = A->a; |
| 586 | switch (A->type){ |
| 587 | case MATRIX_TYPE_REAL: |
| 588 | a = (real*) A->a; |
| 589 | for (i = 0; i < m; i++){ |
| 590 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 591 | fprintf(f, "%d %d %16.8g\n" ,i+1, ja[j]+1, a[j]); |
| 592 | } |
| 593 | } |
| 594 | break; |
| 595 | case MATRIX_TYPE_COMPLEX: |
| 596 | a = (real*) A->a; |
| 597 | for (i = 0; i < m; i++){ |
| 598 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 599 | fprintf(f, "%d %d %16.8g %16.8g\n" ,i+1, ja[j]+1, a[2*j], a[2*j+1]); |
| 600 | } |
| 601 | } |
| 602 | break; |
| 603 | case MATRIX_TYPE_INTEGER: |
| 604 | ai = (int*) A->a; |
| 605 | for (i = 0; i < m; i++){ |
| 606 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 607 | fprintf(f, "%d %d %d\n" ,i+1, ja[j]+1, ai[j]); |
| 608 | } |
| 609 | } |
| 610 | break; |
| 611 | case MATRIX_TYPE_PATTERN: |
| 612 | for (i = 0; i < m; i++){ |
| 613 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 614 | fprintf(f, "%d %d\n" ,i+1, ja[j]+1); |
| 615 | } |
| 616 | } |
| 617 | break; |
| 618 | case MATRIX_TYPE_UNKNOWN: |
| 619 | return; |
| 620 | default: |
| 621 | return; |
| 622 | } |
| 623 | |
| 624 | } |
| 625 | |
| 626 | void SparseMatrix_export_binary_fp(FILE *f, SparseMatrix A){ |
| 627 | |
| 628 | fwrite(&(A->m), sizeof(int), 1, f); |
| 629 | fwrite(&(A->n), sizeof(int), 1, f); |
| 630 | fwrite(&(A->nz), sizeof(int), 1, f); |
| 631 | fwrite(&(A->nzmax), sizeof(int), 1, f); |
| 632 | fwrite(&(A->type), sizeof(int), 1, f); |
| 633 | fwrite(&(A->format), sizeof(int), 1, f); |
| 634 | fwrite(&(A->property), sizeof(int), 1, f); |
| 635 | fwrite(&(A->size), sizeof(size_t), 1, f); |
| 636 | if (A->format == FORMAT_COORD){ |
| 637 | fwrite(A->ia, sizeof(int), A->nz, f); |
| 638 | } else { |
| 639 | fwrite(A->ia, sizeof(int), A->m + 1, f); |
| 640 | } |
| 641 | fwrite(A->ja, sizeof(int), A->nz, f); |
| 642 | if (A->size > 0) fwrite(A->a, A->size, A->nz, f); |
| 643 | |
| 644 | } |
| 645 | |
| 646 | void SparseMatrix_export_binary(char *name, SparseMatrix A, int *flag){ |
| 647 | FILE *f; |
| 648 | |
| 649 | *flag = 0; |
| 650 | f = fopen(name, "wb" ); |
| 651 | if (!f) { |
| 652 | *flag = 1; |
| 653 | return; |
| 654 | } |
| 655 | SparseMatrix_export_binary_fp(f, A); |
| 656 | fclose(f); |
| 657 | |
| 658 | } |
| 659 | |
| 660 | |
| 661 | |
| 662 | SparseMatrix SparseMatrix_import_binary_fp(FILE *f){ |
| 663 | SparseMatrix A = NULL; |
| 664 | int m, n, nz, nzmax, type, format, property, iread; |
| 665 | size_t sz; |
| 666 | |
| 667 | iread = fread(&m, sizeof(int), 1, f); |
| 668 | if (iread != 1) return NULL; |
| 669 | iread = fread(&n, sizeof(int), 1, f); |
| 670 | if (iread != 1) return NULL; |
| 671 | iread = fread(&nz, sizeof(int), 1, f); |
| 672 | if (iread != 1) return NULL; |
| 673 | iread = fread(&nzmax, sizeof(int), 1, f); |
| 674 | if (iread != 1) return NULL; |
| 675 | iread = fread(&type, sizeof(int), 1, f); |
| 676 | if (iread != 1) return NULL; |
| 677 | iread = fread(&format, sizeof(int), 1, f); |
| 678 | if (iread != 1) return NULL; |
| 679 | iread = fread(&property, sizeof(int), 1, f); |
| 680 | if (iread != 1) return NULL; |
| 681 | iread = fread(&sz, sizeof(size_t), 1, f); |
| 682 | if (iread != 1) return NULL; |
| 683 | |
| 684 | A = SparseMatrix_general_new(m, n, nz, type, sz, format); |
| 685 | A->nz = nz; |
| 686 | A->property = property; |
| 687 | |
| 688 | if (format == FORMAT_COORD){ |
| 689 | iread = fread(A->ia, sizeof(int), A->nz, f); |
| 690 | if (iread != A->nz) return NULL; |
| 691 | } else { |
| 692 | iread = fread(A->ia, sizeof(int), A->m + 1, f); |
| 693 | if (iread != A->m + 1) return NULL; |
| 694 | } |
| 695 | iread = fread(A->ja, sizeof(int), A->nz, f); |
| 696 | if (iread != A->nz) return NULL; |
| 697 | |
| 698 | if (A->size > 0) { |
| 699 | iread = fread(A->a, A->size, A->nz, f); |
| 700 | if (iread != A->nz) return NULL; |
| 701 | } |
| 702 | fclose(f); |
| 703 | return A; |
| 704 | } |
| 705 | |
| 706 | |
| 707 | SparseMatrix SparseMatrix_import_binary(char *name){ |
| 708 | SparseMatrix A = NULL; |
| 709 | FILE *f; |
| 710 | f = fopen(name, "rb" ); |
| 711 | |
| 712 | A = SparseMatrix_import_binary_fp(f); |
| 713 | return A; |
| 714 | } |
| 715 | |
| 716 | static void SparseMatrix_export_coord(FILE *f, SparseMatrix A){ |
| 717 | int *ia, *ja; |
| 718 | real *a; |
| 719 | int *ai; |
| 720 | int i; |
| 721 | |
| 722 | switch (A->type){ |
| 723 | case MATRIX_TYPE_REAL: |
| 724 | fprintf(f,"%%%%MatrixMarket matrix coordinate real general\n" ); |
| 725 | break; |
| 726 | case MATRIX_TYPE_COMPLEX: |
| 727 | fprintf(f,"%%%%MatrixMarket matrix coordinate complex general\n" ); |
| 728 | break; |
| 729 | case MATRIX_TYPE_INTEGER: |
| 730 | fprintf(f,"%%%%MatrixMarket matrix coordinate integer general\n" ); |
| 731 | break; |
| 732 | case MATRIX_TYPE_PATTERN: |
| 733 | fprintf(f,"%%%%MatrixMarket matrix coordinate pattern general\n" ); |
| 734 | break; |
| 735 | case MATRIX_TYPE_UNKNOWN: |
| 736 | return; |
| 737 | default: |
| 738 | return; |
| 739 | } |
| 740 | |
| 741 | fprintf(f,"%d %d %d\n" ,A->m,A->n,A->nz); |
| 742 | ia = A->ia; |
| 743 | ja = A->ja; |
| 744 | a = A->a; |
| 745 | switch (A->type){ |
| 746 | case MATRIX_TYPE_REAL: |
| 747 | a = (real*) A->a; |
| 748 | for (i = 0; i < A->nz; i++){ |
| 749 | fprintf(f, "%d %d %16.8g\n" ,ia[i]+1, ja[i]+1, a[i]); |
| 750 | } |
| 751 | break; |
| 752 | case MATRIX_TYPE_COMPLEX: |
| 753 | a = (real*) A->a; |
| 754 | for (i = 0; i < A->nz; i++){ |
| 755 | fprintf(f, "%d %d %16.8g %16.8g\n" ,ia[i]+1, ja[i]+1, a[2*i], a[2*i+1]); |
| 756 | } |
| 757 | break; |
| 758 | case MATRIX_TYPE_INTEGER: |
| 759 | ai = (int*) A->a; |
| 760 | for (i = 0; i < A->nz; i++){ |
| 761 | fprintf(f, "%d %d %d\n" ,ia[i]+1, ja[i]+1, ai[i]); |
| 762 | } |
| 763 | break; |
| 764 | case MATRIX_TYPE_PATTERN: |
| 765 | for (i = 0; i < A->nz; i++){ |
| 766 | fprintf(f, "%d %d\n" ,ia[i]+1, ja[i]+1); |
| 767 | } |
| 768 | break; |
| 769 | case MATRIX_TYPE_UNKNOWN: |
| 770 | return; |
| 771 | default: |
| 772 | return; |
| 773 | } |
| 774 | } |
| 775 | |
| 776 | |
| 777 | |
| 778 | void SparseMatrix_export(FILE *f, SparseMatrix A){ |
| 779 | |
| 780 | switch (A->format){ |
| 781 | case FORMAT_CSR: |
| 782 | SparseMatrix_export_csr(f, A); |
| 783 | break; |
| 784 | case FORMAT_CSC: |
| 785 | assert(0);/* not implemented yet... |
| 786 | SparseMatrix_print_csc(c, A);*/ |
| 787 | break; |
| 788 | case FORMAT_COORD: |
| 789 | SparseMatrix_export_coord(f, A); |
| 790 | break; |
| 791 | default: |
| 792 | assert(0); |
| 793 | } |
| 794 | } |
| 795 | |
| 796 | |
| 797 | SparseMatrix SparseMatrix_from_coordinate_format(SparseMatrix A){ |
| 798 | /* convert a sparse matrix in coordinate form to one in compressed row form.*/ |
| 799 | int *irn, *jcn; |
| 800 | |
| 801 | void *a = A->a; |
| 802 | |
| 803 | assert(A->format == FORMAT_COORD); |
| 804 | if (A->format != FORMAT_COORD) { |
| 805 | return NULL; |
| 806 | } |
| 807 | irn = A->ia; |
| 808 | jcn = A->ja; |
| 809 | return SparseMatrix_from_coordinate_arrays(A->nz, A->m, A->n, irn, jcn, a, A->type, A->size); |
| 810 | |
| 811 | } |
| 812 | SparseMatrix SparseMatrix_from_coordinate_format_not_compacted(SparseMatrix A, int what_to_sum){ |
| 813 | /* convert a sparse matrix in coordinate form to one in compressed row form.*/ |
| 814 | int *irn, *jcn; |
| 815 | |
| 816 | void *a = A->a; |
| 817 | |
| 818 | assert(A->format == FORMAT_COORD); |
| 819 | if (A->format != FORMAT_COORD) { |
| 820 | return NULL; |
| 821 | } |
| 822 | irn = A->ia; |
| 823 | jcn = A->ja; |
| 824 | return SparseMatrix_from_coordinate_arrays_not_compacted(A->nz, A->m, A->n, irn, jcn, a, A->type, A->size, what_to_sum); |
| 825 | |
| 826 | } |
| 827 | |
| 828 | static SparseMatrix SparseMatrix_from_coordinate_arrays_internal(int nz, int m, int n, int *irn, int *jcn, void *val0, int type, size_t sz, int sum_repeated){ |
| 829 | /* convert a sparse matrix in coordinate form to one in compressed row form. |
| 830 | nz: number of entries |
| 831 | irn: row indices 0-based |
| 832 | jcn: column indices 0-based |
| 833 | val values if not NULL |
| 834 | type: matrix type |
| 835 | */ |
| 836 | |
| 837 | SparseMatrix A = NULL; |
| 838 | int *ia, *ja; |
| 839 | real *a, *val; |
| 840 | int *ai, *vali; |
| 841 | int i; |
| 842 | |
| 843 | assert(m > 0 && n > 0 && nz >= 0); |
| 844 | |
| 845 | if (m <=0 || n <= 0 || nz < 0) return NULL; |
| 846 | A = SparseMatrix_general_new(m, n, nz, type, sz, FORMAT_CSR); |
| 847 | assert(A); |
| 848 | if (!A) return NULL; |
| 849 | ia = A->ia; |
| 850 | ja = A->ja; |
| 851 | |
| 852 | for (i = 0; i <= m; i++){ |
| 853 | ia[i] = 0; |
| 854 | } |
| 855 | |
| 856 | switch (type){ |
| 857 | case MATRIX_TYPE_REAL: |
| 858 | val = (real*) val0; |
| 859 | a = (real*) A->a; |
| 860 | for (i = 0; i < nz; i++){ |
| 861 | if (irn[i] < 0 || irn[i] >= m || jcn[i] < 0 || jcn[i] >= n) { |
| 862 | assert(0); |
| 863 | return NULL; |
| 864 | } |
| 865 | ia[irn[i]+1]++; |
| 866 | } |
| 867 | for (i = 0; i < m; i++) ia[i+1] += ia[i]; |
| 868 | for (i = 0; i < nz; i++){ |
| 869 | a[ia[irn[i]]] = val[i]; |
| 870 | ja[ia[irn[i]]++] = jcn[i]; |
| 871 | } |
| 872 | for (i = m; i > 0; i--) ia[i] = ia[i - 1]; |
| 873 | ia[0] = 0; |
| 874 | break; |
| 875 | case MATRIX_TYPE_COMPLEX: |
| 876 | val = (real*) val0; |
| 877 | a = (real*) A->a; |
| 878 | for (i = 0; i < nz; i++){ |
| 879 | if (irn[i] < 0 || irn[i] >= m || jcn[i] < 0 || jcn[i] >= n) { |
| 880 | assert(0); |
| 881 | return NULL; |
| 882 | } |
| 883 | ia[irn[i]+1]++; |
| 884 | } |
| 885 | for (i = 0; i < m; i++) ia[i+1] += ia[i]; |
| 886 | for (i = 0; i < nz; i++){ |
| 887 | a[2*ia[irn[i]]] = *(val++); |
| 888 | a[2*ia[irn[i]]+1] = *(val++); |
| 889 | ja[ia[irn[i]]++] = jcn[i]; |
| 890 | } |
| 891 | for (i = m; i > 0; i--) ia[i] = ia[i - 1]; |
| 892 | ia[0] = 0; |
| 893 | break; |
| 894 | case MATRIX_TYPE_INTEGER: |
| 895 | vali = (int*) val0; |
| 896 | ai = (int*) A->a; |
| 897 | for (i = 0; i < nz; i++){ |
| 898 | if (irn[i] < 0 || irn[i] >= m || jcn[i] < 0 || jcn[i] >= n) { |
| 899 | assert(0); |
| 900 | return NULL; |
| 901 | } |
| 902 | ia[irn[i]+1]++; |
| 903 | } |
| 904 | for (i = 0; i < m; i++) ia[i+1] += ia[i]; |
| 905 | for (i = 0; i < nz; i++){ |
| 906 | ai[ia[irn[i]]] = vali[i]; |
| 907 | ja[ia[irn[i]]++] = jcn[i]; |
| 908 | } |
| 909 | for (i = m; i > 0; i--) ia[i] = ia[i - 1]; |
| 910 | ia[0] = 0; |
| 911 | break; |
| 912 | case MATRIX_TYPE_PATTERN: |
| 913 | for (i = 0; i < nz; i++){ |
| 914 | if (irn[i] < 0 || irn[i] >= m || jcn[i] < 0 || jcn[i] >= n) { |
| 915 | assert(0); |
| 916 | return NULL; |
| 917 | } |
| 918 | ia[irn[i]+1]++; |
| 919 | } |
| 920 | for (i = 0; i < m; i++) ia[i+1] += ia[i]; |
| 921 | for (i = 0; i < nz; i++){ |
| 922 | ja[ia[irn[i]]++] = jcn[i]; |
| 923 | } |
| 924 | for (i = m; i > 0; i--) ia[i] = ia[i - 1]; |
| 925 | ia[0] = 0; |
| 926 | break; |
| 927 | case MATRIX_TYPE_UNKNOWN: |
| 928 | for (i = 0; i < nz; i++){ |
| 929 | if (irn[i] < 0 || irn[i] >= m || jcn[i] < 0 || jcn[i] >= n) { |
| 930 | assert(0); |
| 931 | return NULL; |
| 932 | } |
| 933 | ia[irn[i]+1]++; |
| 934 | } |
| 935 | for (i = 0; i < m; i++) ia[i+1] += ia[i]; |
| 936 | MEMCPY(A->a, val0, A->size*((size_t)nz)); |
| 937 | for (i = 0; i < nz; i++){ |
| 938 | ja[ia[irn[i]]++] = jcn[i]; |
| 939 | } |
| 940 | for (i = m; i > 0; i--) ia[i] = ia[i - 1]; |
| 941 | ia[0] = 0; |
| 942 | break; |
| 943 | default: |
| 944 | assert(0); |
| 945 | return NULL; |
| 946 | } |
| 947 | A->nz = nz; |
| 948 | |
| 949 | |
| 950 | |
| 951 | if(sum_repeated) A = SparseMatrix_sum_repeat_entries(A, sum_repeated); |
| 952 | |
| 953 | return A; |
| 954 | } |
| 955 | |
| 956 | |
| 957 | SparseMatrix SparseMatrix_from_coordinate_arrays(int nz, int m, int n, int *irn, int *jcn, void *val0, int type, size_t sz){ |
| 958 | return SparseMatrix_from_coordinate_arrays_internal(nz, m, n, irn, jcn, val0, type, sz, SUM_REPEATED_ALL); |
| 959 | } |
| 960 | |
| 961 | |
| 962 | SparseMatrix SparseMatrix_from_coordinate_arrays_not_compacted(int nz, int m, int n, int *irn, int *jcn, void *val0, int type, size_t sz, int what_to_sum){ |
| 963 | return SparseMatrix_from_coordinate_arrays_internal(nz, m, n, irn, jcn, val0, type, sz, what_to_sum); |
| 964 | } |
| 965 | |
| 966 | SparseMatrix SparseMatrix_add(SparseMatrix A, SparseMatrix B){ |
| 967 | int m, n; |
| 968 | SparseMatrix C = NULL; |
| 969 | int *mask = NULL; |
| 970 | int *ia = A->ia, *ja = A->ja, *ib = B->ia, *jb = B->ja, *ic, *jc; |
| 971 | int i, j, nz, nzmax; |
| 972 | |
| 973 | assert(A && B); |
| 974 | assert(A->format == B->format && A->format == FORMAT_CSR);/* other format not yet supported */ |
| 975 | assert(A->type == B->type); |
| 976 | m = A->m; |
| 977 | n = A->n; |
| 978 | if (m != B->m || n != B->n) return NULL; |
| 979 | |
| 980 | nzmax = A->nz + B->nz;/* just assume that no entries overlaps for speed */ |
| 981 | |
| 982 | C = SparseMatrix_new(m, n, nzmax, A->type, FORMAT_CSR); |
| 983 | if (!C) goto RETURN; |
| 984 | ic = C->ia; |
| 985 | jc = C->ja; |
| 986 | |
| 987 | mask = MALLOC(sizeof(int)*((size_t) n)); |
| 988 | |
| 989 | for (i = 0; i < n; i++) mask[i] = -1; |
| 990 | |
| 991 | nz = 0; |
| 992 | ic[0] = 0; |
| 993 | switch (A->type){ |
| 994 | case MATRIX_TYPE_REAL:{ |
| 995 | real *a = (real*) A->a; |
| 996 | real *b = (real*) B->a; |
| 997 | real *c = (real*) C->a; |
| 998 | for (i = 0; i < m; i++){ |
| 999 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1000 | mask[ja[j]] = nz; |
| 1001 | jc[nz] = ja[j]; |
| 1002 | c[nz] = a[j]; |
| 1003 | nz++; |
| 1004 | } |
| 1005 | for (j = ib[i]; j < ib[i+1]; j++){ |
| 1006 | if (mask[jb[j]] < ic[i]){ |
| 1007 | jc[nz] = jb[j]; |
| 1008 | c[nz++] = b[j]; |
| 1009 | } else { |
| 1010 | c[mask[jb[j]]] += b[j]; |
| 1011 | } |
| 1012 | } |
| 1013 | ic[i+1] = nz; |
| 1014 | } |
| 1015 | break; |
| 1016 | } |
| 1017 | case MATRIX_TYPE_COMPLEX:{ |
| 1018 | real *a = (real*) A->a; |
| 1019 | real *b = (real*) B->a; |
| 1020 | real *c = (real*) C->a; |
| 1021 | for (i = 0; i < m; i++){ |
| 1022 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1023 | mask[ja[j]] = nz; |
| 1024 | jc[nz] = ja[j]; |
| 1025 | c[2*nz] = a[2*j]; |
| 1026 | c[2*nz+1] = a[2*j+1]; |
| 1027 | nz++; |
| 1028 | } |
| 1029 | for (j = ib[i]; j < ib[i+1]; j++){ |
| 1030 | if (mask[jb[j]] < ic[i]){ |
| 1031 | jc[nz] = jb[j]; |
| 1032 | c[2*nz] = b[2*j]; |
| 1033 | c[2*nz+1] = b[2*j+1]; |
| 1034 | nz++; |
| 1035 | } else { |
| 1036 | c[2*mask[jb[j]]] += b[2*j]; |
| 1037 | c[2*mask[jb[j]]+1] += b[2*j+1]; |
| 1038 | } |
| 1039 | } |
| 1040 | ic[i+1] = nz; |
| 1041 | } |
| 1042 | break; |
| 1043 | } |
| 1044 | case MATRIX_TYPE_INTEGER:{ |
| 1045 | int *a = (int*) A->a; |
| 1046 | int *b = (int*) B->a; |
| 1047 | int *c = (int*) C->a; |
| 1048 | for (i = 0; i < m; i++){ |
| 1049 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1050 | mask[ja[j]] = nz; |
| 1051 | jc[nz] = ja[j]; |
| 1052 | c[nz] = a[j]; |
| 1053 | nz++; |
| 1054 | } |
| 1055 | for (j = ib[i]; j < ib[i+1]; j++){ |
| 1056 | if (mask[jb[j]] < ic[i]){ |
| 1057 | jc[nz] = jb[j]; |
| 1058 | c[nz] = b[j]; |
| 1059 | nz++; |
| 1060 | } else { |
| 1061 | c[mask[jb[j]]] += b[j]; |
| 1062 | } |
| 1063 | } |
| 1064 | ic[i+1] = nz; |
| 1065 | } |
| 1066 | break; |
| 1067 | } |
| 1068 | case MATRIX_TYPE_PATTERN:{ |
| 1069 | for (i = 0; i < m; i++){ |
| 1070 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1071 | mask[ja[j]] = nz; |
| 1072 | jc[nz] = ja[j]; |
| 1073 | nz++; |
| 1074 | } |
| 1075 | for (j = ib[i]; j < ib[i+1]; j++){ |
| 1076 | if (mask[jb[j]] < ic[i]){ |
| 1077 | jc[nz] = jb[j]; |
| 1078 | nz++; |
| 1079 | } |
| 1080 | } |
| 1081 | ic[i+1] = nz; |
| 1082 | } |
| 1083 | break; |
| 1084 | } |
| 1085 | case MATRIX_TYPE_UNKNOWN: |
| 1086 | break; |
| 1087 | default: |
| 1088 | break; |
| 1089 | } |
| 1090 | C->nz = nz; |
| 1091 | |
| 1092 | RETURN: |
| 1093 | if (mask) FREE(mask); |
| 1094 | |
| 1095 | return C; |
| 1096 | } |
| 1097 | |
| 1098 | |
| 1099 | |
| 1100 | static void dense_transpose(real *v, int m, int n){ |
| 1101 | /* transpose an m X n matrix in place. Well, we do no really do it without xtra memory. This is possibe, but too complicated for ow */ |
| 1102 | int i, j; |
| 1103 | real *u; |
| 1104 | u = MALLOC(sizeof(real)*((size_t) m)*((size_t) n)); |
| 1105 | MEMCPY(u,v, sizeof(real)*((size_t) m)*((size_t) n)); |
| 1106 | |
| 1107 | for (i = 0; i < m; i++){ |
| 1108 | for (j = 0; j < n; j++){ |
| 1109 | v[j*m+i] = u[i*n+j]; |
| 1110 | } |
| 1111 | } |
| 1112 | FREE(u); |
| 1113 | } |
| 1114 | |
| 1115 | |
| 1116 | static void SparseMatrix_multiply_dense1(SparseMatrix A, real *v, real **res, int dim, int transposed, int res_transposed){ |
| 1117 | /* A v or A^T v where v a dense matrix of second dimension dim. Real only for now. */ |
| 1118 | int i, j, k, *ia, *ja, n, m; |
| 1119 | real *a, *u; |
| 1120 | |
| 1121 | assert(A->format == FORMAT_CSR); |
| 1122 | assert(A->type == MATRIX_TYPE_REAL); |
| 1123 | |
| 1124 | a = (real*) A->a; |
| 1125 | ia = A->ia; |
| 1126 | ja = A->ja; |
| 1127 | m = A->m; |
| 1128 | n = A->n; |
| 1129 | u = *res; |
| 1130 | |
| 1131 | if (!transposed){ |
| 1132 | if (!u) u = MALLOC(sizeof(real)*((size_t) m)*((size_t) dim)); |
| 1133 | for (i = 0; i < m; i++){ |
| 1134 | for (k = 0; k < dim; k++) u[i*dim+k] = 0.; |
| 1135 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1136 | for (k = 0; k < dim; k++) u[i*dim+k] += a[j]*v[ja[j]*dim+k]; |
| 1137 | } |
| 1138 | } |
| 1139 | if (res_transposed) dense_transpose(u, m, dim); |
| 1140 | } else { |
| 1141 | if (!u) u = MALLOC(sizeof(real)*((size_t) n)*((size_t) dim)); |
| 1142 | for (i = 0; i < n*dim; i++) u[i] = 0.; |
| 1143 | for (i = 0; i < m; i++){ |
| 1144 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1145 | for (k = 0; k < dim; k++) u[ja[j]*dim + k] += a[j]*v[i*dim + k]; |
| 1146 | } |
| 1147 | } |
| 1148 | if (res_transposed) dense_transpose(u, n, dim); |
| 1149 | } |
| 1150 | |
| 1151 | *res = u; |
| 1152 | |
| 1153 | |
| 1154 | } |
| 1155 | |
| 1156 | static void SparseMatrix_multiply_dense2(SparseMatrix A, real *v, real **res, int dim, int transposed, int res_transposed){ |
| 1157 | /* A v^T or A^T v^T where v a dense matrix of second dimension n or m. Real only for now. |
| 1158 | transposed = FALSE: A*V^T, with A dimension m x n, V dimension dim x n, v[i*n+j] gives V[i,j]. Result of dimension m x dim |
| 1159 | transposed = TRUE: A^T*V^T, with A dimension m x n, V dimension dim x m. v[i*m+j] gives V[i,j]. Result of dimension n x dim |
| 1160 | */ |
| 1161 | real *u, *rr; |
| 1162 | int i, m, n; |
| 1163 | assert(A->format == FORMAT_CSR); |
| 1164 | assert(A->type == MATRIX_TYPE_REAL); |
| 1165 | u = *res; |
| 1166 | m = A->m; |
| 1167 | n = A->n; |
| 1168 | |
| 1169 | if (!transposed){ |
| 1170 | if (!u) u = MALLOC(sizeof(real)*((size_t)m)*((size_t) dim)); |
| 1171 | for (i = 0; i < dim; i++){ |
| 1172 | rr = &(u[m*i]); |
| 1173 | SparseMatrix_multiply_vector(A, &(v[n*i]), &rr, transposed); |
| 1174 | } |
| 1175 | if (!res_transposed) dense_transpose(u, dim, m); |
| 1176 | } else { |
| 1177 | if (!u) u = MALLOC(sizeof(real)*((size_t)n)*((size_t)dim)); |
| 1178 | for (i = 0; i < dim; i++){ |
| 1179 | rr = &(u[n*i]); |
| 1180 | SparseMatrix_multiply_vector(A, &(v[m*i]), &rr, transposed); |
| 1181 | } |
| 1182 | if (!res_transposed) dense_transpose(u, dim, n); |
| 1183 | } |
| 1184 | |
| 1185 | *res = u; |
| 1186 | |
| 1187 | |
| 1188 | } |
| 1189 | |
| 1190 | |
| 1191 | |
| 1192 | void SparseMatrix_multiply_dense(SparseMatrix A, int ATransposed, real *v, int vTransposed, real **res, int res_transposed, int dim){ |
| 1193 | /* depend on value of {ATranspose, vTransposed}, assume res_transposed == FALSE |
| 1194 | {FALSE, FALSE}: A * V, with A dimension m x n, with V of dimension n x dim. v[i*dim+j] gives V[i,j]. Result of dimension m x dim |
| 1195 | {TRUE, FALSE}: A^T * V, with A dimension m x n, with V of dimension m x dim. v[i*dim+j] gives V[i,j]. Result of dimension n x dim |
| 1196 | {FALSE, TRUE}: A*V^T, with A dimension m x n, V dimension dim x n, v[i*n+j] gives V[i,j]. Result of dimension m x dim |
| 1197 | {TRUE, TRUE}: A^T*V^T, with A dimension m x n, V dimension dim x m. v[i*m+j] gives V[i,j]. Result of dimension n x dim |
| 1198 | |
| 1199 | furthermore, if res_transpose d== TRUE, then the result is transposed. Hence if res_transposed == TRUE |
| 1200 | |
| 1201 | {FALSE, FALSE}: V^T A^T, with A dimension m x n, with V of dimension n x dim. v[i*dim+j] gives V[i,j]. Result of dimension dim x dim |
| 1202 | {TRUE, FALSE}: V^T A, with A dimension m x n, with V of dimension m x dim. v[i*dim+j] gives V[i,j]. Result of dimension dim x n |
| 1203 | {FALSE, TRUE}: V*A^T, with A dimension m x n, V dimension dim x n, v[i*n+j] gives V[i,j]. Result of dimension dim x m |
| 1204 | {TRUE, TRUE}: V A, with A dimension m x n, V dimension dim x m. v[i*m+j] gives V[i,j]. Result of dimension dim x n |
| 1205 | */ |
| 1206 | |
| 1207 | if (!vTransposed) { |
| 1208 | SparseMatrix_multiply_dense1(A, v, res, dim, ATransposed, res_transposed); |
| 1209 | } else { |
| 1210 | SparseMatrix_multiply_dense2(A, v, res, dim, ATransposed, res_transposed); |
| 1211 | } |
| 1212 | |
| 1213 | } |
| 1214 | |
| 1215 | |
| 1216 | |
| 1217 | void SparseMatrix_multiply_vector(SparseMatrix A, real *v, real **res, int transposed){ |
| 1218 | /* A v or A^T v. Real only for now. */ |
| 1219 | int i, j, *ia, *ja, n, m; |
| 1220 | real *a, *u = NULL; |
| 1221 | int *ai; |
| 1222 | assert(A->format == FORMAT_CSR); |
| 1223 | assert(A->type == MATRIX_TYPE_REAL || A->type == MATRIX_TYPE_INTEGER); |
| 1224 | |
| 1225 | ia = A->ia; |
| 1226 | ja = A->ja; |
| 1227 | m = A->m; |
| 1228 | n = A->n; |
| 1229 | u = *res; |
| 1230 | |
| 1231 | switch (A->type){ |
| 1232 | case MATRIX_TYPE_REAL: |
| 1233 | a = (real*) A->a; |
| 1234 | if (v){ |
| 1235 | if (!transposed){ |
| 1236 | if (!u) u = MALLOC(sizeof(real)*((size_t)m)); |
| 1237 | for (i = 0; i < m; i++){ |
| 1238 | u[i] = 0.; |
| 1239 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1240 | u[i] += a[j]*v[ja[j]]; |
| 1241 | } |
| 1242 | } |
| 1243 | } else { |
| 1244 | if (!u) u = MALLOC(sizeof(real)*((size_t)n)); |
| 1245 | for (i = 0; i < n; i++) u[i] = 0.; |
| 1246 | for (i = 0; i < m; i++){ |
| 1247 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1248 | u[ja[j]] += a[j]*v[i]; |
| 1249 | } |
| 1250 | } |
| 1251 | } |
| 1252 | } else { |
| 1253 | /* v is assumed to be all 1's */ |
| 1254 | if (!transposed){ |
| 1255 | if (!u) u = MALLOC(sizeof(real)*((size_t)m)); |
| 1256 | for (i = 0; i < m; i++){ |
| 1257 | u[i] = 0.; |
| 1258 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1259 | u[i] += a[j]; |
| 1260 | } |
| 1261 | } |
| 1262 | } else { |
| 1263 | if (!u) u = MALLOC(sizeof(real)*((size_t)n)); |
| 1264 | for (i = 0; i < n; i++) u[i] = 0.; |
| 1265 | for (i = 0; i < m; i++){ |
| 1266 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1267 | u[ja[j]] += a[j]; |
| 1268 | } |
| 1269 | } |
| 1270 | } |
| 1271 | } |
| 1272 | break; |
| 1273 | case MATRIX_TYPE_INTEGER: |
| 1274 | ai = (int*) A->a; |
| 1275 | if (v){ |
| 1276 | if (!transposed){ |
| 1277 | if (!u) u = MALLOC(sizeof(real)*((size_t)m)); |
| 1278 | for (i = 0; i < m; i++){ |
| 1279 | u[i] = 0.; |
| 1280 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1281 | u[i] += ai[j]*v[ja[j]]; |
| 1282 | } |
| 1283 | } |
| 1284 | } else { |
| 1285 | if (!u) u = MALLOC(sizeof(real)*((size_t)n)); |
| 1286 | for (i = 0; i < n; i++) u[i] = 0.; |
| 1287 | for (i = 0; i < m; i++){ |
| 1288 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1289 | u[ja[j]] += ai[j]*v[i]; |
| 1290 | } |
| 1291 | } |
| 1292 | } |
| 1293 | } else { |
| 1294 | /* v is assumed to be all 1's */ |
| 1295 | if (!transposed){ |
| 1296 | if (!u) u = MALLOC(sizeof(real)*((size_t)m)); |
| 1297 | for (i = 0; i < m; i++){ |
| 1298 | u[i] = 0.; |
| 1299 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1300 | u[i] += ai[j]; |
| 1301 | } |
| 1302 | } |
| 1303 | } else { |
| 1304 | if (!u) u = MALLOC(sizeof(real)*((size_t)n)); |
| 1305 | for (i = 0; i < n; i++) u[i] = 0.; |
| 1306 | for (i = 0; i < m; i++){ |
| 1307 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1308 | u[ja[j]] += ai[j]; |
| 1309 | } |
| 1310 | } |
| 1311 | } |
| 1312 | } |
| 1313 | break; |
| 1314 | default: |
| 1315 | assert(0); |
| 1316 | u = NULL; |
| 1317 | } |
| 1318 | *res = u; |
| 1319 | |
| 1320 | } |
| 1321 | |
| 1322 | |
| 1323 | |
| 1324 | SparseMatrix SparseMatrix_scaled_by_vector(SparseMatrix A, real *v, int apply_to_row){ |
| 1325 | /* A SCALED BY VECOTR V IN ROW/COLUMN. Real only for now. */ |
| 1326 | int i, j, *ia, *ja, m; |
| 1327 | real *a; |
| 1328 | assert(A->format == FORMAT_CSR); |
| 1329 | assert(A->type == MATRIX_TYPE_REAL); |
| 1330 | |
| 1331 | a = (real*) A->a; |
| 1332 | ia = A->ia; |
| 1333 | ja = A->ja; |
| 1334 | m = A->m; |
| 1335 | |
| 1336 | |
| 1337 | if (!apply_to_row){ |
| 1338 | for (i = 0; i < m; i++){ |
| 1339 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1340 | a[j] *= v[ja[j]]; |
| 1341 | } |
| 1342 | } |
| 1343 | } else { |
| 1344 | for (i = 0; i < m; i++){ |
| 1345 | if (v[i] != 0){ |
| 1346 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1347 | a[j] *= v[i]; |
| 1348 | } |
| 1349 | } |
| 1350 | } |
| 1351 | } |
| 1352 | return A; |
| 1353 | |
| 1354 | } |
| 1355 | SparseMatrix SparseMatrix_multiply_by_scaler(SparseMatrix A, real s){ |
| 1356 | /* A scaled by a number */ |
| 1357 | int i, j, *ia, m; |
| 1358 | real *a, *b = NULL; |
| 1359 | int *ai; |
| 1360 | assert(A->format == FORMAT_CSR); |
| 1361 | |
| 1362 | switch (A->type){ |
| 1363 | case MATRIX_TYPE_INTEGER: |
| 1364 | b = MALLOC(sizeof(real)*A->nz); |
| 1365 | ai = (int*) A->a; |
| 1366 | for (i = 0; i < A->nz; i++) b[i] = ai[i]; |
| 1367 | FREE(A->a); |
| 1368 | A->a = b; |
| 1369 | A->type = MATRIX_TYPE_REAL; |
| 1370 | case MATRIX_TYPE_REAL: |
| 1371 | a = (real*) A->a; |
| 1372 | ia = A->ia; |
| 1373 | m = A->m; |
| 1374 | for (i = 0; i < m; i++){ |
| 1375 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1376 | a[j] *= s; |
| 1377 | } |
| 1378 | } |
| 1379 | break; |
| 1380 | case MATRIX_TYPE_COMPLEX: |
| 1381 | a = (real*) A->a; |
| 1382 | ia = A->ia; |
| 1383 | m = A->m; |
| 1384 | for (i = 0; i < m; i++){ |
| 1385 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1386 | a[2*j] *= s; |
| 1387 | a[2*j+1] *= s; |
| 1388 | } |
| 1389 | } |
| 1390 | |
| 1391 | break; |
| 1392 | default: |
| 1393 | fprintf(stderr,"warning: scaling of matrix this type is not supported\n" ); |
| 1394 | } |
| 1395 | |
| 1396 | return A; |
| 1397 | |
| 1398 | } |
| 1399 | |
| 1400 | |
| 1401 | SparseMatrix SparseMatrix_multiply(SparseMatrix A, SparseMatrix B){ |
| 1402 | int m; |
| 1403 | SparseMatrix C = NULL; |
| 1404 | int *mask = NULL; |
| 1405 | int *ia = A->ia, *ja = A->ja, *ib = B->ia, *jb = B->ja, *ic, *jc; |
| 1406 | int i, j, k, jj, type, nz; |
| 1407 | |
| 1408 | assert(A->format == B->format && A->format == FORMAT_CSR);/* other format not yet supported */ |
| 1409 | |
| 1410 | m = A->m; |
| 1411 | if (A->n != B->m) return NULL; |
| 1412 | if (A->type != B->type){ |
| 1413 | #ifdef DEBUG |
| 1414 | printf("in SparseMatrix_multiply, the matrix types do not match, right now only multiplication of matrices of the same type is supported\n" ); |
| 1415 | #endif |
| 1416 | return NULL; |
| 1417 | } |
| 1418 | type = A->type; |
| 1419 | |
| 1420 | mask = MALLOC(sizeof(int)*((size_t)(B->n))); |
| 1421 | if (!mask) return NULL; |
| 1422 | |
| 1423 | for (i = 0; i < B->n; i++) mask[i] = -1; |
| 1424 | |
| 1425 | nz = 0; |
| 1426 | for (i = 0; i < m; i++){ |
| 1427 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1428 | jj = ja[j]; |
| 1429 | for (k = ib[jj]; k < ib[jj+1]; k++){ |
| 1430 | if (mask[jb[k]] != -i - 2){ |
| 1431 | if ((nz+1) <= nz) { |
| 1432 | #ifdef DEBUG_PRINT |
| 1433 | fprintf(stderr,"overflow in SparseMatrix_multiply !!!\n" ); |
| 1434 | #endif |
| 1435 | return NULL; |
| 1436 | } |
| 1437 | nz++; |
| 1438 | mask[jb[k]] = -i - 2; |
| 1439 | } |
| 1440 | } |
| 1441 | } |
| 1442 | } |
| 1443 | |
| 1444 | C = SparseMatrix_new(m, B->n, nz, type, FORMAT_CSR); |
| 1445 | if (!C) goto RETURN; |
| 1446 | ic = C->ia; |
| 1447 | jc = C->ja; |
| 1448 | |
| 1449 | nz = 0; |
| 1450 | |
| 1451 | switch (type){ |
| 1452 | case MATRIX_TYPE_REAL: |
| 1453 | { |
| 1454 | real *a = (real*) A->a; |
| 1455 | real *b = (real*) B->a; |
| 1456 | real *c = (real*) C->a; |
| 1457 | ic[0] = 0; |
| 1458 | for (i = 0; i < m; i++){ |
| 1459 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1460 | jj = ja[j]; |
| 1461 | for (k = ib[jj]; k < ib[jj+1]; k++){ |
| 1462 | if (mask[jb[k]] < ic[i]){ |
| 1463 | mask[jb[k]] = nz; |
| 1464 | jc[nz] = jb[k]; |
| 1465 | c[nz] = a[j]*b[k]; |
| 1466 | nz++; |
| 1467 | } else { |
| 1468 | assert(jc[mask[jb[k]]] == jb[k]); |
| 1469 | c[mask[jb[k]]] += a[j]*b[k]; |
| 1470 | } |
| 1471 | } |
| 1472 | } |
| 1473 | ic[i+1] = nz; |
| 1474 | } |
| 1475 | } |
| 1476 | break; |
| 1477 | case MATRIX_TYPE_COMPLEX: |
| 1478 | { |
| 1479 | real *a = (real*) A->a; |
| 1480 | real *b = (real*) B->a; |
| 1481 | real *c = (real*) C->a; |
| 1482 | a = (real*) A->a; |
| 1483 | b = (real*) B->a; |
| 1484 | c = (real*) C->a; |
| 1485 | ic[0] = 0; |
| 1486 | for (i = 0; i < m; i++){ |
| 1487 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1488 | jj = ja[j]; |
| 1489 | for (k = ib[jj]; k < ib[jj+1]; k++){ |
| 1490 | if (mask[jb[k]] < ic[i]){ |
| 1491 | mask[jb[k]] = nz; |
| 1492 | jc[nz] = jb[k]; |
| 1493 | c[2*nz] = a[2*j]*b[2*k] - a[2*j+1]*b[2*k+1];/*real part */ |
| 1494 | c[2*nz+1] = a[2*j]*b[2*k+1] + a[2*j+1]*b[2*k];/*img part */ |
| 1495 | nz++; |
| 1496 | } else { |
| 1497 | assert(jc[mask[jb[k]]] == jb[k]); |
| 1498 | c[2*mask[jb[k]]] += a[2*j]*b[2*k] - a[2*j+1]*b[2*k+1];/*real part */ |
| 1499 | c[2*mask[jb[k]]+1] += a[2*j]*b[2*k+1] + a[2*j+1]*b[2*k];/*img part */ |
| 1500 | } |
| 1501 | } |
| 1502 | } |
| 1503 | ic[i+1] = nz; |
| 1504 | } |
| 1505 | } |
| 1506 | break; |
| 1507 | case MATRIX_TYPE_INTEGER: |
| 1508 | { |
| 1509 | int *a = (int*) A->a; |
| 1510 | int *b = (int*) B->a; |
| 1511 | int *c = (int*) C->a; |
| 1512 | ic[0] = 0; |
| 1513 | for (i = 0; i < m; i++){ |
| 1514 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1515 | jj = ja[j]; |
| 1516 | for (k = ib[jj]; k < ib[jj+1]; k++){ |
| 1517 | if (mask[jb[k]] < ic[i]){ |
| 1518 | mask[jb[k]] = nz; |
| 1519 | jc[nz] = jb[k]; |
| 1520 | c[nz] = a[j]*b[k]; |
| 1521 | nz++; |
| 1522 | } else { |
| 1523 | assert(jc[mask[jb[k]]] == jb[k]); |
| 1524 | c[mask[jb[k]]] += a[j]*b[k]; |
| 1525 | } |
| 1526 | } |
| 1527 | } |
| 1528 | ic[i+1] = nz; |
| 1529 | } |
| 1530 | } |
| 1531 | break; |
| 1532 | case MATRIX_TYPE_PATTERN: |
| 1533 | ic[0] = 0; |
| 1534 | for (i = 0; i < m; i++){ |
| 1535 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1536 | jj = ja[j]; |
| 1537 | for (k = ib[jj]; k < ib[jj+1]; k++){ |
| 1538 | if (mask[jb[k]] < ic[i]){ |
| 1539 | mask[jb[k]] = nz; |
| 1540 | jc[nz] = jb[k]; |
| 1541 | nz++; |
| 1542 | } else { |
| 1543 | assert(jc[mask[jb[k]]] == jb[k]); |
| 1544 | } |
| 1545 | } |
| 1546 | } |
| 1547 | ic[i+1] = nz; |
| 1548 | } |
| 1549 | break; |
| 1550 | case MATRIX_TYPE_UNKNOWN: |
| 1551 | default: |
| 1552 | SparseMatrix_delete(C); |
| 1553 | C = NULL; goto RETURN; |
| 1554 | break; |
| 1555 | } |
| 1556 | |
| 1557 | C->nz = nz; |
| 1558 | |
| 1559 | RETURN: |
| 1560 | FREE(mask); |
| 1561 | return C; |
| 1562 | |
| 1563 | } |
| 1564 | |
| 1565 | |
| 1566 | |
| 1567 | SparseMatrix SparseMatrix_multiply3(SparseMatrix A, SparseMatrix B, SparseMatrix C){ |
| 1568 | int m; |
| 1569 | SparseMatrix D = NULL; |
| 1570 | int *mask = NULL; |
| 1571 | int *ia = A->ia, *ja = A->ja, *ib = B->ia, *jb = B->ja, *ic = C->ia, *jc = C->ja, *id, *jd; |
| 1572 | int i, j, k, l, ll, jj, type, nz; |
| 1573 | |
| 1574 | assert(A->format == B->format && A->format == FORMAT_CSR);/* other format not yet supported */ |
| 1575 | |
| 1576 | m = A->m; |
| 1577 | if (A->n != B->m) return NULL; |
| 1578 | if (B->n != C->m) return NULL; |
| 1579 | |
| 1580 | if (A->type != B->type || B->type != C->type){ |
| 1581 | #ifdef DEBUG |
| 1582 | printf("in SparseMatrix_multiply, the matrix types do not match, right now only multiplication of matrices of the same type is supported\n" ); |
| 1583 | #endif |
| 1584 | return NULL; |
| 1585 | } |
| 1586 | type = A->type; |
| 1587 | |
| 1588 | mask = MALLOC(sizeof(int)*((size_t)(C->n))); |
| 1589 | if (!mask) return NULL; |
| 1590 | |
| 1591 | for (i = 0; i < C->n; i++) mask[i] = -1; |
| 1592 | |
| 1593 | nz = 0; |
| 1594 | for (i = 0; i < m; i++){ |
| 1595 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1596 | jj = ja[j]; |
| 1597 | for (l = ib[jj]; l < ib[jj+1]; l++){ |
| 1598 | ll = jb[l]; |
| 1599 | for (k = ic[ll]; k < ic[ll+1]; k++){ |
| 1600 | if (mask[jc[k]] != -i - 2){ |
| 1601 | if ((nz+1) <= nz) { |
| 1602 | #ifdef DEBUG_PRINT |
| 1603 | fprintf(stderr,"overflow in SparseMatrix_multiply !!!\n" ); |
| 1604 | #endif |
| 1605 | return NULL; |
| 1606 | } |
| 1607 | nz++; |
| 1608 | mask[jc[k]] = -i - 2; |
| 1609 | } |
| 1610 | } |
| 1611 | } |
| 1612 | } |
| 1613 | } |
| 1614 | |
| 1615 | D = SparseMatrix_new(m, C->n, nz, type, FORMAT_CSR); |
| 1616 | if (!D) goto RETURN; |
| 1617 | id = D->ia; |
| 1618 | jd = D->ja; |
| 1619 | |
| 1620 | nz = 0; |
| 1621 | |
| 1622 | switch (type){ |
| 1623 | case MATRIX_TYPE_REAL: |
| 1624 | { |
| 1625 | real *a = (real*) A->a; |
| 1626 | real *b = (real*) B->a; |
| 1627 | real *c = (real*) C->a; |
| 1628 | real *d = (real*) D->a; |
| 1629 | id[0] = 0; |
| 1630 | for (i = 0; i < m; i++){ |
| 1631 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1632 | jj = ja[j]; |
| 1633 | for (l = ib[jj]; l < ib[jj+1]; l++){ |
| 1634 | ll = jb[l]; |
| 1635 | for (k = ic[ll]; k < ic[ll+1]; k++){ |
| 1636 | if (mask[jc[k]] < id[i]){ |
| 1637 | mask[jc[k]] = nz; |
| 1638 | jd[nz] = jc[k]; |
| 1639 | d[nz] = a[j]*b[l]*c[k]; |
| 1640 | nz++; |
| 1641 | } else { |
| 1642 | assert(jd[mask[jc[k]]] == jc[k]); |
| 1643 | d[mask[jc[k]]] += a[j]*b[l]*c[k]; |
| 1644 | } |
| 1645 | } |
| 1646 | } |
| 1647 | } |
| 1648 | id[i+1] = nz; |
| 1649 | } |
| 1650 | } |
| 1651 | break; |
| 1652 | case MATRIX_TYPE_COMPLEX: |
| 1653 | { |
| 1654 | real *a = (real*) A->a; |
| 1655 | real *b = (real*) B->a; |
| 1656 | real *c = (real*) C->a; |
| 1657 | real *d = (real*) D->a; |
| 1658 | id[0] = 0; |
| 1659 | for (i = 0; i < m; i++){ |
| 1660 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1661 | jj = ja[j]; |
| 1662 | for (l = ib[jj]; l < ib[jj+1]; l++){ |
| 1663 | ll = jb[l]; |
| 1664 | for (k = ic[ll]; k < ic[ll+1]; k++){ |
| 1665 | if (mask[jc[k]] < id[i]){ |
| 1666 | mask[jc[k]] = nz; |
| 1667 | jd[nz] = jc[k]; |
| 1668 | d[2*nz] = (a[2*j]*b[2*l] - a[2*j+1]*b[2*l+1])*c[2*k] |
| 1669 | - (a[2*j]*b[2*l+1] + a[2*j+1]*b[2*l])*c[2*k+1];/*real part */ |
| 1670 | d[2*nz+1] = (a[2*j]*b[2*l+1] + a[2*j+1]*b[2*l])*c[2*k] |
| 1671 | + (a[2*j]*b[2*l] - a[2*j+1]*b[2*l+1])*c[2*k+1];/*img part */ |
| 1672 | nz++; |
| 1673 | } else { |
| 1674 | assert(jd[mask[jc[k]]] == jc[k]); |
| 1675 | d[2*mask[jc[k]]] += (a[2*j]*b[2*l] - a[2*j+1]*b[2*l+1])*c[2*k] |
| 1676 | - (a[2*j]*b[2*l+1] + a[2*j+1]*b[2*l])*c[2*k+1];/*real part */ |
| 1677 | d[2*mask[jc[k]]+1] += (a[2*j]*b[2*l+1] + a[2*j+1]*b[2*l])*c[2*k] |
| 1678 | + (a[2*j]*b[2*l] - a[2*j+1]*b[2*l+1])*c[2*k+1];/*img part */ |
| 1679 | } |
| 1680 | } |
| 1681 | } |
| 1682 | } |
| 1683 | id[i+1] = nz; |
| 1684 | } |
| 1685 | } |
| 1686 | break; |
| 1687 | case MATRIX_TYPE_INTEGER: |
| 1688 | { |
| 1689 | int *a = (int*) A->a; |
| 1690 | int *b = (int*) B->a; |
| 1691 | int *c = (int*) C->a; |
| 1692 | int *d = (int*) D->a; |
| 1693 | id[0] = 0; |
| 1694 | for (i = 0; i < m; i++){ |
| 1695 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1696 | jj = ja[j]; |
| 1697 | for (l = ib[jj]; l < ib[jj+1]; l++){ |
| 1698 | ll = jb[l]; |
| 1699 | for (k = ic[ll]; k < ic[ll+1]; k++){ |
| 1700 | if (mask[jc[k]] < id[i]){ |
| 1701 | mask[jc[k]] = nz; |
| 1702 | jd[nz] = jc[k]; |
| 1703 | d[nz] += a[j]*b[l]*c[k]; |
| 1704 | nz++; |
| 1705 | } else { |
| 1706 | assert(jd[mask[jc[k]]] == jc[k]); |
| 1707 | d[mask[jc[k]]] += a[j]*b[l]*c[k]; |
| 1708 | } |
| 1709 | } |
| 1710 | } |
| 1711 | } |
| 1712 | id[i+1] = nz; |
| 1713 | } |
| 1714 | } |
| 1715 | break; |
| 1716 | case MATRIX_TYPE_PATTERN: |
| 1717 | id[0] = 0; |
| 1718 | for (i = 0; i < m; i++){ |
| 1719 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1720 | jj = ja[j]; |
| 1721 | for (l = ib[jj]; l < ib[jj+1]; l++){ |
| 1722 | ll = jb[l]; |
| 1723 | for (k = ic[ll]; k < ic[ll+1]; k++){ |
| 1724 | if (mask[jc[k]] < id[i]){ |
| 1725 | mask[jc[k]] = nz; |
| 1726 | jd[nz] = jc[k]; |
| 1727 | nz++; |
| 1728 | } else { |
| 1729 | assert(jd[mask[jc[k]]] == jc[k]); |
| 1730 | } |
| 1731 | } |
| 1732 | } |
| 1733 | } |
| 1734 | id[i+1] = nz; |
| 1735 | } |
| 1736 | break; |
| 1737 | case MATRIX_TYPE_UNKNOWN: |
| 1738 | default: |
| 1739 | SparseMatrix_delete(D); |
| 1740 | D = NULL; goto RETURN; |
| 1741 | break; |
| 1742 | } |
| 1743 | |
| 1744 | D->nz = nz; |
| 1745 | |
| 1746 | RETURN: |
| 1747 | FREE(mask); |
| 1748 | return D; |
| 1749 | |
| 1750 | } |
| 1751 | |
| 1752 | /* For complex matrix: |
| 1753 | if what_to_sum = SUM_REPEATED_REAL_PART, we find entries {i,j,x + i y} and sum the x's if {i,j,Round(y)} are the same |
| 1754 | if what_to_sum = SUM_REPEATED_REAL_PART, we find entries {i,j,x + i y} and sum the y's if {i,j,Round(x)} are the same |
| 1755 | so a matrix like {{1,1,2+3i},{1,2,3+4i},{1,1,5+3i},{1,2,4+5i},{1,2,4+4i}} becomes |
| 1756 | {{1,1,2+5+3i},{1,2,3+4+4i},{1,2,4+5i}}. |
| 1757 | |
| 1758 | Really this kind of thing is best handled using a 3D sparse matrix like |
| 1759 | {{{1,1,3},2},{{1,2,4},3},{{1,1,3},5},{{1,2,4},4}}, |
| 1760 | which is then aggreted into |
| 1761 | {{{1,1,3},2+5},{{1,2,4},3+4},{{1,1,3},5}} |
| 1762 | but unfortunately I do not have such object implemented yet. |
| 1763 | |
| 1764 | |
| 1765 | For other matrix, what_to_sum = SUM_REPEATED_REAL_PART is the same as what_to_sum = SUM_REPEATED_IMAGINARY_PART |
| 1766 | or what_to_sum = SUM_REPEATED_ALL. In this implementation we assume that |
| 1767 | the {j,y} pairs are dense, so we usea 2D array for hashing |
| 1768 | */ |
| 1769 | SparseMatrix SparseMatrix_sum_repeat_entries(SparseMatrix A, int what_to_sum){ |
| 1770 | /* sum repeated entries in the same row, i.e., {1,1}->1, {1,1}->2 becomes {1,1}->3 */ |
| 1771 | int *ia = A->ia, *ja = A->ja, type = A->type, n = A->n; |
| 1772 | int *mask = NULL, nz = 0, i, j, sta; |
| 1773 | |
| 1774 | if (what_to_sum == SUM_REPEATED_NONE) return A; |
| 1775 | |
| 1776 | mask = MALLOC(sizeof(int)*((size_t)n)); |
| 1777 | for (i = 0; i < n; i++) mask[i] = -1; |
| 1778 | |
| 1779 | switch (type){ |
| 1780 | case MATRIX_TYPE_REAL: |
| 1781 | { |
| 1782 | real *a = (real*) A->a; |
| 1783 | nz = 0; |
| 1784 | sta = ia[0]; |
| 1785 | for (i = 0; i < A->m; i++){ |
| 1786 | for (j = sta; j < ia[i+1]; j++){ |
| 1787 | if (mask[ja[j]] < ia[i]){ |
| 1788 | ja[nz] = ja[j]; |
| 1789 | a[nz] = a[j]; |
| 1790 | mask[ja[j]] = nz++; |
| 1791 | } else { |
| 1792 | assert(ja[mask[ja[j]]] == ja[j]); |
| 1793 | a[mask[ja[j]]] += a[j]; |
| 1794 | } |
| 1795 | } |
| 1796 | sta = ia[i+1]; |
| 1797 | ia[i+1] = nz; |
| 1798 | } |
| 1799 | } |
| 1800 | break; |
| 1801 | case MATRIX_TYPE_COMPLEX: |
| 1802 | { |
| 1803 | real *a = (real*) A->a; |
| 1804 | if (what_to_sum == SUM_REPEATED_ALL){ |
| 1805 | nz = 0; |
| 1806 | sta = ia[0]; |
| 1807 | for (i = 0; i < A->m; i++){ |
| 1808 | for (j = sta; j < ia[i+1]; j++){ |
| 1809 | if (mask[ja[j]] < ia[i]){ |
| 1810 | ja[nz] = ja[j]; |
| 1811 | a[2*nz] = a[2*j]; |
| 1812 | a[2*nz+1] = a[2*j+1]; |
| 1813 | mask[ja[j]] = nz++; |
| 1814 | } else { |
| 1815 | assert(ja[mask[ja[j]]] == ja[j]); |
| 1816 | a[2*mask[ja[j]]] += a[2*j]; |
| 1817 | a[2*mask[ja[j]]+1] += a[2*j+1]; |
| 1818 | } |
| 1819 | } |
| 1820 | sta = ia[i+1]; |
| 1821 | ia[i+1] = nz; |
| 1822 | } |
| 1823 | } else if (what_to_sum == SUM_IMGINARY_KEEP_LAST_REAL){ |
| 1824 | /* merge {i,j,R1,I1} and {i,j,R2,I2} into {i,j,R1+R2,I2}*/ |
| 1825 | nz = 0; |
| 1826 | sta = ia[0]; |
| 1827 | for (i = 0; i < A->m; i++){ |
| 1828 | for (j = sta; j < ia[i+1]; j++){ |
| 1829 | if (mask[ja[j]] < ia[i]){ |
| 1830 | ja[nz] = ja[j]; |
| 1831 | a[2*nz] = a[2*j]; |
| 1832 | a[2*nz+1] = a[2*j+1]; |
| 1833 | mask[ja[j]] = nz++; |
| 1834 | } else { |
| 1835 | assert(ja[mask[ja[j]]] == ja[j]); |
| 1836 | a[2*mask[ja[j]]] += a[2*j]; |
| 1837 | a[2*mask[ja[j]]+1] = a[2*j+1]; |
| 1838 | } |
| 1839 | } |
| 1840 | sta = ia[i+1]; |
| 1841 | ia[i+1] = nz; |
| 1842 | } |
| 1843 | } else if (what_to_sum == SUM_REPEATED_REAL_PART){ |
| 1844 | int ymin, ymax, id; |
| 1845 | ymax = ymin = a[1]; |
| 1846 | nz = 0; |
| 1847 | for (i = 0; i < A->m; i++){ |
| 1848 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1849 | ymax = MAX(ymax, (int) a[2*nz+1]); |
| 1850 | ymin = MIN(ymin, (int) a[2*nz+1]); |
| 1851 | nz++; |
| 1852 | } |
| 1853 | } |
| 1854 | FREE(mask); |
| 1855 | mask = MALLOC(sizeof(int)*((size_t)n)*((size_t)(ymax-ymin+1))); |
| 1856 | for (i = 0; i < n*(ymax-ymin+1); i++) mask[i] = -1; |
| 1857 | |
| 1858 | nz = 0; |
| 1859 | sta = ia[0]; |
| 1860 | for (i = 0; i < A->m; i++){ |
| 1861 | for (j = sta; j < ia[i+1]; j++){ |
| 1862 | id = ja[j] + ((int)a[2*j+1] - ymin)*n; |
| 1863 | if (mask[id] < ia[i]){ |
| 1864 | ja[nz] = ja[j]; |
| 1865 | a[2*nz] = a[2*j]; |
| 1866 | a[2*nz+1] = a[2*j+1]; |
| 1867 | mask[id] = nz++; |
| 1868 | } else { |
| 1869 | assert(id < n*(ymax-ymin+1)); |
| 1870 | assert(ja[mask[id]] == ja[j]); |
| 1871 | a[2*mask[id]] += a[2*j]; |
| 1872 | a[2*mask[id]+1] = a[2*j+1]; |
| 1873 | } |
| 1874 | } |
| 1875 | sta = ia[i+1]; |
| 1876 | ia[i+1] = nz; |
| 1877 | } |
| 1878 | |
| 1879 | } else if (what_to_sum == SUM_REPEATED_IMAGINARY_PART){ |
| 1880 | int xmin, xmax, id; |
| 1881 | xmax = xmin = a[1]; |
| 1882 | nz = 0; |
| 1883 | for (i = 0; i < A->m; i++){ |
| 1884 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 1885 | xmax = MAX(xmax, (int) a[2*nz]); |
| 1886 | xmin = MAX(xmin, (int) a[2*nz]); |
| 1887 | nz++; |
| 1888 | } |
| 1889 | } |
| 1890 | FREE(mask); |
| 1891 | mask = MALLOC(sizeof(int)*((size_t)n)*((size_t)(xmax-xmin+1))); |
| 1892 | for (i = 0; i < n*(xmax-xmin+1); i++) mask[i] = -1; |
| 1893 | |
| 1894 | nz = 0; |
| 1895 | sta = ia[0]; |
| 1896 | for (i = 0; i < A->m; i++){ |
| 1897 | for (j = sta; j < ia[i+1]; j++){ |
| 1898 | id = ja[j] + ((int)a[2*j] - xmin)*n; |
| 1899 | if (mask[id] < ia[i]){ |
| 1900 | ja[nz] = ja[j]; |
| 1901 | a[2*nz] = a[2*j]; |
| 1902 | a[2*nz+1] = a[2*j+1]; |
| 1903 | mask[id] = nz++; |
| 1904 | } else { |
| 1905 | assert(ja[mask[id]] == ja[j]); |
| 1906 | a[2*mask[id]] = a[2*j]; |
| 1907 | a[2*mask[id]+1] += a[2*j+1]; |
| 1908 | } |
| 1909 | } |
| 1910 | sta = ia[i+1]; |
| 1911 | ia[i+1] = nz; |
| 1912 | } |
| 1913 | |
| 1914 | } |
| 1915 | } |
| 1916 | break; |
| 1917 | case MATRIX_TYPE_INTEGER: |
| 1918 | { |
| 1919 | int *a = (int*) A->a; |
| 1920 | nz = 0; |
| 1921 | sta = ia[0]; |
| 1922 | for (i = 0; i < A->m; i++){ |
| 1923 | for (j = sta; j < ia[i+1]; j++){ |
| 1924 | if (mask[ja[j]] < ia[i]){ |
| 1925 | ja[nz] = ja[j]; |
| 1926 | a[nz] = a[j]; |
| 1927 | mask[ja[j]] = nz++; |
| 1928 | } else { |
| 1929 | assert(ja[mask[ja[j]]] == ja[j]); |
| 1930 | a[mask[ja[j]]] += a[j]; |
| 1931 | } |
| 1932 | } |
| 1933 | sta = ia[i+1]; |
| 1934 | ia[i+1] = nz; |
| 1935 | } |
| 1936 | } |
| 1937 | break; |
| 1938 | case MATRIX_TYPE_PATTERN: |
| 1939 | { |
| 1940 | nz = 0; |
| 1941 | sta = ia[0]; |
| 1942 | for (i = 0; i < A->m; i++){ |
| 1943 | for (j = sta; j < ia[i+1]; j++){ |
| 1944 | if (mask[ja[j]] < ia[i]){ |
| 1945 | ja[nz] = ja[j]; |
| 1946 | mask[ja[j]] = nz++; |
| 1947 | } else { |
| 1948 | assert(ja[mask[ja[j]]] == ja[j]); |
| 1949 | } |
| 1950 | } |
| 1951 | sta = ia[i+1]; |
| 1952 | ia[i+1] = nz; |
| 1953 | } |
| 1954 | } |
| 1955 | break; |
| 1956 | case MATRIX_TYPE_UNKNOWN: |
| 1957 | return NULL; |
| 1958 | break; |
| 1959 | default: |
| 1960 | return NULL; |
| 1961 | break; |
| 1962 | } |
| 1963 | A->nz = nz; |
| 1964 | FREE(mask); |
| 1965 | return A; |
| 1966 | } |
| 1967 | |
| 1968 | SparseMatrix SparseMatrix_coordinate_form_add_entries(SparseMatrix A, int nentries, int *irn, int *jcn, void *val){ |
| 1969 | int nz, nzmax, i; |
| 1970 | |
| 1971 | assert(A->format == FORMAT_COORD); |
| 1972 | if (nentries <= 0) return A; |
| 1973 | nz = A->nz; |
| 1974 | nzmax = A->nzmax; |
| 1975 | |
| 1976 | if (nz + nentries >= A->nzmax){ |
| 1977 | nzmax = nz + nentries; |
| 1978 | nzmax = MAX(10, (int) 0.2*nzmax) + nzmax; |
| 1979 | A = SparseMatrix_realloc(A, nzmax); |
| 1980 | } |
| 1981 | MEMCPY((char*) A->ia + ((size_t)nz)*sizeof(int)/sizeof(char), irn, sizeof(int)*((size_t)nentries)); |
| 1982 | MEMCPY((char*) A->ja + ((size_t)nz)*sizeof(int)/sizeof(char), jcn, sizeof(int)*((size_t)nentries)); |
| 1983 | if (A->size) MEMCPY((char*) A->a + ((size_t)nz)*A->size/sizeof(char), val, A->size*((size_t)nentries)); |
| 1984 | for (i = 0; i < nentries; i++) { |
| 1985 | if (irn[i] >= A->m) A->m = irn[i]+1; |
| 1986 | if (jcn[i] >= A->n) A->n = jcn[i]+1; |
| 1987 | } |
| 1988 | A->nz += nentries; |
| 1989 | return A; |
| 1990 | } |
| 1991 | |
| 1992 | |
| 1993 | SparseMatrix SparseMatrix_remove_diagonal(SparseMatrix A){ |
| 1994 | int i, j, *ia, *ja, nz, sta; |
| 1995 | |
| 1996 | if (!A) return A; |
| 1997 | |
| 1998 | nz = 0; |
| 1999 | ia = A->ia; |
| 2000 | ja = A->ja; |
| 2001 | sta = ia[0]; |
| 2002 | switch (A->type){ |
| 2003 | case MATRIX_TYPE_REAL:{ |
| 2004 | real *a = (real*) A->a; |
| 2005 | for (i = 0; i < A->m; i++){ |
| 2006 | for (j = sta; j < ia[i+1]; j++){ |
| 2007 | if (ja[j] != i){ |
| 2008 | ja[nz] = ja[j]; |
| 2009 | a[nz++] = a[j]; |
| 2010 | } |
| 2011 | } |
| 2012 | sta = ia[i+1]; |
| 2013 | ia[i+1] = nz; |
| 2014 | } |
| 2015 | A->nz = nz; |
| 2016 | break; |
| 2017 | } |
| 2018 | case MATRIX_TYPE_COMPLEX:{ |
| 2019 | real *a = (real*) A->a; |
| 2020 | for (i = 0; i < A->m; i++){ |
| 2021 | for (j = sta; j < ia[i+1]; j++){ |
| 2022 | if (ja[j] != i){ |
| 2023 | ja[nz] = ja[j]; |
| 2024 | a[2*nz] = a[2*j]; |
| 2025 | a[2*nz+1] = a[2*j+1]; |
| 2026 | nz++; |
| 2027 | } |
| 2028 | } |
| 2029 | sta = ia[i+1]; |
| 2030 | ia[i+1] = nz; |
| 2031 | } |
| 2032 | A->nz = nz; |
| 2033 | break; |
| 2034 | } |
| 2035 | case MATRIX_TYPE_INTEGER:{ |
| 2036 | int *a = (int*) A->a; |
| 2037 | for (i = 0; i < A->m; i++){ |
| 2038 | for (j = sta; j < ia[i+1]; j++){ |
| 2039 | if (ja[j] != i){ |
| 2040 | ja[nz] = ja[j]; |
| 2041 | a[nz++] = a[j]; |
| 2042 | } |
| 2043 | } |
| 2044 | sta = ia[i+1]; |
| 2045 | ia[i+1] = nz; |
| 2046 | } |
| 2047 | A->nz = nz; |
| 2048 | break; |
| 2049 | } |
| 2050 | case MATRIX_TYPE_PATTERN:{ |
| 2051 | for (i = 0; i < A->m; i++){ |
| 2052 | for (j = sta; j < ia[i+1]; j++){ |
| 2053 | if (ja[j] != i){ |
| 2054 | ja[nz++] = ja[j]; |
| 2055 | } |
| 2056 | } |
| 2057 | sta = ia[i+1]; |
| 2058 | ia[i+1] = nz; |
| 2059 | } |
| 2060 | A->nz = nz; |
| 2061 | break; |
| 2062 | } |
| 2063 | case MATRIX_TYPE_UNKNOWN: |
| 2064 | return NULL; |
| 2065 | default: |
| 2066 | return NULL; |
| 2067 | } |
| 2068 | |
| 2069 | return A; |
| 2070 | } |
| 2071 | |
| 2072 | |
| 2073 | SparseMatrix SparseMatrix_remove_upper(SparseMatrix A){/* remove diag and upper diag */ |
| 2074 | int i, j, *ia, *ja, nz, sta; |
| 2075 | |
| 2076 | if (!A) return A; |
| 2077 | |
| 2078 | nz = 0; |
| 2079 | ia = A->ia; |
| 2080 | ja = A->ja; |
| 2081 | sta = ia[0]; |
| 2082 | switch (A->type){ |
| 2083 | case MATRIX_TYPE_REAL:{ |
| 2084 | real *a = (real*) A->a; |
| 2085 | for (i = 0; i < A->m; i++){ |
| 2086 | for (j = sta; j < ia[i+1]; j++){ |
| 2087 | if (ja[j] < i){ |
| 2088 | ja[nz] = ja[j]; |
| 2089 | a[nz++] = a[j]; |
| 2090 | } |
| 2091 | } |
| 2092 | sta = ia[i+1]; |
| 2093 | ia[i+1] = nz; |
| 2094 | } |
| 2095 | A->nz = nz; |
| 2096 | break; |
| 2097 | } |
| 2098 | case MATRIX_TYPE_COMPLEX:{ |
| 2099 | real *a = (real*) A->a; |
| 2100 | for (i = 0; i < A->m; i++){ |
| 2101 | for (j = sta; j < ia[i+1]; j++){ |
| 2102 | if (ja[j] < i){ |
| 2103 | ja[nz] = ja[j]; |
| 2104 | a[2*nz] = a[2*j]; |
| 2105 | a[2*nz+1] = a[2*j+1]; |
| 2106 | nz++; |
| 2107 | } |
| 2108 | } |
| 2109 | sta = ia[i+1]; |
| 2110 | ia[i+1] = nz; |
| 2111 | } |
| 2112 | A->nz = nz; |
| 2113 | break; |
| 2114 | } |
| 2115 | case MATRIX_TYPE_INTEGER:{ |
| 2116 | int *a = (int*) A->a; |
| 2117 | for (i = 0; i < A->m; i++){ |
| 2118 | for (j = sta; j < ia[i+1]; j++){ |
| 2119 | if (ja[j] < i){ |
| 2120 | ja[nz] = ja[j]; |
| 2121 | a[nz++] = a[j]; |
| 2122 | } |
| 2123 | } |
| 2124 | sta = ia[i+1]; |
| 2125 | ia[i+1] = nz; |
| 2126 | } |
| 2127 | A->nz = nz; |
| 2128 | break; |
| 2129 | } |
| 2130 | case MATRIX_TYPE_PATTERN:{ |
| 2131 | for (i = 0; i < A->m; i++){ |
| 2132 | for (j = sta; j < ia[i+1]; j++){ |
| 2133 | if (ja[j] < i){ |
| 2134 | ja[nz++] = ja[j]; |
| 2135 | } |
| 2136 | } |
| 2137 | sta = ia[i+1]; |
| 2138 | ia[i+1] = nz; |
| 2139 | } |
| 2140 | A->nz = nz; |
| 2141 | break; |
| 2142 | } |
| 2143 | case MATRIX_TYPE_UNKNOWN: |
| 2144 | return NULL; |
| 2145 | default: |
| 2146 | return NULL; |
| 2147 | } |
| 2148 | |
| 2149 | clear_flag(A->property, MATRIX_PATTERN_SYMMETRIC); |
| 2150 | clear_flag(A->property, MATRIX_SYMMETRIC); |
| 2151 | clear_flag(A->property, MATRIX_SKEW); |
| 2152 | clear_flag(A->property, MATRIX_HERMITIAN); |
| 2153 | return A; |
| 2154 | } |
| 2155 | |
| 2156 | |
| 2157 | |
| 2158 | |
| 2159 | SparseMatrix SparseMatrix_divide_row_by_degree(SparseMatrix A){ |
| 2160 | int i, j, *ia, *ja; |
| 2161 | real deg; |
| 2162 | |
| 2163 | if (!A) return A; |
| 2164 | |
| 2165 | ia = A->ia; |
| 2166 | ja = A->ja; |
| 2167 | switch (A->type){ |
| 2168 | case MATRIX_TYPE_REAL:{ |
| 2169 | real *a = (real*) A->a; |
| 2170 | for (i = 0; i < A->m; i++){ |
| 2171 | deg = ia[i+1] - ia[i]; |
| 2172 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 2173 | a[j] = a[j]/deg; |
| 2174 | } |
| 2175 | } |
| 2176 | break; |
| 2177 | } |
| 2178 | case MATRIX_TYPE_COMPLEX:{ |
| 2179 | real *a = (real*) A->a; |
| 2180 | for (i = 0; i < A->m; i++){ |
| 2181 | deg = ia[i+1] - ia[i]; |
| 2182 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 2183 | if (ja[j] != i){ |
| 2184 | a[2*j] = a[2*j]/deg; |
| 2185 | a[2*j+1] = a[2*j+1]/deg; |
| 2186 | } |
| 2187 | } |
| 2188 | } |
| 2189 | break; |
| 2190 | } |
| 2191 | case MATRIX_TYPE_INTEGER:{ |
| 2192 | assert(0);/* this operation would not make sense for int matrix */ |
| 2193 | break; |
| 2194 | } |
| 2195 | case MATRIX_TYPE_PATTERN:{ |
| 2196 | break; |
| 2197 | } |
| 2198 | case MATRIX_TYPE_UNKNOWN: |
| 2199 | return NULL; |
| 2200 | default: |
| 2201 | return NULL; |
| 2202 | } |
| 2203 | |
| 2204 | return A; |
| 2205 | } |
| 2206 | |
| 2207 | |
| 2208 | SparseMatrix SparseMatrix_get_real_adjacency_matrix_symmetrized(SparseMatrix A){ |
| 2209 | /* symmetric, all entries to 1, diaginal removed */ |
| 2210 | int i, *ia, *ja, nz, m, n; |
| 2211 | real *a; |
| 2212 | SparseMatrix B; |
| 2213 | |
| 2214 | if (!A) return A; |
| 2215 | |
| 2216 | nz = A->nz; |
| 2217 | ia = A->ia; |
| 2218 | ja = A->ja; |
| 2219 | n = A->n; |
| 2220 | m = A->m; |
| 2221 | |
| 2222 | if (n != m) return NULL; |
| 2223 | |
| 2224 | B = SparseMatrix_new(m, n, nz, MATRIX_TYPE_PATTERN, FORMAT_CSR); |
| 2225 | |
| 2226 | MEMCPY(B->ia, ia, sizeof(int)*((size_t)(m+1))); |
| 2227 | MEMCPY(B->ja, ja, sizeof(int)*((size_t)nz)); |
| 2228 | B->nz = A->nz; |
| 2229 | |
| 2230 | A = SparseMatrix_symmetrize(B, TRUE); |
| 2231 | SparseMatrix_delete(B); |
| 2232 | A = SparseMatrix_remove_diagonal(A); |
| 2233 | A->a = MALLOC(sizeof(real)*((size_t)(A->nz))); |
| 2234 | a = (real*) A->a; |
| 2235 | for (i = 0; i < A->nz; i++) a[i] = 1.; |
| 2236 | A->type = MATRIX_TYPE_REAL; |
| 2237 | A->size = sizeof(real); |
| 2238 | return A; |
| 2239 | } |
| 2240 | |
| 2241 | |
| 2242 | |
| 2243 | SparseMatrix SparseMatrix_normalize_to_rowsum1(SparseMatrix A){ |
| 2244 | int i, j; |
| 2245 | real sum, *a; |
| 2246 | |
| 2247 | if (!A) return A; |
| 2248 | if (A->format != FORMAT_CSR && A->type != MATRIX_TYPE_REAL) { |
| 2249 | #ifdef DEBUG |
| 2250 | printf("only CSR and real matrix supported.\n" ); |
| 2251 | #endif |
| 2252 | return A; |
| 2253 | } |
| 2254 | |
| 2255 | a = (real*) A->a; |
| 2256 | for (i = 0; i < A->m; i++){ |
| 2257 | sum = 0; |
| 2258 | for (j = A->ia[i]; j < A->ia[i+1]; j++){ |
| 2259 | sum += a[j]; |
| 2260 | } |
| 2261 | if (sum != 0){ |
| 2262 | for (j = A->ia[i]; j < A->ia[i+1]; j++){ |
| 2263 | a[j] /= sum; |
| 2264 | } |
| 2265 | } |
| 2266 | } |
| 2267 | return A; |
| 2268 | } |
| 2269 | |
| 2270 | |
| 2271 | |
| 2272 | SparseMatrix SparseMatrix_normalize_by_row(SparseMatrix A){ |
| 2273 | int i, j; |
| 2274 | real max, *a; |
| 2275 | |
| 2276 | if (!A) return A; |
| 2277 | if (A->format != FORMAT_CSR && A->type != MATRIX_TYPE_REAL) { |
| 2278 | #ifdef DEBUG |
| 2279 | printf("only CSR and real matrix supported.\n" ); |
| 2280 | #endif |
| 2281 | return A; |
| 2282 | } |
| 2283 | |
| 2284 | a = (real*) A->a; |
| 2285 | for (i = 0; i < A->m; i++){ |
| 2286 | max = 0; |
| 2287 | for (j = A->ia[i]; j < A->ia[i+1]; j++){ |
| 2288 | max = MAX(ABS(a[j]), max); |
| 2289 | } |
| 2290 | if (max != 0){ |
| 2291 | for (j = A->ia[i]; j < A->ia[i+1]; j++){ |
| 2292 | a[j] /= max; |
| 2293 | } |
| 2294 | } |
| 2295 | } |
| 2296 | return A; |
| 2297 | } |
| 2298 | |
| 2299 | |
| 2300 | SparseMatrix SparseMatrix_to_complex(SparseMatrix A){ |
| 2301 | int i, *ia, *ja; |
| 2302 | |
| 2303 | if (!A) return A; |
| 2304 | if (A->format != FORMAT_CSR) { |
| 2305 | #ifdef DEBUG |
| 2306 | printf("only CSR format supported.\n" ); |
| 2307 | #endif |
| 2308 | return A; |
| 2309 | } |
| 2310 | |
| 2311 | ia = A->ia; |
| 2312 | ja = A->ja; |
| 2313 | switch (A->type){ |
| 2314 | case MATRIX_TYPE_REAL:{ |
| 2315 | real *a = (real*) A->a; |
| 2316 | int nz = A->nz; |
| 2317 | A->a = a = REALLOC(a, 2*sizeof(real)*nz); |
| 2318 | for (i = nz - 1; i >= 0; i--){ |
| 2319 | a[2*i] = a[i]; |
| 2320 | a[2*i - 1] = 0; |
| 2321 | } |
| 2322 | A->type = MATRIX_TYPE_COMPLEX; |
| 2323 | A->size = 2*sizeof(real); |
| 2324 | break; |
| 2325 | } |
| 2326 | case MATRIX_TYPE_COMPLEX:{ |
| 2327 | break; |
| 2328 | } |
| 2329 | case MATRIX_TYPE_INTEGER:{ |
| 2330 | int *a = (int*) A->a; |
| 2331 | int nz = A->nz; |
| 2332 | real *aa = A->a = MALLOC(2*sizeof(real)*nz); |
| 2333 | for (i = nz - 1; i >= 0; i--){ |
| 2334 | aa[2*i] = (real) a[i]; |
| 2335 | aa[2*i - 1] = 0; |
| 2336 | } |
| 2337 | A->type = MATRIX_TYPE_COMPLEX; |
| 2338 | A->size = 2*sizeof(real); |
| 2339 | FREE(a); |
| 2340 | break; |
| 2341 | } |
| 2342 | case MATRIX_TYPE_PATTERN:{ |
| 2343 | break; |
| 2344 | } |
| 2345 | case MATRIX_TYPE_UNKNOWN: |
| 2346 | return NULL; |
| 2347 | default: |
| 2348 | return NULL; |
| 2349 | } |
| 2350 | |
| 2351 | return A; |
| 2352 | } |
| 2353 | |
| 2354 | |
| 2355 | SparseMatrix SparseMatrix_apply_fun(SparseMatrix A, double (*fun)(double x)){ |
| 2356 | int i, j; |
| 2357 | real *a; |
| 2358 | |
| 2359 | |
| 2360 | if (!A) return A; |
| 2361 | if (A->format != FORMAT_CSR && A->type != MATRIX_TYPE_REAL) { |
| 2362 | #ifdef DEBUG |
| 2363 | printf("only CSR and real matrix supported.\n" ); |
| 2364 | #endif |
| 2365 | return A; |
| 2366 | } |
| 2367 | |
| 2368 | |
| 2369 | a = (real*) A->a; |
| 2370 | for (i = 0; i < A->m; i++){ |
| 2371 | for (j = A->ia[i]; j < A->ia[i+1]; j++){ |
| 2372 | a[j] = fun(a[j]); |
| 2373 | } |
| 2374 | } |
| 2375 | return A; |
| 2376 | } |
| 2377 | |
| 2378 | SparseMatrix SparseMatrix_apply_fun_general(SparseMatrix A, void (*fun)(int i, int j, int n, double *x)){ |
| 2379 | int i, j; |
| 2380 | real *a; |
| 2381 | int len = 1; |
| 2382 | |
| 2383 | if (!A) return A; |
| 2384 | if (A->format != FORMAT_CSR || (A->type != MATRIX_TYPE_REAL&&A->type != MATRIX_TYPE_COMPLEX)) { |
| 2385 | #ifdef DEBUG |
| 2386 | printf("SparseMatrix_apply_fun: only CSR and real/complex matrix supported.\n" ); |
| 2387 | #endif |
| 2388 | return A; |
| 2389 | } |
| 2390 | if (A->type == MATRIX_TYPE_COMPLEX) len = 2; |
| 2391 | |
| 2392 | a = (real*) A->a; |
| 2393 | for (i = 0; i < A->m; i++){ |
| 2394 | for (j = A->ia[i]; j < A->ia[i+1]; j++){ |
| 2395 | fun(i, A->ja[j], len, &a[len*j]); |
| 2396 | } |
| 2397 | } |
| 2398 | return A; |
| 2399 | } |
| 2400 | |
| 2401 | |
| 2402 | SparseMatrix SparseMatrix_crop(SparseMatrix A, real epsilon){ |
| 2403 | int i, j, *ia, *ja, nz, sta; |
| 2404 | |
| 2405 | if (!A) return A; |
| 2406 | |
| 2407 | nz = 0; |
| 2408 | ia = A->ia; |
| 2409 | ja = A->ja; |
| 2410 | sta = ia[0]; |
| 2411 | switch (A->type){ |
| 2412 | case MATRIX_TYPE_REAL:{ |
| 2413 | real *a = (real*) A->a; |
| 2414 | for (i = 0; i < A->m; i++){ |
| 2415 | for (j = sta; j < ia[i+1]; j++){ |
| 2416 | if (ABS(a[j]) > epsilon){ |
| 2417 | ja[nz] = ja[j]; |
| 2418 | a[nz++] = a[j]; |
| 2419 | } |
| 2420 | } |
| 2421 | sta = ia[i+1]; |
| 2422 | ia[i+1] = nz; |
| 2423 | } |
| 2424 | A->nz = nz; |
| 2425 | break; |
| 2426 | } |
| 2427 | case MATRIX_TYPE_COMPLEX:{ |
| 2428 | real *a = (real*) A->a; |
| 2429 | for (i = 0; i < A->m; i++){ |
| 2430 | for (j = sta; j < ia[i+1]; j++){ |
| 2431 | if (sqrt(a[2*j]*a[2*j]+a[2*j+1]*a[2*j+1]) > epsilon){ |
| 2432 | ja[nz] = ja[j]; |
| 2433 | a[2*nz] = a[2*j]; |
| 2434 | a[2*nz+1] = a[2*j+1]; |
| 2435 | nz++; |
| 2436 | } |
| 2437 | } |
| 2438 | sta = ia[i+1]; |
| 2439 | ia[i+1] = nz; |
| 2440 | } |
| 2441 | A->nz = nz; |
| 2442 | break; |
| 2443 | } |
| 2444 | case MATRIX_TYPE_INTEGER:{ |
| 2445 | int *a = (int*) A->a; |
| 2446 | for (i = 0; i < A->m; i++){ |
| 2447 | for (j = sta; j < ia[i+1]; j++){ |
| 2448 | if (ABS(a[j]) > epsilon){ |
| 2449 | ja[nz] = ja[j]; |
| 2450 | a[nz++] = a[j]; |
| 2451 | } |
| 2452 | } |
| 2453 | sta = ia[i+1]; |
| 2454 | ia[i+1] = nz; |
| 2455 | } |
| 2456 | A->nz = nz; |
| 2457 | break; |
| 2458 | } |
| 2459 | case MATRIX_TYPE_PATTERN:{ |
| 2460 | break; |
| 2461 | } |
| 2462 | case MATRIX_TYPE_UNKNOWN: |
| 2463 | return NULL; |
| 2464 | default: |
| 2465 | return NULL; |
| 2466 | } |
| 2467 | |
| 2468 | return A; |
| 2469 | } |
| 2470 | |
| 2471 | SparseMatrix SparseMatrix_copy(SparseMatrix A){ |
| 2472 | SparseMatrix B; |
| 2473 | if (!A) return A; |
| 2474 | B = SparseMatrix_general_new(A->m, A->n, A->nz, A->type, A->size, A->format); |
| 2475 | MEMCPY(B->ia, A->ia, sizeof(int)*((size_t)(A->m+1))); |
| 2476 | MEMCPY(B->ja, A->ja, sizeof(int)*((size_t)(A->ia[A->m]))); |
| 2477 | if (A->a) MEMCPY(B->a, A->a, A->size*((size_t)A->nz)); |
| 2478 | B->property = A->property; |
| 2479 | B->nz = A->nz; |
| 2480 | return B; |
| 2481 | } |
| 2482 | |
| 2483 | int SparseMatrix_has_diagonal(SparseMatrix A){ |
| 2484 | |
| 2485 | int i, j, m = A->m, *ia = A->ia, *ja = A->ja; |
| 2486 | |
| 2487 | for (i = 0; i < m; i++){ |
| 2488 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 2489 | if (i == ja[j]) return TRUE; |
| 2490 | } |
| 2491 | } |
| 2492 | return FALSE; |
| 2493 | } |
| 2494 | |
| 2495 | void SparseMatrix_level_sets_internal(int khops, SparseMatrix A, int root, int *nlevel, int **levelset_ptr, int **levelset, int **mask, int reinitialize_mask){ |
| 2496 | /* mask is assumed to be initialized to negative if provided. |
| 2497 | . On exit, mask = levels for visited nodes (1 for root, 2 for its neighbors, etc), |
| 2498 | . unless reinitialize_mask = TRUE, in which case mask = -1. |
| 2499 | khops: max number of hops allowed. If khops < 0, no limit is applied. |
| 2500 | A: the graph, undirected |
| 2501 | root: starting node |
| 2502 | nlevel: max distance to root from any node (in the connected comp) |
| 2503 | levelset_ptr, levelset: the level sets |
| 2504 | */ |
| 2505 | int i, j, sta = 0, sto = 1, nz, ii; |
| 2506 | int m = A->m, *ia = A->ia, *ja = A->ja; |
| 2507 | |
| 2508 | if (!(*levelset_ptr)) *levelset_ptr = MALLOC(sizeof(int)*((size_t)(m+2))); |
| 2509 | if (!(*levelset)) *levelset = MALLOC(sizeof(int)*((size_t)m)); |
| 2510 | if (!(*mask)) { |
| 2511 | *mask = malloc(sizeof(int)*((size_t)m)); |
| 2512 | for (i = 0; i < m; i++) (*mask)[i] = UNMASKED; |
| 2513 | } |
| 2514 | |
| 2515 | *nlevel = 0; |
| 2516 | assert(root >= 0 && root < m); |
| 2517 | (*levelset_ptr)[0] = 0; |
| 2518 | (*levelset_ptr)[1] = 1; |
| 2519 | (*levelset)[0] = root; |
| 2520 | (*mask)[root] = 1; |
| 2521 | *nlevel = 1; |
| 2522 | nz = 1; |
| 2523 | sta = 0; sto = 1; |
| 2524 | while (sto > sta && (khops < 0 || *nlevel <= khops)){ |
| 2525 | for (i = sta; i < sto; i++){ |
| 2526 | ii = (*levelset)[i]; |
| 2527 | for (j = ia[ii]; j < ia[ii+1]; j++){ |
| 2528 | if (ii == ja[j]) continue; |
| 2529 | if ((*mask)[ja[j]] < 0){ |
| 2530 | (*levelset)[nz++] = ja[j]; |
| 2531 | (*mask)[ja[j]] = *nlevel + 1; |
| 2532 | } |
| 2533 | } |
| 2534 | } |
| 2535 | (*levelset_ptr)[++(*nlevel)] = nz; |
| 2536 | sta = sto; |
| 2537 | sto = nz; |
| 2538 | } |
| 2539 | if (khops < 0 || *nlevel <= khops){ |
| 2540 | (*nlevel)--; |
| 2541 | } |
| 2542 | if (reinitialize_mask) for (i = 0; i < (*levelset_ptr)[*nlevel]; i++) (*mask)[(*levelset)[i]] = UNMASKED; |
| 2543 | } |
| 2544 | |
| 2545 | void SparseMatrix_level_sets(SparseMatrix A, int root, int *nlevel, int **levelset_ptr, int **levelset, int **mask, int reinitialize_mask){ |
| 2546 | |
| 2547 | int khops = -1; |
| 2548 | |
| 2549 | return SparseMatrix_level_sets_internal(khops, A, root, nlevel, levelset_ptr, levelset, mask, reinitialize_mask); |
| 2550 | |
| 2551 | } |
| 2552 | void SparseMatrix_level_sets_khops(int khops, SparseMatrix A, int root, int *nlevel, int **levelset_ptr, int **levelset, int **mask, int reinitialize_mask){ |
| 2553 | |
| 2554 | return SparseMatrix_level_sets_internal(khops, A, root, nlevel, levelset_ptr, levelset, mask, reinitialize_mask); |
| 2555 | |
| 2556 | } |
| 2557 | |
| 2558 | void SparseMatrix_weakly_connected_components(SparseMatrix A0, int *ncomp, int **comps, int **comps_ptr){ |
| 2559 | SparseMatrix A = A0; |
| 2560 | int *levelset_ptr = NULL, *levelset = NULL, *mask = NULL, nlevel; |
| 2561 | int m = A->m, i, nn; |
| 2562 | |
| 2563 | if (!SparseMatrix_is_symmetric(A, TRUE)){ |
| 2564 | A = SparseMatrix_symmetrize(A, TRUE); |
| 2565 | } |
| 2566 | if (!(*comps_ptr)) *comps_ptr = MALLOC(sizeof(int)*((size_t)(m+1))); |
| 2567 | |
| 2568 | *ncomp = 0; |
| 2569 | (*comps_ptr)[0] = 0; |
| 2570 | for (i = 0; i < m; i++){ |
| 2571 | if (i == 0 || mask[i] < 0) { |
| 2572 | SparseMatrix_level_sets(A, i, &nlevel, &levelset_ptr, &levelset, &mask, FALSE); |
| 2573 | if (i == 0) *comps = levelset; |
| 2574 | nn = levelset_ptr[nlevel]; |
| 2575 | levelset += nn; |
| 2576 | (*comps_ptr)[(*ncomp)+1] = (*comps_ptr)[(*ncomp)] + nn; |
| 2577 | (*ncomp)++; |
| 2578 | } |
| 2579 | |
| 2580 | } |
| 2581 | if (A != A0) SparseMatrix_delete(A); |
| 2582 | if (levelset_ptr) FREE(levelset_ptr); |
| 2583 | |
| 2584 | FREE(mask); |
| 2585 | } |
| 2586 | |
| 2587 | |
| 2588 | |
| 2589 | struct nodedata_struct { |
| 2590 | real dist;/* distance to root */ |
| 2591 | int id;/*node id */ |
| 2592 | }; |
| 2593 | typedef struct nodedata_struct* nodedata; |
| 2594 | |
| 2595 | static int cmp(void*i, void*j){ |
| 2596 | nodedata d1, d2; |
| 2597 | |
| 2598 | d1 = (nodedata) i; |
| 2599 | d2 = (nodedata) j; |
| 2600 | if (d1->dist > d2->dist){ |
| 2601 | return 1; |
| 2602 | } else if (d1->dist == d2->dist){ |
| 2603 | return 0; |
| 2604 | } else { |
| 2605 | return -1; |
| 2606 | } |
| 2607 | } |
| 2608 | |
| 2609 | static int Dijkstra_internal(SparseMatrix A, int root, real *dist, int *nlist, int *list, real *dist_max, int *mask){ |
| 2610 | /* Find the shortest path distance of all nodes to root. If khops >= 0, the shortest ath is of distance <= khops, |
| 2611 | |
| 2612 | A: the nxn connectivity matrix. Entries are assumed to be nonnegative. Absolute value will be taken if |
| 2613 | . entry value is negative. |
| 2614 | dist: length n. On on exit contain the distance from root to every other node. dist[root] = 0. dist[i] = distance from root to node i. |
| 2615 | . if the graph is disconnetced, unreachable node have a distance -1. |
| 2616 | . note: ||root - list[i]|| =!= dist[i] !!!, instead, ||root - list[i]|| == dist[list[i]] |
| 2617 | nlist: number of nodes visited |
| 2618 | list: length n. the list of node in order of their extraction from the heap. |
| 2619 | . The distance from root to last in the list should be the maximum |
| 2620 | dist_max: the maximum distance, should be realized at node list[nlist-1]. |
| 2621 | mask: if NULL, not used. Othewise, only nodes i with mask[i] > 0 will be considered |
| 2622 | return: 0 if every node is reachable. -1 if not */ |
| 2623 | |
| 2624 | int m = A->m, i, j, jj, *ia = A->ia, *ja = A->ja, heap_id; |
| 2625 | BinaryHeap h; |
| 2626 | real *a = NULL, *aa; |
| 2627 | int *ai; |
| 2628 | nodedata ndata, ndata_min; |
| 2629 | enum {UNVISITED = -2, FINISHED = -1}; |
| 2630 | int *heap_ids; /* node ID to heap ID array. Initialised to UNVISITED. |
| 2631 | Set to FINISHED after extracted as min from heap */ |
| 2632 | int found = 0; |
| 2633 | |
| 2634 | assert(SparseMatrix_is_symmetric(A, TRUE)); |
| 2635 | |
| 2636 | assert(m == A->n); |
| 2637 | |
| 2638 | switch (A->type){ |
| 2639 | case MATRIX_TYPE_COMPLEX: |
| 2640 | aa = (real*) A->a; |
| 2641 | a = MALLOC(sizeof(real)*((size_t)(A->nz))); |
| 2642 | for (i = 0; i < A->nz; i++) a[i] = aa[i*2]; |
| 2643 | break; |
| 2644 | case MATRIX_TYPE_REAL: |
| 2645 | a = (real*) A->a; |
| 2646 | break; |
| 2647 | case MATRIX_TYPE_INTEGER: |
| 2648 | ai = (int*) A->a; |
| 2649 | a = MALLOC(sizeof(real)*((size_t)(A->nz))); |
| 2650 | for (i = 0; i < A->nz; i++) a[i] = (real) ai[i]; |
| 2651 | break; |
| 2652 | case MATRIX_TYPE_PATTERN: |
| 2653 | a = MALLOC(sizeof(real)*((size_t)A->nz)); |
| 2654 | for (i = 0; i < A->nz; i++) a[i] = 1.; |
| 2655 | break; |
| 2656 | default: |
| 2657 | assert(0);/* no such matrix type */ |
| 2658 | } |
| 2659 | |
| 2660 | heap_ids = MALLOC(sizeof(int)*((size_t)m)); |
| 2661 | for (i = 0; i < m; i++) { |
| 2662 | dist[i] = -1; |
| 2663 | heap_ids[i] = UNVISITED; |
| 2664 | } |
| 2665 | |
| 2666 | h = BinaryHeap_new(cmp); |
| 2667 | assert(h); |
| 2668 | |
| 2669 | /* add root as the first item in the heap */ |
| 2670 | ndata = MALLOC(sizeof(struct nodedata_struct)); |
| 2671 | ndata->dist = 0; |
| 2672 | ndata->id = root; |
| 2673 | heap_ids[root] = BinaryHeap_insert(h, ndata); |
| 2674 | |
| 2675 | assert(heap_ids[root] >= 0);/* by design heap ID from BinaryHeap_insert >=0*/ |
| 2676 | |
| 2677 | while ((ndata_min = BinaryHeap_extract_min(h))){ |
| 2678 | i = ndata_min->id; |
| 2679 | dist[i] = ndata_min->dist; |
| 2680 | list[found++] = i; |
| 2681 | heap_ids[i] = FINISHED; |
| 2682 | //fprintf(stderr," =================\n min extracted is id=%d, dist=%f\n",i, ndata_min->dist); |
| 2683 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 2684 | jj = ja[j]; |
| 2685 | heap_id = heap_ids[jj]; |
| 2686 | |
| 2687 | if (jj == i || heap_id == FINISHED || (mask && mask[jj] < 0)) continue; |
| 2688 | |
| 2689 | if (heap_id == UNVISITED){ |
| 2690 | ndata = MALLOC(sizeof(struct nodedata_struct)); |
| 2691 | ndata->dist = ABS(a[j]) + ndata_min->dist; |
| 2692 | ndata->id = jj; |
| 2693 | heap_ids[jj] = BinaryHeap_insert(h, ndata); |
| 2694 | //fprintf(stderr," set neighbor id=%d, dist=%f, hid = %d, a[%d]=%f, dist=%f\n",jj, ndata->dist, heap_ids[jj], jj, a[j], ndata->dist); |
| 2695 | |
| 2696 | } else { |
| 2697 | ndata = BinaryHeap_get_item(h, heap_id); |
| 2698 | ndata->dist = MIN(ndata->dist, ABS(a[j]) + ndata_min->dist); |
| 2699 | assert(ndata->id == jj); |
| 2700 | BinaryHeap_reset(h, heap_id, ndata); |
| 2701 | //fprintf(stderr," reset neighbor id=%d, dist=%f, hid = %d, a[%d]=%f, dist=%f\n",jj, ndata->dist,heap_id, jj, a[j], ndata->dist); |
| 2702 | } |
| 2703 | } |
| 2704 | FREE(ndata_min); |
| 2705 | } |
| 2706 | *nlist = found; |
| 2707 | *dist_max = dist[i]; |
| 2708 | |
| 2709 | |
| 2710 | BinaryHeap_delete(h, FREE); |
| 2711 | FREE(heap_ids); |
| 2712 | if (a && a != A->a) FREE(a); |
| 2713 | if (found == m || mask){ |
| 2714 | return 0; |
| 2715 | } else { |
| 2716 | return -1; |
| 2717 | } |
| 2718 | } |
| 2719 | |
| 2720 | static int Dijkstra(SparseMatrix A, int root, real *dist, int *nlist, int *list, real *dist_max){ |
| 2721 | return Dijkstra_internal(A, root, dist, nlist, list, dist_max, NULL); |
| 2722 | } |
| 2723 | |
| 2724 | static int Dijkstra_masked(SparseMatrix A, int root, real *dist, int *nlist, int *list, real *dist_max, int *mask){ |
| 2725 | /* this makes the algorithm only consider nodes that are masked. |
| 2726 | nodes are masked as 1, 2, ..., mask_max, which is (the number of hops from root)+1. |
| 2727 | Only paths consists of nodes that are masked are allowed. */ |
| 2728 | |
| 2729 | return Dijkstra_internal(A, root, dist, nlist, list, dist_max, mask); |
| 2730 | } |
| 2731 | |
| 2732 | real SparseMatrix_pseudo_diameter_weighted(SparseMatrix A0, int root, int aggressive, int *end1, int *end2, int *connectedQ){ |
| 2733 | /* weighted graph. But still assume to be undirected. unsymmetric matrix ill be symmetrized */ |
| 2734 | SparseMatrix A = A0; |
| 2735 | int m = A->m, i, *list = NULL, nlist; |
| 2736 | int flag; |
| 2737 | real *dist = NULL, dist_max = -1, dist0 = -1; |
| 2738 | int roots[5], iroots, end11, end22; |
| 2739 | |
| 2740 | if (!SparseMatrix_is_symmetric(A, TRUE)){ |
| 2741 | A = SparseMatrix_symmetrize(A, TRUE); |
| 2742 | } |
| 2743 | assert(m == A->n); |
| 2744 | |
| 2745 | dist = MALLOC(sizeof(real)*((size_t)m)); |
| 2746 | list = MALLOC(sizeof(int)*((size_t)m)); |
| 2747 | nlist = 1; |
| 2748 | list[nlist-1] = root; |
| 2749 | |
| 2750 | assert(SparseMatrix_is_symmetric(A, TRUE)); |
| 2751 | |
| 2752 | do { |
| 2753 | dist0 = dist_max; |
| 2754 | root = list[nlist - 1]; |
| 2755 | flag = Dijkstra(A, root, dist, &nlist, list, &dist_max); |
| 2756 | //fprintf(stderr,"after Dijkstra, {%d,%d}-%f\n",root, list[nlist-1], dist_max); |
| 2757 | assert(dist[list[nlist-1]] == dist_max); |
| 2758 | assert(root == list[0]); |
| 2759 | assert(nlist > 0); |
| 2760 | } while (dist_max > dist0); |
| 2761 | |
| 2762 | *connectedQ = (!flag); |
| 2763 | assert((dist_max - dist0)/MAX(1, MAX(ABS(dist0), ABS(dist_max))) < 1.e-10); |
| 2764 | |
| 2765 | *end1 = root; |
| 2766 | *end2 = list[nlist-1]; |
| 2767 | //fprintf(stderr,"after search for diameter, diam = %f, ends = {%d,%d}\n", dist_max, *end1, *end2); |
| 2768 | |
| 2769 | if (aggressive){ |
| 2770 | iroots = 0; |
| 2771 | for (i = MAX(0, nlist - 6); i < nlist - 1; i++){ |
| 2772 | roots[iroots++] = list[i]; |
| 2773 | } |
| 2774 | for (i = 0; i < iroots; i++){ |
| 2775 | root = roots[i]; |
| 2776 | dist0 = dist_max; |
| 2777 | fprintf(stderr,"search for diameter again from root=%d\n" , root); |
| 2778 | dist_max = SparseMatrix_pseudo_diameter_weighted(A, root, FALSE, &end11, &end22, connectedQ); |
| 2779 | if (dist_max > dist0){ |
| 2780 | *end1 = end11; *end2 = end22; |
| 2781 | } else { |
| 2782 | dist_max = dist0; |
| 2783 | } |
| 2784 | } |
| 2785 | fprintf(stderr,"after aggressive search for diameter, diam = %f, ends = {%d,%d}\n" , dist_max, *end1, *end2); |
| 2786 | } |
| 2787 | |
| 2788 | FREE(dist); |
| 2789 | FREE(list); |
| 2790 | |
| 2791 | if (A != A0) SparseMatrix_delete(A); |
| 2792 | return dist_max; |
| 2793 | |
| 2794 | } |
| 2795 | |
| 2796 | real SparseMatrix_pseudo_diameter_unweighted(SparseMatrix A0, int root, int aggressive, int *end1, int *end2, int *connectedQ){ |
| 2797 | /* assume unit edge length! unsymmetric matrix ill be symmetrized */ |
| 2798 | SparseMatrix A = A0; |
| 2799 | int m = A->m, i; |
| 2800 | int nlevel; |
| 2801 | int *levelset_ptr = NULL, *levelset = NULL, *mask = NULL; |
| 2802 | int nlevel0 = 0; |
| 2803 | int roots[5], iroots, enda, endb; |
| 2804 | |
| 2805 | if (!SparseMatrix_is_symmetric(A, TRUE)){ |
| 2806 | A = SparseMatrix_symmetrize(A, TRUE); |
| 2807 | } |
| 2808 | |
| 2809 | assert(SparseMatrix_is_symmetric(A, TRUE)); |
| 2810 | |
| 2811 | SparseMatrix_level_sets(A, root, &nlevel, &levelset_ptr, &levelset, &mask, TRUE); |
| 2812 | // fprintf(stderr,"after level set, {%d,%d}=%d\n",levelset[0], levelset[levelset_ptr[nlevel]-1], nlevel); |
| 2813 | |
| 2814 | *connectedQ = (levelset_ptr[nlevel] == m); |
| 2815 | while (nlevel0 < nlevel){ |
| 2816 | nlevel0 = nlevel; |
| 2817 | root = levelset[levelset_ptr[nlevel] - 1]; |
| 2818 | SparseMatrix_level_sets(A, root, &nlevel, &levelset_ptr, &levelset, &mask, TRUE); |
| 2819 | //fprintf(stderr,"after level set, {%d,%d}=%d\n",levelset[0], levelset[levelset_ptr[nlevel]-1], nlevel); |
| 2820 | } |
| 2821 | *end1 = levelset[0]; |
| 2822 | *end2 = levelset[levelset_ptr[nlevel]-1]; |
| 2823 | |
| 2824 | if (aggressive){ |
| 2825 | nlevel0 = nlevel; |
| 2826 | iroots = 0; |
| 2827 | for (i = levelset_ptr[nlevel-1]; i < MIN(levelset_ptr[nlevel], levelset_ptr[nlevel-1]+5); i++){ |
| 2828 | iroots++; |
| 2829 | roots[i - levelset_ptr[nlevel-1]] = levelset[i]; |
| 2830 | } |
| 2831 | for (i = 0; i < iroots; i++){ |
| 2832 | root = roots[i]; |
| 2833 | nlevel = (int) SparseMatrix_pseudo_diameter_unweighted(A, root, FALSE, &enda, &endb, connectedQ); |
| 2834 | if (nlevel > nlevel0) { |
| 2835 | nlevel0 = nlevel; |
| 2836 | *end1 = enda; |
| 2837 | *end2 = endb; |
| 2838 | } |
| 2839 | } |
| 2840 | } |
| 2841 | |
| 2842 | FREE(levelset_ptr); |
| 2843 | FREE(levelset); |
| 2844 | FREE(mask); |
| 2845 | if (A != A0) SparseMatrix_delete(A); |
| 2846 | return (real) nlevel0 - 1; |
| 2847 | } |
| 2848 | |
| 2849 | real SparseMatrix_pseudo_diameter_only(SparseMatrix A){ |
| 2850 | int end1, end2, connectedQ; |
| 2851 | return SparseMatrix_pseudo_diameter_unweighted(A, 0, FALSE, &end1, &end2, &connectedQ); |
| 2852 | } |
| 2853 | |
| 2854 | int SparseMatrix_connectedQ(SparseMatrix A0){ |
| 2855 | int root = 0, nlevel, *levelset_ptr = NULL, *levelset = NULL, *mask = NULL, connected; |
| 2856 | SparseMatrix A = A0; |
| 2857 | |
| 2858 | if (!SparseMatrix_is_symmetric(A, TRUE)){ |
| 2859 | if (A->m != A->n) return FALSE; |
| 2860 | A = SparseMatrix_symmetrize(A, TRUE); |
| 2861 | } |
| 2862 | |
| 2863 | SparseMatrix_level_sets(A, root, &nlevel, &levelset_ptr, &levelset, &mask, TRUE); |
| 2864 | connected = (levelset_ptr[nlevel] == A->m); |
| 2865 | |
| 2866 | FREE(levelset_ptr); |
| 2867 | FREE(levelset); |
| 2868 | FREE(mask); |
| 2869 | if (A != A0) SparseMatrix_delete(A); |
| 2870 | |
| 2871 | return connected; |
| 2872 | } |
| 2873 | |
| 2874 | |
| 2875 | void SparseMatrix_decompose_to_supervariables(SparseMatrix A, int *ncluster, int **cluster, int **clusterp){ |
| 2876 | /* nodes for a super variable if they share exactly the same neighbors. This is know as modules in graph theory. |
| 2877 | We work on columns only and columns with the same pattern are grouped as a super variable |
| 2878 | */ |
| 2879 | int *ia = A->ia, *ja = A->ja, n = A->n, m = A->m; |
| 2880 | int *super = NULL, *nsuper = NULL, i, j, *mask = NULL, isup, *newmap, isuper; |
| 2881 | |
| 2882 | super = MALLOC(sizeof(int)*((size_t)(n))); |
| 2883 | nsuper = MALLOC(sizeof(int)*((size_t)(n+1))); |
| 2884 | mask = MALLOC(sizeof(int)*((size_t)n)); |
| 2885 | newmap = MALLOC(sizeof(int)*((size_t)n)); |
| 2886 | nsuper++; |
| 2887 | |
| 2888 | isup = 0; |
| 2889 | for (i = 0; i < n; i++) super[i] = isup;/* every node belongs to super variable 0 by default */ |
| 2890 | nsuper[0] = n; |
| 2891 | for (i = 0; i < n; i++) mask[i] = -1; |
| 2892 | isup++; |
| 2893 | |
| 2894 | for (i = 0; i < m; i++){ |
| 2895 | #ifdef DEBUG_PRINT1 |
| 2896 | printf("\n" ); |
| 2897 | printf("doing row %d-----\n" ,i+1); |
| 2898 | #endif |
| 2899 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 2900 | isuper = super[ja[j]]; |
| 2901 | nsuper[isuper]--;/* those entries will move to a different super vars*/ |
| 2902 | } |
| 2903 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 2904 | isuper = super[ja[j]]; |
| 2905 | if (mask[isuper] < i){ |
| 2906 | mask[isuper] = i; |
| 2907 | if (nsuper[isuper] == 0){/* all nodes in the isuper group exist in this row */ |
| 2908 | #ifdef DEBUG_PRINT1 |
| 2909 | printf("node %d keep super node id %d\n" ,ja[j]+1,isuper+1); |
| 2910 | #endif |
| 2911 | nsuper[isuper] = 1; |
| 2912 | newmap[isuper] = isuper; |
| 2913 | } else { |
| 2914 | newmap[isuper] = isup; |
| 2915 | nsuper[isup] = 1; |
| 2916 | #ifdef DEBUG_PRINT1 |
| 2917 | printf("make node %d into supernode %d\n" ,ja[j]+1,isup+1); |
| 2918 | #endif |
| 2919 | super[ja[j]] = isup++; |
| 2920 | } |
| 2921 | } else { |
| 2922 | #ifdef DEBUG_PRINT1 |
| 2923 | printf("node %d join super node %d\n" ,ja[j]+1,newmap[isuper]+1); |
| 2924 | #endif |
| 2925 | super[ja[j]] = newmap[isuper]; |
| 2926 | nsuper[newmap[isuper]]++; |
| 2927 | } |
| 2928 | } |
| 2929 | #ifdef DEBUG_PRINT1 |
| 2930 | printf("nsuper=" ); |
| 2931 | for (j = 0; j < isup; j++) printf("(%d,%d)," ,j+1,nsuper[j]); |
| 2932 | printf("\n" ); |
| 2933 | #endif |
| 2934 | } |
| 2935 | #ifdef DEBUG_PRINT1 |
| 2936 | for (i = 0; i < n; i++){ |
| 2937 | printf("node %d is in supernode %d\n" ,i, super[i]); |
| 2938 | } |
| 2939 | #endif |
| 2940 | #ifdef PRINT |
| 2941 | fprintf(stderr, "n = %d, nsup = %d\n" ,n,isup); |
| 2942 | #endif |
| 2943 | /* now accumulate super nodes */ |
| 2944 | nsuper--; |
| 2945 | nsuper[0] = 0; |
| 2946 | for (i = 0; i < isup; i++) nsuper[i+1] += nsuper[i]; |
| 2947 | |
| 2948 | *cluster = newmap; |
| 2949 | for (i = 0; i < n; i++){ |
| 2950 | isuper = super[i]; |
| 2951 | (*cluster)[nsuper[isuper]++] = i; |
| 2952 | } |
| 2953 | for (i = isup; i > 0; i--) nsuper[i] = nsuper[i-1]; |
| 2954 | nsuper[0] = 0; |
| 2955 | *clusterp = nsuper; |
| 2956 | *ncluster = isup; |
| 2957 | |
| 2958 | #ifdef PRINT |
| 2959 | for (i = 0; i < *ncluster; i++){ |
| 2960 | printf("{" ); |
| 2961 | for (j = (*clusterp)[i]; j < (*clusterp)[i+1]; j++){ |
| 2962 | printf("%d, " ,(*cluster)[j]); |
| 2963 | } |
| 2964 | printf("}," ); |
| 2965 | } |
| 2966 | printf("\n" ); |
| 2967 | #endif |
| 2968 | |
| 2969 | FREE(mask); |
| 2970 | FREE(super); |
| 2971 | |
| 2972 | } |
| 2973 | |
| 2974 | SparseMatrix SparseMatrix_get_augmented(SparseMatrix A){ |
| 2975 | /* convert matrix A to an augmente dmatrix {{0,A},{A^T,0}} */ |
| 2976 | int *irn = NULL, *jcn = NULL; |
| 2977 | void *val = NULL; |
| 2978 | int nz = A->nz, type = A->type; |
| 2979 | int m = A->m, n = A->n, i, j; |
| 2980 | SparseMatrix B = NULL; |
| 2981 | if (!A) return NULL; |
| 2982 | if (nz > 0){ |
| 2983 | irn = MALLOC(sizeof(int)*((size_t)nz)*2); |
| 2984 | jcn = MALLOC(sizeof(int)*((size_t)nz)*2); |
| 2985 | } |
| 2986 | |
| 2987 | if (A->a){ |
| 2988 | assert(A->size != 0 && nz > 0); |
| 2989 | val = MALLOC(A->size*2*((size_t)nz)); |
| 2990 | MEMCPY(val, A->a, A->size*((size_t)nz)); |
| 2991 | MEMCPY((void*)(((char*) val) + ((size_t)nz)*A->size), A->a, A->size*((size_t)nz)); |
| 2992 | } |
| 2993 | |
| 2994 | nz = 0; |
| 2995 | for (i = 0; i < m; i++){ |
| 2996 | for (j = (A->ia)[i]; j < (A->ia)[i+1]; j++){ |
| 2997 | irn[nz] = i; |
| 2998 | jcn[nz++] = (A->ja)[j] + m; |
| 2999 | } |
| 3000 | } |
| 3001 | for (i = 0; i < m; i++){ |
| 3002 | for (j = (A->ia)[i]; j < (A->ia)[i+1]; j++){ |
| 3003 | jcn[nz] = i; |
| 3004 | irn[nz++] = (A->ja)[j] + m; |
| 3005 | } |
| 3006 | } |
| 3007 | |
| 3008 | B = SparseMatrix_from_coordinate_arrays(nz, m + n, m + n, irn, jcn, val, type, A->size); |
| 3009 | SparseMatrix_set_symmetric(B); |
| 3010 | SparseMatrix_set_pattern_symmetric(B); |
| 3011 | if (irn) FREE(irn); |
| 3012 | if (jcn) FREE(jcn); |
| 3013 | if (val) FREE(val); |
| 3014 | return B; |
| 3015 | |
| 3016 | } |
| 3017 | |
| 3018 | SparseMatrix SparseMatrix_to_square_matrix(SparseMatrix A, int bipartite_options){ |
| 3019 | SparseMatrix B; |
| 3020 | switch (bipartite_options){ |
| 3021 | case BIPARTITE_RECT: |
| 3022 | if (A->m == A->n) return A; |
| 3023 | break; |
| 3024 | case BIPARTITE_PATTERN_UNSYM: |
| 3025 | if (A->m == A->n && SparseMatrix_is_symmetric(A, TRUE)) return A; |
| 3026 | break; |
| 3027 | case BIPARTITE_UNSYM: |
| 3028 | if (A->m == A->n && SparseMatrix_is_symmetric(A, FALSE)) return A; |
| 3029 | break; |
| 3030 | case BIPARTITE_ALWAYS: |
| 3031 | break; |
| 3032 | default: |
| 3033 | assert(0); |
| 3034 | } |
| 3035 | B = SparseMatrix_get_augmented(A); |
| 3036 | SparseMatrix_delete(A); |
| 3037 | return B; |
| 3038 | } |
| 3039 | |
| 3040 | SparseMatrix SparseMatrix_get_submatrix(SparseMatrix A, int nrow, int ncol, int *rindices, int *cindices){ |
| 3041 | /* get the submatrix from row/columns indices[0,...,l-1]. |
| 3042 | row rindices[i] will be the new row i |
| 3043 | column cindices[i] will be the new column i. |
| 3044 | if rindices = NULL, it is assume that 1 -- nrow is needed. Same for cindices/ncol. |
| 3045 | */ |
| 3046 | int nz = 0, i, j, *irn, *jcn, *ia = A->ia, *ja = A->ja, m = A->m, n = A->n; |
| 3047 | int *cmask, *rmask; |
| 3048 | void *v = NULL; |
| 3049 | SparseMatrix B = NULL; |
| 3050 | int irow = 0, icol = 0; |
| 3051 | |
| 3052 | if (nrow <= 0 || ncol <= 0) return NULL; |
| 3053 | |
| 3054 | |
| 3055 | |
| 3056 | rmask = MALLOC(sizeof(int)*((size_t)m)); |
| 3057 | cmask = MALLOC(sizeof(int)*((size_t)n)); |
| 3058 | for (i = 0; i < m; i++) rmask[i] = -1; |
| 3059 | for (i = 0; i < n; i++) cmask[i] = -1; |
| 3060 | |
| 3061 | if (rindices){ |
| 3062 | for (i = 0; i < nrow; i++) { |
| 3063 | if (rindices[i] >= 0 && rindices[i] < m){ |
| 3064 | rmask[rindices[i]] = irow++; |
| 3065 | } |
| 3066 | } |
| 3067 | } else { |
| 3068 | for (i = 0; i < nrow; i++) { |
| 3069 | rmask[i] = irow++; |
| 3070 | } |
| 3071 | } |
| 3072 | |
| 3073 | if (cindices){ |
| 3074 | for (i = 0; i < ncol; i++) { |
| 3075 | if (cindices[i] >= 0 && cindices[i] < n){ |
| 3076 | cmask[cindices[i]] = icol++; |
| 3077 | } |
| 3078 | } |
| 3079 | } else { |
| 3080 | for (i = 0; i < ncol; i++) { |
| 3081 | cmask[i] = icol++; |
| 3082 | } |
| 3083 | } |
| 3084 | |
| 3085 | for (i = 0; i < m; i++){ |
| 3086 | if (rmask[i] < 0) continue; |
| 3087 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 3088 | if (cmask[ja[j]] < 0) continue; |
| 3089 | nz++; |
| 3090 | } |
| 3091 | } |
| 3092 | |
| 3093 | |
| 3094 | switch (A->type){ |
| 3095 | case MATRIX_TYPE_REAL:{ |
| 3096 | real *a = (real*) A->a; |
| 3097 | real *val; |
| 3098 | irn = MALLOC(sizeof(int)*((size_t)nz)); |
| 3099 | jcn = MALLOC(sizeof(int)*((size_t)nz)); |
| 3100 | val = MALLOC(sizeof(real)*((size_t)nz)); |
| 3101 | |
| 3102 | nz = 0; |
| 3103 | for (i = 0; i < m; i++){ |
| 3104 | if (rmask[i] < 0) continue; |
| 3105 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 3106 | if (cmask[ja[j]] < 0) continue; |
| 3107 | irn[nz] = rmask[i]; |
| 3108 | jcn[nz] = cmask[ja[j]]; |
| 3109 | val[nz++] = a[j]; |
| 3110 | } |
| 3111 | } |
| 3112 | v = (void*) val; |
| 3113 | break; |
| 3114 | } |
| 3115 | case MATRIX_TYPE_COMPLEX:{ |
| 3116 | real *a = (real*) A->a; |
| 3117 | real *val; |
| 3118 | |
| 3119 | irn = MALLOC(sizeof(int)*((size_t)nz)); |
| 3120 | jcn = MALLOC(sizeof(int)*((size_t)nz)); |
| 3121 | val = MALLOC(sizeof(real)*2*((size_t)nz)); |
| 3122 | |
| 3123 | nz = 0; |
| 3124 | for (i = 0; i < m; i++){ |
| 3125 | if (rmask[i] < 0) continue; |
| 3126 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 3127 | if (cmask[ja[j]] < 0) continue; |
| 3128 | irn[nz] = rmask[i]; |
| 3129 | jcn[nz] = cmask[ja[j]]; |
| 3130 | val[2*nz] = a[2*j]; |
| 3131 | val[2*nz+1] = a[2*j+1]; |
| 3132 | nz++; |
| 3133 | } |
| 3134 | } |
| 3135 | v = (void*) val; |
| 3136 | break; |
| 3137 | } |
| 3138 | case MATRIX_TYPE_INTEGER:{ |
| 3139 | int *a = (int*) A->a; |
| 3140 | int *val; |
| 3141 | |
| 3142 | irn = MALLOC(sizeof(int)*((size_t)nz)); |
| 3143 | jcn = MALLOC(sizeof(int)*((size_t)nz)); |
| 3144 | val = MALLOC(sizeof(int)*((size_t)nz)); |
| 3145 | |
| 3146 | nz = 0; |
| 3147 | for (i = 0; i < m; i++){ |
| 3148 | if (rmask[i] < 0) continue; |
| 3149 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 3150 | if (cmask[ja[j]] < 0) continue; |
| 3151 | irn[nz] = rmask[i]; |
| 3152 | jcn[nz] = cmask[ja[j]]; |
| 3153 | val[nz] = a[j]; |
| 3154 | nz++; |
| 3155 | } |
| 3156 | } |
| 3157 | v = (void*) val; |
| 3158 | break; |
| 3159 | } |
| 3160 | case MATRIX_TYPE_PATTERN: |
| 3161 | irn = MALLOC(sizeof(int)*((size_t)nz)); |
| 3162 | jcn = MALLOC(sizeof(int)*((size_t)nz)); |
| 3163 | nz = 0; |
| 3164 | for (i = 0; i < m; i++){ |
| 3165 | if (rmask[i] < 0) continue; |
| 3166 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 3167 | if (cmask[ja[j]] < 0) continue; |
| 3168 | irn[nz] = rmask[i]; |
| 3169 | jcn[nz++] = cmask[ja[j]]; |
| 3170 | } |
| 3171 | } |
| 3172 | break; |
| 3173 | case MATRIX_TYPE_UNKNOWN: |
| 3174 | FREE(rmask); |
| 3175 | FREE(cmask); |
| 3176 | return NULL; |
| 3177 | default: |
| 3178 | FREE(rmask); |
| 3179 | FREE(cmask); |
| 3180 | return NULL; |
| 3181 | } |
| 3182 | |
| 3183 | B = SparseMatrix_from_coordinate_arrays(nz, nrow, ncol, irn, jcn, v, A->type, A->size); |
| 3184 | FREE(cmask); |
| 3185 | FREE(rmask); |
| 3186 | FREE(irn); |
| 3187 | FREE(jcn); |
| 3188 | if (v) FREE(v); |
| 3189 | |
| 3190 | |
| 3191 | return B; |
| 3192 | |
| 3193 | } |
| 3194 | |
| 3195 | SparseMatrix SparseMatrix_exclude_submatrix(SparseMatrix A, int nrow, int ncol, int *rindices, int *cindices){ |
| 3196 | /* get a submatrix by excluding rows and columns */ |
| 3197 | int *r, *c, nr, nc, i; |
| 3198 | SparseMatrix B; |
| 3199 | |
| 3200 | if (nrow <= 0 && ncol <= 0) return A; |
| 3201 | |
| 3202 | r = MALLOC(sizeof(int)*((size_t)A->m)); |
| 3203 | c = MALLOC(sizeof(int)*((size_t)A->n)); |
| 3204 | |
| 3205 | for (i = 0; i < A->m; i++) r[i] = i; |
| 3206 | for (i = 0; i < A->n; i++) c[i] = i; |
| 3207 | for (i = 0; i < nrow; i++) { |
| 3208 | if (rindices[i] >= 0 && rindices[i] < A->m){ |
| 3209 | r[rindices[i]] = -1; |
| 3210 | } |
| 3211 | } |
| 3212 | for (i = 0; i < ncol; i++) { |
| 3213 | if (cindices[i] >= 0 && cindices[i] < A->n){ |
| 3214 | c[cindices[i]] = -1; |
| 3215 | } |
| 3216 | } |
| 3217 | |
| 3218 | nr = nc = 0; |
| 3219 | for (i = 0; i < A->m; i++) { |
| 3220 | if (r[i] > 0) r[nr++] = r[i]; |
| 3221 | } |
| 3222 | for (i = 0; i < A->n; i++) { |
| 3223 | if (c[i] > 0) c[nc++] = c[i]; |
| 3224 | } |
| 3225 | |
| 3226 | B = SparseMatrix_get_submatrix(A, nr, nc, r, c); |
| 3227 | |
| 3228 | FREE(r); |
| 3229 | FREE(c); |
| 3230 | return B; |
| 3231 | |
| 3232 | } |
| 3233 | |
| 3234 | SparseMatrix SparseMatrix_largest_component(SparseMatrix A){ |
| 3235 | SparseMatrix B; |
| 3236 | int ncomp; |
| 3237 | int *comps = NULL; |
| 3238 | int *comps_ptr = NULL; |
| 3239 | int i; |
| 3240 | int nmax, imax = 0; |
| 3241 | |
| 3242 | if (!A) return NULL; |
| 3243 | A = SparseMatrix_to_square_matrix(A, BIPARTITE_RECT); |
| 3244 | SparseMatrix_weakly_connected_components(A, &ncomp, &comps, &comps_ptr); |
| 3245 | if (ncomp == 1) { |
| 3246 | B = A; |
| 3247 | } else { |
| 3248 | nmax = 0; |
| 3249 | for (i = 0; i < ncomp; i++){ |
| 3250 | if (nmax < comps_ptr[i+1] - comps_ptr[i]){ |
| 3251 | nmax = comps_ptr[i+1] - comps_ptr[i]; |
| 3252 | imax = i; |
| 3253 | } |
| 3254 | } |
| 3255 | B = SparseMatrix_get_submatrix(A, nmax, nmax, &comps[comps_ptr[imax]], &comps[comps_ptr[imax]]); |
| 3256 | } |
| 3257 | FREE(comps); |
| 3258 | FREE(comps_ptr); |
| 3259 | return B; |
| 3260 | |
| 3261 | |
| 3262 | } |
| 3263 | |
| 3264 | SparseMatrix SparseMatrix_delete_sparse_columns(SparseMatrix A, int threshold, int **new2old, int *nnew, int inplace){ |
| 3265 | /* delete sparse columns of threshold or less entries in A. After than number of columns will be nnew, and |
| 3266 | the mapping from new matrix column to old matrix column is new2old. |
| 3267 | On entry, if new2old is NULL, it is allocated. |
| 3268 | */ |
| 3269 | SparseMatrix B; |
| 3270 | int *ia, *ja; |
| 3271 | int *old2new; |
| 3272 | int i; |
| 3273 | old2new = MALLOC(sizeof(int)*((size_t)A->n)); |
| 3274 | for (i = 0; i < A->n; i++) old2new[i] = -1; |
| 3275 | |
| 3276 | *nnew = 0; |
| 3277 | B = SparseMatrix_transpose(A); |
| 3278 | ia = B->ia; ja = B->ja; |
| 3279 | for (i = 0; i < B->m; i++){ |
| 3280 | if (ia[i+1] > ia[i] + threshold){ |
| 3281 | (*nnew)++; |
| 3282 | } |
| 3283 | } |
| 3284 | if (!(*new2old)) *new2old = MALLOC(sizeof(int)*((size_t)(*nnew))); |
| 3285 | |
| 3286 | *nnew = 0; |
| 3287 | for (i = 0; i < B->m; i++){ |
| 3288 | if (ia[i+1] > ia[i] + threshold){ |
| 3289 | (*new2old)[*nnew] = i; |
| 3290 | old2new[i] = *nnew; |
| 3291 | (*nnew)++; |
| 3292 | } |
| 3293 | } |
| 3294 | SparseMatrix_delete(B); |
| 3295 | |
| 3296 | if (inplace){ |
| 3297 | B = A; |
| 3298 | } else { |
| 3299 | B = SparseMatrix_copy(A); |
| 3300 | } |
| 3301 | ia = B->ia; ja = B->ja; |
| 3302 | for (i = 0; i < ia[B->m]; i++){ |
| 3303 | assert(old2new[ja[i]] >= 0); |
| 3304 | ja[i] = old2new[ja[i]]; |
| 3305 | } |
| 3306 | B->n = *nnew; |
| 3307 | |
| 3308 | FREE(old2new); |
| 3309 | return B; |
| 3310 | |
| 3311 | |
| 3312 | } |
| 3313 | |
| 3314 | SparseMatrix SparseMatrix_delete_empty_columns(SparseMatrix A, int **new2old, int *nnew, int inplace){ |
| 3315 | return SparseMatrix_delete_sparse_columns(A, 0, new2old, nnew, inplace); |
| 3316 | } |
| 3317 | |
| 3318 | SparseMatrix SparseMatrix_set_entries_to_real_one(SparseMatrix A){ |
| 3319 | real *a; |
| 3320 | int i; |
| 3321 | |
| 3322 | if (A->a) FREE(A->a); |
| 3323 | A->a = MALLOC(sizeof(real)*((size_t)A->nz)); |
| 3324 | a = (real*) (A->a); |
| 3325 | for (i = 0; i < A->nz; i++) a[i] = 1.; |
| 3326 | A->type = MATRIX_TYPE_REAL; |
| 3327 | A->size = sizeof(real); |
| 3328 | return A; |
| 3329 | |
| 3330 | } |
| 3331 | |
| 3332 | SparseMatrix SparseMatrix_complement(SparseMatrix A, int undirected){ |
| 3333 | /* find the complement graph A^c, such that {i,h}\in E(A_c) iff {i,j} \notin E(A). Only structural matrix is returned. */ |
| 3334 | SparseMatrix B = A; |
| 3335 | int *ia, *ja; |
| 3336 | int m = A->m, n = A->n; |
| 3337 | int *mask, nz = 0; |
| 3338 | int *irn, *jcn; |
| 3339 | int i, j; |
| 3340 | |
| 3341 | if (undirected) B = SparseMatrix_symmetrize(A, TRUE); |
| 3342 | assert(m == n); |
| 3343 | |
| 3344 | ia = B->ia; ja = B->ja; |
| 3345 | mask = MALLOC(sizeof(int)*((size_t)n)); |
| 3346 | irn = MALLOC(sizeof(int)*(((size_t)n)*((size_t)n) - ((size_t)A->nz))); |
| 3347 | jcn = MALLOC(sizeof(int)*(((size_t)n)*((size_t)n) - ((size_t)A->nz))); |
| 3348 | |
| 3349 | for (i = 0; i < n; i++){ |
| 3350 | mask[i] = -1; |
| 3351 | } |
| 3352 | |
| 3353 | for (i = 0; i < n; i++){ |
| 3354 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 3355 | mask[ja[j]] = i; |
| 3356 | } |
| 3357 | for (j = 0; j < n; j++){ |
| 3358 | if (mask[j] != i){ |
| 3359 | irn[nz] = i; |
| 3360 | jcn[nz++] = j; |
| 3361 | } |
| 3362 | } |
| 3363 | } |
| 3364 | |
| 3365 | if (B != A) SparseMatrix_delete(B); |
| 3366 | B = SparseMatrix_from_coordinate_arrays(nz, m, n, irn, jcn, NULL, MATRIX_TYPE_PATTERN, 0); |
| 3367 | FREE(irn); |
| 3368 | FREE(jcn); |
| 3369 | return B; |
| 3370 | } |
| 3371 | |
| 3372 | int SparseMatrix_k_centers(SparseMatrix D0, int weighted, int K, int root, int **centers, int centering, real **dist0){ |
| 3373 | /* |
| 3374 | Input: |
| 3375 | D: the graph. If weighted, the entry values is used. |
| 3376 | weighted: whether to treat the graph as weighted |
| 3377 | K: the number of centers |
| 3378 | root: the start node to find the k center. |
| 3379 | centering: whether the distance should be centered so that sum_k dist[n*k+i] = 0 |
| 3380 | Output: |
| 3381 | centers: the list of nodes that form the k-centers. If centers = NULL on input, it will be allocated. |
| 3382 | dist: of dimension k*n, dist[k*n: (k+1)*n) gives the distance of every node to the k-th center. |
| 3383 | return: flag. if not zero, the graph is not connected, or out of memory. |
| 3384 | */ |
| 3385 | SparseMatrix D = D0; |
| 3386 | int m = D->m, n = D->n; |
| 3387 | int *levelset_ptr = NULL, *levelset = NULL, *mask = NULL; |
| 3388 | int aggressive = FALSE; |
| 3389 | int connectedQ, end1, end2; |
| 3390 | enum {K_CENTER_DISCONNECTED = 1, K_CENTER_MEM}; |
| 3391 | real *dist_min = NULL, *dist_sum = NULL, dmax, dsum; |
| 3392 | real *dist = NULL; |
| 3393 | int nlist, *list = NULL; |
| 3394 | int flag = 0, i, j, k, nlevel; |
| 3395 | int check_connected = FALSE; |
| 3396 | |
| 3397 | if (!SparseMatrix_is_symmetric(D, FALSE)){ |
| 3398 | D = SparseMatrix_symmetrize(D, FALSE); |
| 3399 | } |
| 3400 | |
| 3401 | assert(m == n); |
| 3402 | |
| 3403 | dist_min = MALLOC(sizeof(real)*n); |
| 3404 | dist_sum = MALLOC(sizeof(real)*n); |
| 3405 | for (i = 0; i < n; i++) dist_min[i] = -1; |
| 3406 | for (i = 0; i < n; i++) dist_sum[i] = 0; |
| 3407 | if (!(*centers)) *centers = MALLOC(sizeof(int)*K); |
| 3408 | if (!(*dist0)) *dist0 = MALLOC(sizeof(real)*K*n); |
| 3409 | if (!weighted){ |
| 3410 | dist = MALLOC(sizeof(real)*n); |
| 3411 | SparseMatrix_pseudo_diameter_unweighted(D, root, aggressive, &end1, &end2, &connectedQ); |
| 3412 | if (check_connected && !connectedQ) { |
| 3413 | flag = K_CENTER_DISCONNECTED; |
| 3414 | goto RETURN; |
| 3415 | } |
| 3416 | root = end1; |
| 3417 | for (k = 0; k < K; k++){ |
| 3418 | (*centers)[k] = root; |
| 3419 | // fprintf(stderr,"k = %d, root = %d\n",k, root+1); |
| 3420 | SparseMatrix_level_sets(D, root, &nlevel, &levelset_ptr, &levelset, &mask, TRUE); |
| 3421 | if (check_connected) assert(levelset_ptr[nlevel] == n); |
| 3422 | for (i = 0; i < nlevel; i++) { |
| 3423 | for (j = levelset_ptr[i]; j < levelset_ptr[i+1]; j++){ |
| 3424 | (*dist0)[k*n+levelset[j]] = i; |
| 3425 | if (k == 0){ |
| 3426 | dist_min[levelset[j]] = i; |
| 3427 | } else { |
| 3428 | dist_min[levelset[j]] = MIN(dist_min[levelset[j]], i); |
| 3429 | } |
| 3430 | dist_sum[levelset[j]] += i; |
| 3431 | } |
| 3432 | } |
| 3433 | |
| 3434 | /* root = argmax_i min_roots dist(i, roots) */ |
| 3435 | dmax = dist_min[0]; |
| 3436 | dsum = dist_sum[0]; |
| 3437 | root = 0; |
| 3438 | for (i = 0; i < n; i++) { |
| 3439 | if (!check_connected && dist_min[i] < 0) continue;/* if the graph is disconnected, then we can not count on every node to be in level set. |
| 3440 | Usee dist_min<0 to identify those not in level set */ |
| 3441 | if (dmax < dist_min[i] || (dmax == dist_min[i] && dsum < dist_sum[i])){/* tie break with avg dist */ |
| 3442 | dmax = dist_min[i]; |
| 3443 | dsum = dist_sum[i]; |
| 3444 | root = i; |
| 3445 | } |
| 3446 | } |
| 3447 | } |
| 3448 | } else { |
| 3449 | SparseMatrix_pseudo_diameter_weighted(D, root, aggressive, &end1, &end2, &connectedQ); |
| 3450 | if (check_connected && !connectedQ) return K_CENTER_DISCONNECTED; |
| 3451 | root = end1; |
| 3452 | list = MALLOC(sizeof(int)*n); |
| 3453 | |
| 3454 | for (k = 0; k < K; k++){ |
| 3455 | //fprintf(stderr,"k = %d, root = %d\n",k, root+1); |
| 3456 | (*centers)[k] = root; |
| 3457 | dist = &((*dist0)[k*n]); |
| 3458 | flag = Dijkstra(D, root, dist, &nlist, list, &dmax); |
| 3459 | if (flag){ |
| 3460 | flag = K_CENTER_MEM; |
| 3461 | goto RETURN; |
| 3462 | } |
| 3463 | if (check_connected) assert(nlist == n); |
| 3464 | for (i = 0; i < n; i++){ |
| 3465 | if (k == 0){ |
| 3466 | dist_min[i] = dist[i]; |
| 3467 | } else { |
| 3468 | dist_min[i] = MIN(dist_min[i], dist[i]); |
| 3469 | } |
| 3470 | dist_sum[i] += dist[i]; |
| 3471 | } |
| 3472 | |
| 3473 | /* root = argmax_i min_roots dist(i, roots) */ |
| 3474 | dmax = dist_min[0]; |
| 3475 | dsum = dist_sum[0]; |
| 3476 | root = 0; |
| 3477 | for (i = 0; i < n; i++) { |
| 3478 | if (!check_connected && dist_min[i] < 0) continue;/* if the graph is disconnected, then we can not count on every node to be in level set. |
| 3479 | Usee dist_min<0 to identify those not in level set */ |
| 3480 | if (dmax < dist_min[i] || (dmax == dist_min[i] && dsum < dist_sum[i])){/* tie break with avg dist */ |
| 3481 | dmax = dist_min[i]; |
| 3482 | dsum = dist_sum[i]; |
| 3483 | root = i; |
| 3484 | } |
| 3485 | } |
| 3486 | } |
| 3487 | dist = NULL; |
| 3488 | } |
| 3489 | |
| 3490 | if (centering){ |
| 3491 | for (i = 0; i < n; i++) dist_sum[i] /= k; |
| 3492 | for (k = 0; k < K; k++){ |
| 3493 | for (i = 0; i < n; i++){ |
| 3494 | (*dist0)[k*n+i] -= dist_sum[i]; |
| 3495 | } |
| 3496 | } |
| 3497 | } |
| 3498 | |
| 3499 | RETURN: |
| 3500 | if (levelset_ptr) FREE(levelset_ptr); |
| 3501 | if (levelset) FREE(levelset); |
| 3502 | if (mask) FREE(mask); |
| 3503 | |
| 3504 | if (D != D0) SparseMatrix_delete(D); |
| 3505 | if (dist) FREE(dist); |
| 3506 | if (dist_min) FREE(dist_min); |
| 3507 | if (dist_sum) FREE(dist_sum); |
| 3508 | if (list) FREE(list); |
| 3509 | return flag; |
| 3510 | |
| 3511 | } |
| 3512 | |
| 3513 | |
| 3514 | |
| 3515 | int SparseMatrix_k_centers_user(SparseMatrix D0, int weighted, int K, int *centers_user, int centering, real **dist0){ |
| 3516 | /* |
| 3517 | Input: |
| 3518 | D: the graph. If weighted, the entry values is used. |
| 3519 | weighted: whether to treat the graph as weighted |
| 3520 | K: the number of centers |
| 3521 | root: the start node to find the k center. |
| 3522 | centering: whether the distance should be centered so that sum_k dist[n*k+i] = 0 |
| 3523 | centers_user: the list of nodes that form the k-centers, GIVEN BY THE USER |
| 3524 | Output: |
| 3525 | dist: of dimension k*n, dist[k*n: (k+1)*n) gives the distance of every node to the k-th center. |
| 3526 | return: flag. if not zero, the graph is not connected, or out of memory. |
| 3527 | */ |
| 3528 | SparseMatrix D = D0; |
| 3529 | int m = D->m, n = D->n; |
| 3530 | int *levelset_ptr = NULL, *levelset = NULL, *mask = NULL; |
| 3531 | int aggressive = FALSE; |
| 3532 | int connectedQ, end1, end2; |
| 3533 | enum {K_CENTER_DISCONNECTED = 1, K_CENTER_MEM}; |
| 3534 | real *dist_min = NULL, *dist_sum = NULL, dmax; |
| 3535 | real *dist = NULL; |
| 3536 | int nlist, *list = NULL; |
| 3537 | int flag = 0, i, j, k, nlevel; |
| 3538 | int root; |
| 3539 | |
| 3540 | if (!SparseMatrix_is_symmetric(D, FALSE)){ |
| 3541 | D = SparseMatrix_symmetrize(D, FALSE); |
| 3542 | } |
| 3543 | |
| 3544 | assert(m == n); |
| 3545 | |
| 3546 | dist_min = MALLOC(sizeof(real)*n); |
| 3547 | dist_sum = MALLOC(sizeof(real)*n); |
| 3548 | for (i = 0; i < n; i++) dist_sum[i] = 0; |
| 3549 | if (!(*dist0)) *dist0 = MALLOC(sizeof(real)*K*n); |
| 3550 | if (!weighted){ |
| 3551 | dist = MALLOC(sizeof(real)*n); |
| 3552 | root = centers_user[0]; |
| 3553 | SparseMatrix_pseudo_diameter_unweighted(D, root, aggressive, &end1, &end2, &connectedQ); |
| 3554 | if (!connectedQ) { |
| 3555 | flag = K_CENTER_DISCONNECTED; |
| 3556 | goto RETURN; |
| 3557 | } |
| 3558 | for (k = 0; k < K; k++){ |
| 3559 | root = centers_user[k]; |
| 3560 | SparseMatrix_level_sets(D, root, &nlevel, &levelset_ptr, &levelset, &mask, TRUE); |
| 3561 | assert(levelset_ptr[nlevel] == n); |
| 3562 | for (i = 0; i < nlevel; i++) { |
| 3563 | for (j = levelset_ptr[i]; j < levelset_ptr[i+1]; j++){ |
| 3564 | (*dist0)[k*n+levelset[j]] = i; |
| 3565 | if (k == 0){ |
| 3566 | dist_min[levelset[j]] = i; |
| 3567 | } else { |
| 3568 | dist_min[levelset[j]] = MIN(dist_min[levelset[j]], i); |
| 3569 | } |
| 3570 | dist_sum[levelset[j]] += i; |
| 3571 | } |
| 3572 | } |
| 3573 | |
| 3574 | } |
| 3575 | } else { |
| 3576 | root = centers_user[0]; |
| 3577 | SparseMatrix_pseudo_diameter_weighted(D, root, aggressive, &end1, &end2, &connectedQ); |
| 3578 | if (!connectedQ) return K_CENTER_DISCONNECTED; |
| 3579 | list = MALLOC(sizeof(int)*n); |
| 3580 | |
| 3581 | for (k = 0; k < K; k++){ |
| 3582 | root = centers_user[k]; |
| 3583 | // fprintf(stderr,"k = %d, root = %d\n",k, root+1); |
| 3584 | dist = &((*dist0)[k*n]); |
| 3585 | flag = Dijkstra(D, root, dist, &nlist, list, &dmax); |
| 3586 | if (flag){ |
| 3587 | flag = K_CENTER_MEM; |
| 3588 | dist = NULL; |
| 3589 | goto RETURN; |
| 3590 | } |
| 3591 | assert(nlist == n); |
| 3592 | for (i = 0; i < n; i++){ |
| 3593 | if (k == 0){ |
| 3594 | dist_min[i] = dist[i]; |
| 3595 | } else { |
| 3596 | dist_min[i] = MIN(dist_min[i], dist[i]); |
| 3597 | } |
| 3598 | dist_sum[i] += dist[i]; |
| 3599 | } |
| 3600 | |
| 3601 | } |
| 3602 | dist = NULL; |
| 3603 | } |
| 3604 | |
| 3605 | if (centering){ |
| 3606 | for (i = 0; i < n; i++) dist_sum[i] /= k; |
| 3607 | for (k = 0; k < K; k++){ |
| 3608 | for (i = 0; i < n; i++){ |
| 3609 | (*dist0)[k*n+i] -= dist_sum[i]; |
| 3610 | } |
| 3611 | } |
| 3612 | } |
| 3613 | |
| 3614 | RETURN: |
| 3615 | if (levelset_ptr) FREE(levelset_ptr); |
| 3616 | if (levelset) FREE(levelset); |
| 3617 | if (mask) FREE(mask); |
| 3618 | |
| 3619 | if (D != D0) SparseMatrix_delete(D); |
| 3620 | if (dist) FREE(dist); |
| 3621 | if (dist_min) FREE(dist_min); |
| 3622 | if (dist_sum) FREE(dist_sum); |
| 3623 | if (list) FREE(list); |
| 3624 | return flag; |
| 3625 | |
| 3626 | } |
| 3627 | |
| 3628 | |
| 3629 | |
| 3630 | |
| 3631 | SparseMatrix SparseMatrix_from_dense(int m, int n, real *x){ |
| 3632 | /* wrap a mxn matrix into a sparse matrix. the {i,j} entry of the matrix is in x[i*n+j], 0<=i<m; 0<=j<n */ |
| 3633 | int i, j, *ja; |
| 3634 | real *a; |
| 3635 | SparseMatrix A = SparseMatrix_new(m, n, m*n, MATRIX_TYPE_REAL, FORMAT_CSR); |
| 3636 | |
| 3637 | A->ia[0] = 0; |
| 3638 | for (i = 1; i <= m; i++) (A->ia)[i] = (A->ia)[i-1] + n; |
| 3639 | |
| 3640 | ja = A->ja; |
| 3641 | a = (real*) A->a; |
| 3642 | for (i = 0; i < m; i++){ |
| 3643 | for (j = 0; j < n; j++) { |
| 3644 | ja[j] = j; |
| 3645 | a[j] = x[i*n+j]; |
| 3646 | } |
| 3647 | ja += n; a += j; |
| 3648 | } |
| 3649 | A->nz = m*n; |
| 3650 | return A; |
| 3651 | |
| 3652 | } |
| 3653 | |
| 3654 | |
| 3655 | int SparseMatrix_distance_matrix(SparseMatrix D0, int weighted, real **dist0){ |
| 3656 | /* |
| 3657 | Input: |
| 3658 | D: the graph. If weighted, the entry values is used. |
| 3659 | weighted: whether to treat the graph as weighted |
| 3660 | Output: |
| 3661 | dist: of dimension nxn, dist[i*n+j] gives the distance of node i to j. |
| 3662 | return: flag. if not zero, the graph is not connected, or out of memory. |
| 3663 | */ |
| 3664 | SparseMatrix D = D0; |
| 3665 | int m = D->m, n = D->n; |
| 3666 | int *levelset_ptr = NULL, *levelset = NULL, *mask = NULL; |
| 3667 | real *dist = NULL; |
| 3668 | int nlist, *list = NULL; |
| 3669 | int flag = 0, i, j, k, nlevel; |
| 3670 | real dmax; |
| 3671 | |
| 3672 | if (!SparseMatrix_is_symmetric(D, FALSE)){ |
| 3673 | D = SparseMatrix_symmetrize(D, FALSE); |
| 3674 | } |
| 3675 | |
| 3676 | assert(m == n); |
| 3677 | |
| 3678 | if (!(*dist0)) *dist0 = MALLOC(sizeof(real)*n*n); |
| 3679 | for (i = 0; i < n*n; i++) (*dist0)[i] = -1; |
| 3680 | |
| 3681 | if (!weighted){ |
| 3682 | for (k = 0; k < n; k++){ |
| 3683 | SparseMatrix_level_sets(D, k, &nlevel, &levelset_ptr, &levelset, &mask, TRUE); |
| 3684 | assert(levelset_ptr[nlevel] == n); |
| 3685 | for (i = 0; i < nlevel; i++) { |
| 3686 | for (j = levelset_ptr[i]; j < levelset_ptr[i+1]; j++){ |
| 3687 | (*dist0)[k*n+levelset[j]] = i; |
| 3688 | } |
| 3689 | } |
| 3690 | } |
| 3691 | } else { |
| 3692 | list = MALLOC(sizeof(int)*n); |
| 3693 | for (k = 0; k < n; k++){ |
| 3694 | dist = &((*dist0)[k*n]); |
| 3695 | flag = Dijkstra(D, k, dist, &nlist, list, &dmax); |
| 3696 | } |
| 3697 | } |
| 3698 | |
| 3699 | if (levelset_ptr) FREE(levelset_ptr); |
| 3700 | if (levelset) FREE(levelset); |
| 3701 | if (mask) FREE(mask); |
| 3702 | |
| 3703 | if (D != D0) SparseMatrix_delete(D); |
| 3704 | if (list) FREE(list); |
| 3705 | return flag; |
| 3706 | |
| 3707 | } |
| 3708 | |
| 3709 | SparseMatrix SparseMatrix_distance_matrix_k_centers(int K, SparseMatrix D, int weighted){ |
| 3710 | /* return a sparse matrix whichj represent the k-center and distance from every node to them. |
| 3711 | The matrix will have k*n entries |
| 3712 | */ |
| 3713 | int flag; |
| 3714 | real *dist = NULL; |
| 3715 | int m = D->m, n = D->n; |
| 3716 | int root = 0; |
| 3717 | int *centers = NULL; |
| 3718 | real d; |
| 3719 | int i, j, center; |
| 3720 | SparseMatrix B, C; |
| 3721 | int centering = FALSE; |
| 3722 | |
| 3723 | assert(m == n); |
| 3724 | |
| 3725 | B = SparseMatrix_new(n, n, 1, MATRIX_TYPE_REAL, FORMAT_COORD); |
| 3726 | |
| 3727 | flag = SparseMatrix_k_centers(D, weighted, K, root, ¢ers, centering, &dist); |
| 3728 | assert(!flag); |
| 3729 | |
| 3730 | for (i = 0; i < K; i++){ |
| 3731 | center = centers[i]; |
| 3732 | for (j = 0; j < n; j++){ |
| 3733 | d = dist[i*n + j]; |
| 3734 | B = SparseMatrix_coordinate_form_add_entries(B, 1, ¢er, &j, &d); |
| 3735 | B = SparseMatrix_coordinate_form_add_entries(B, 1, &j, ¢er, &d); |
| 3736 | } |
| 3737 | } |
| 3738 | |
| 3739 | C = SparseMatrix_from_coordinate_format(B); |
| 3740 | SparseMatrix_delete(B); |
| 3741 | |
| 3742 | FREE(centers); |
| 3743 | FREE(dist); |
| 3744 | return C; |
| 3745 | } |
| 3746 | |
| 3747 | SparseMatrix SparseMatrix_distance_matrix_khops(int khops, SparseMatrix D0, int weighted){ |
| 3748 | /* |
| 3749 | Input: |
| 3750 | khops: number of hops allow. If khops < 0, this will give a dense distances. Otherwise it gives a sparse matrix that represent the k-neighborhood graph |
| 3751 | D: the graph. If weighted, the entry values is used. |
| 3752 | weighted: whether to treat the graph as weighted |
| 3753 | Output: |
| 3754 | DD: of dimension nxn. DD[i,j] gives the shortest path distance, subject to the fact that the short oath must be of <= khops. |
| 3755 | return: flag. if not zero, the graph is not connected, or out of memory. |
| 3756 | */ |
| 3757 | SparseMatrix D = D0, B, C; |
| 3758 | int m = D->m, n = D->n; |
| 3759 | int *levelset_ptr = NULL, *levelset = NULL, *mask = NULL; |
| 3760 | real *dist = NULL; |
| 3761 | int nlist, *list = NULL; |
| 3762 | int flag = 0, i, j, k, itmp, nlevel; |
| 3763 | real dmax, dtmp; |
| 3764 | |
| 3765 | if (!SparseMatrix_is_symmetric(D, FALSE)){ |
| 3766 | D = SparseMatrix_symmetrize(D, FALSE); |
| 3767 | } |
| 3768 | |
| 3769 | assert(m == n); |
| 3770 | |
| 3771 | B = SparseMatrix_new(n, n, 1, MATRIX_TYPE_REAL, FORMAT_COORD); |
| 3772 | |
| 3773 | if (!weighted){ |
| 3774 | for (k = 0; k < n; k++){ |
| 3775 | SparseMatrix_level_sets_khops(khops, D, k, &nlevel, &levelset_ptr, &levelset, &mask, TRUE); |
| 3776 | for (i = 0; i < nlevel; i++) { |
| 3777 | for (j = levelset_ptr[i]; j < levelset_ptr[i+1]; j++){ |
| 3778 | itmp = levelset[j]; dtmp = i; |
| 3779 | if (k != itmp) B = SparseMatrix_coordinate_form_add_entries(B, 1, &k, &itmp, &dtmp); |
| 3780 | } |
| 3781 | } |
| 3782 | } |
| 3783 | } else { |
| 3784 | list = MALLOC(sizeof(int)*n); |
| 3785 | dist = MALLOC(sizeof(real)*n); |
| 3786 | /* |
| 3787 | Dijkstra_khops(khops, D, 60, dist, &nlist, list, &dmax); |
| 3788 | for (j = 0; j < nlist; j++){ |
| 3789 | fprintf(stderr,"{%d,%d}=%f,",60,list[j],dist[list[j]]); |
| 3790 | } |
| 3791 | fprintf(stderr,"\n"); |
| 3792 | Dijkstra_khops(khops, D, 94, dist, &nlist, list, &dmax); |
| 3793 | for (j = 0; j < nlist; j++){ |
| 3794 | fprintf(stderr,"{%d,%d}=%f,",94,list[j],dist[list[j]]); |
| 3795 | } |
| 3796 | fprintf(stderr,"\n"); |
| 3797 | exit(1); |
| 3798 | |
| 3799 | */ |
| 3800 | |
| 3801 | for (k = 0; k < n; k++){ |
| 3802 | SparseMatrix_level_sets_khops(khops, D, k, &nlevel, &levelset_ptr, &levelset, &mask, FALSE); |
| 3803 | assert(nlevel-1 <= khops);/* the first level is the root */ |
| 3804 | flag = Dijkstra_masked(D, k, dist, &nlist, list, &dmax, mask); |
| 3805 | assert(!flag); |
| 3806 | for (i = 0; i < nlevel; i++) { |
| 3807 | for (j = levelset_ptr[i]; j < levelset_ptr[i+1]; j++){ |
| 3808 | assert(mask[levelset[j]] == i+1); |
| 3809 | mask[levelset[j]] = -1; |
| 3810 | } |
| 3811 | } |
| 3812 | for (j = 0; j < nlist; j++){ |
| 3813 | itmp = list[j]; dtmp = dist[itmp]; |
| 3814 | if (k != itmp) B = SparseMatrix_coordinate_form_add_entries(B, 1, &k, &itmp, &dtmp); |
| 3815 | } |
| 3816 | } |
| 3817 | } |
| 3818 | |
| 3819 | C = SparseMatrix_from_coordinate_format(B); |
| 3820 | SparseMatrix_delete(B); |
| 3821 | |
| 3822 | if (levelset_ptr) FREE(levelset_ptr); |
| 3823 | if (levelset) FREE(levelset); |
| 3824 | if (mask) FREE(mask); |
| 3825 | if (dist) FREE(dist); |
| 3826 | |
| 3827 | if (D != D0) SparseMatrix_delete(D); |
| 3828 | if (list) FREE(list); |
| 3829 | /* I can not find a reliable way to make the matrix symmetric. Right now I use a mask array to |
| 3830 | limit consider of only nodes with in k hops, but even this is not symmetric. e.g., |
| 3831 | . 10 10 10 10 |
| 3832 | .A---B---C----D----E |
| 3833 | . 2 | | 2 |
| 3834 | . G----F |
| 3835 | . 2 |
| 3836 | If we set hops = 4, and from A, it can not see F (which is 5 hops), hence distance(A,E) =40 |
| 3837 | but from E, it can see all nodes (all within 4 hops), so distance(E, A)=36. |
| 3838 | . |
| 3839 | may be there is a better way to ensure symmetric, but for now we just symmetrize it |
| 3840 | */ |
| 3841 | D = SparseMatrix_symmetrize(C, FALSE); |
| 3842 | SparseMatrix_delete(C); |
| 3843 | return D; |
| 3844 | |
| 3845 | } |
| 3846 | |
| 3847 | #if PQ |
| 3848 | void SparseMatrix_kcore_decomposition(SparseMatrix A, int *coreness_max0, int **coreness_ptr0, int **coreness_list0){ |
| 3849 | /* give an undirected graph A, find the k-coreness of each vertex |
| 3850 | A: a graph. Will be made undirected and self loop removed |
| 3851 | coreness_max: max core number. |
| 3852 | coreness_ptr: array of size (coreness_max + 2), element [corness_ptr[i], corness_ptr[i+1]) |
| 3853 | . of array coreness_list gives the vertices with core i, i <= coreness_max |
| 3854 | coreness_list: array of size n = A->m |
| 3855 | */ |
| 3856 | SparseMatrix B; |
| 3857 | int i, j, *ia, *ja, n = A->m, nz, istatus, neighb; |
| 3858 | PriorityQueue pq = NULL; |
| 3859 | int gain, deg, k, deg_max = 0, deg_old; |
| 3860 | int *coreness_ptr, *coreness_list, coreness_now; |
| 3861 | int *mask; |
| 3862 | |
| 3863 | assert(A->m == A->n); |
| 3864 | B = SparseMatrix_symmetrize(A, FALSE); |
| 3865 | B = SparseMatrix_remove_diagonal(B); |
| 3866 | ia = B->ia; |
| 3867 | ja = B->ja; |
| 3868 | |
| 3869 | mask = MALLOC(sizeof(int)*n); |
| 3870 | for (i = 0; i < n; i++) mask[i] = -1; |
| 3871 | |
| 3872 | pq = PriorityQueue_new(n, n-1); |
| 3873 | for (i = 0; i < n; i++){ |
| 3874 | deg = ia[i+1] - ia[i]; |
| 3875 | deg_max = MAX(deg_max, deg); |
| 3876 | gain = n - 1 - deg; |
| 3877 | pq = PriorityQueue_push(pq, i, gain); |
| 3878 | //fprintf(stderr,"insert %d with gain %d\n",i, gain); |
| 3879 | } |
| 3880 | |
| 3881 | |
| 3882 | coreness_ptr = MALLOC(sizeof(int)*(deg_max+2)); |
| 3883 | coreness_list = MALLOC(sizeof(int)*n); |
| 3884 | deg_old = 0; |
| 3885 | coreness_ptr[deg_old] = 0; |
| 3886 | coreness_now = 0; |
| 3887 | |
| 3888 | nz = 0; |
| 3889 | while (PriorityQueue_pop(pq, &k, &gain)){ |
| 3890 | deg = (n-1) - gain; |
| 3891 | if (deg > deg_old) { |
| 3892 | //fprintf(stderr,"deg = %d, cptr[%d--%d]=%d\n",deg, deg_old + 1, deg, nz); |
| 3893 | for (j = deg_old + 1; j <= deg; j++) coreness_ptr[j] = nz; |
| 3894 | coreness_now = deg; |
| 3895 | deg_old = deg; |
| 3896 | } |
| 3897 | coreness_list[nz++] = k; |
| 3898 | mask[k] = coreness_now; |
| 3899 | //fprintf(stderr,"=== \nremove node %d with gain %d, mask with %d, nelement=%d\n",k, gain, coreness_now, pq->count); |
| 3900 | for (j = ia[k]; j < ia[k+1]; j++){ |
| 3901 | neighb = ja[j]; |
| 3902 | if (mask[neighb] < 0){ |
| 3903 | gain = PriorityQueue_get_gain(pq, neighb); |
| 3904 | //fprintf(stderr,"update node %d with gain %d, nelement=%d\n",neighb, gain+1, pq->count); |
| 3905 | istatus = PriorityQueue_remove(pq, neighb); |
| 3906 | assert(istatus != 0); |
| 3907 | pq = PriorityQueue_push(pq, neighb, gain + 1); |
| 3908 | } |
| 3909 | } |
| 3910 | } |
| 3911 | coreness_ptr[coreness_now + 1] = nz; |
| 3912 | |
| 3913 | *coreness_max0 = coreness_now; |
| 3914 | *coreness_ptr0 = coreness_ptr; |
| 3915 | *coreness_list0 = coreness_list; |
| 3916 | |
| 3917 | if (Verbose){ |
| 3918 | for (i = 0; i <= coreness_now; i++){ |
| 3919 | if (coreness_ptr[i+1] - coreness_ptr[i] > 0){ |
| 3920 | fprintf(stderr,"num_in_core[%d] = %d: " ,i, coreness_ptr[i+1] - coreness_ptr[i]); |
| 3921 | #if 0 |
| 3922 | for (j = coreness_ptr[i]; j < coreness_ptr[i+1]; j++){ |
| 3923 | fprintf(stderr,"%d," ,coreness_list[j]); |
| 3924 | } |
| 3925 | #endif |
| 3926 | fprintf(stderr,"\n" ); |
| 3927 | } |
| 3928 | } |
| 3929 | } |
| 3930 | if (Verbose) |
| 3931 | |
| 3932 | |
| 3933 | if (B != A) SparseMatrix_delete(B); |
| 3934 | FREE(mask); |
| 3935 | } |
| 3936 | |
| 3937 | void SparseMatrix_kcoreness(SparseMatrix A, int **coreness){ |
| 3938 | |
| 3939 | int coreness_max, *coreness_ptr = NULL, *coreness_list = NULL, i, j; |
| 3940 | |
| 3941 | if (!(*coreness)) coreness = MALLOC(sizeof(int)*A->m); |
| 3942 | |
| 3943 | SparseMatrix_kcore_decomposition(A, &coreness_max, &coreness_ptr, &coreness_list); |
| 3944 | |
| 3945 | for (i = 0; i <= coreness_max; i++){ |
| 3946 | for (j = coreness_ptr[i]; j < coreness_ptr[i+1]; j++){ |
| 3947 | (*coreness)[coreness_list[j]] = i; |
| 3948 | } |
| 3949 | } |
| 3950 | |
| 3951 | assert(coreness_ptr[coreness_ptr[coreness_max+1]] = A->m); |
| 3952 | |
| 3953 | } |
| 3954 | |
| 3955 | |
| 3956 | |
| 3957 | |
| 3958 | void SparseMatrix_khair_decomposition(SparseMatrix A, int *hairness_max0, int **hairness_ptr0, int **hairness_list0){ |
| 3959 | /* define k-hair as the largest subgraph of the graph such that the degree of each node is <=k. |
| 3960 | Give an undirected graph A, find the k-hairness of each vertex |
| 3961 | A: a graph. Will be made undirected and self loop removed |
| 3962 | hairness_max: max hair number. |
| 3963 | hairness_ptr: array of size (hairness_max + 2), element [corness_ptr[i], corness_ptr[i+1]) |
| 3964 | . of array hairness_list gives the vertices with hair i, i <= hairness_max |
| 3965 | hairness_list: array of size n = A->m |
| 3966 | */ |
| 3967 | SparseMatrix B; |
| 3968 | int i, j, jj, *ia, *ja, n = A->m, nz, istatus, neighb; |
| 3969 | PriorityQueue pq = NULL; |
| 3970 | int gain, deg = 0, k, deg_max = 0, deg_old; |
| 3971 | int *hairness_ptr, *hairness_list, l; |
| 3972 | int *mask; |
| 3973 | |
| 3974 | assert(A->m == A->n); |
| 3975 | B = SparseMatrix_symmetrize(A, FALSE); |
| 3976 | B = SparseMatrix_remove_diagonal(B); |
| 3977 | ia = B->ia; |
| 3978 | ja = B->ja; |
| 3979 | |
| 3980 | mask = MALLOC(sizeof(int)*n); |
| 3981 | for (i = 0; i < n; i++) mask[i] = -1; |
| 3982 | |
| 3983 | pq = PriorityQueue_new(n, n-1); |
| 3984 | for (i = 0; i < n; i++){ |
| 3985 | deg = ia[i+1] - ia[i]; |
| 3986 | deg_max = MAX(deg_max, deg); |
| 3987 | gain = deg; |
| 3988 | pq = PriorityQueue_push(pq, i, gain); |
| 3989 | } |
| 3990 | |
| 3991 | |
| 3992 | hairness_ptr = MALLOC(sizeof(int)*(deg_max+2)); |
| 3993 | hairness_list = MALLOC(sizeof(int)*n); |
| 3994 | deg_old = deg_max; |
| 3995 | hairness_ptr[deg_old + 1] = n; |
| 3996 | |
| 3997 | nz = n - 1; |
| 3998 | while (PriorityQueue_pop(pq, &k, &gain)){ |
| 3999 | deg = gain; |
| 4000 | mask[k] = deg; |
| 4001 | |
| 4002 | if (deg < deg_old) { |
| 4003 | //fprintf(stderr,"cptr[%d--%d]=%d\n",deg, deg_old + 1, nz); |
| 4004 | for (j = deg_old; j >= deg; j--) hairness_ptr[j] = nz + 1; |
| 4005 | |
| 4006 | for (jj = hairness_ptr[deg_old]; jj < hairness_ptr [deg_old+1]; jj++){ |
| 4007 | l = hairness_list[jj]; |
| 4008 | //fprintf(stderr,"=== \nremove node hairness_list[%d]= %d, mask with %d, nelement=%d\n",jj, l, deg_old, pq->count); |
| 4009 | for (j = ia[l]; j < ia[l+1]; j++){ |
| 4010 | neighb = ja[j]; |
| 4011 | if (neighb == k) deg--;/* k was masked. But we do need to update ts degree */ |
| 4012 | if (mask[neighb] < 0){ |
| 4013 | gain = PriorityQueue_get_gain(pq, neighb); |
| 4014 | //fprintf(stderr,"update node %d with deg %d, nelement=%d\n",neighb, gain-1, pq->count); |
| 4015 | istatus = PriorityQueue_remove(pq, neighb); |
| 4016 | assert(istatus != 0); |
| 4017 | pq = PriorityQueue_push(pq, neighb, gain - 1); |
| 4018 | } |
| 4019 | } |
| 4020 | } |
| 4021 | mask[k] = 0;/* because a bunch of nodes are removed, k may not be the best node! Unmask */ |
| 4022 | pq = PriorityQueue_push(pq, k, deg); |
| 4023 | PriorityQueue_pop(pq, &k, &gain); |
| 4024 | deg = gain; |
| 4025 | mask[k] = deg; |
| 4026 | deg_old = deg; |
| 4027 | } |
| 4028 | //fprintf(stderr,"-------- node with highes deg is %d, deg = %d\n",k,deg); |
| 4029 | //fprintf(stderr,"hairness_lisrt[%d]=%d, mask[%d] = %d\n",nz,k, k, deg); |
| 4030 | assert(deg == deg_old); |
| 4031 | hairness_list[nz--] = k; |
| 4032 | } |
| 4033 | hairness_ptr[deg] = nz + 1; |
| 4034 | assert(nz + 1 == 0); |
| 4035 | for (i = 0; i < deg; i++) hairness_ptr[i] = 0; |
| 4036 | |
| 4037 | *hairness_max0 = deg_max; |
| 4038 | *hairness_ptr0 = hairness_ptr; |
| 4039 | *hairness_list0 = hairness_list; |
| 4040 | |
| 4041 | if (Verbose){ |
| 4042 | for (i = 0; i <= deg_max; i++){ |
| 4043 | if (hairness_ptr[i+1] - hairness_ptr[i] > 0){ |
| 4044 | fprintf(stderr,"num_in_hair[%d] = %d: " ,i, hairness_ptr[i+1] - hairness_ptr[i]); |
| 4045 | #if 0 |
| 4046 | for (j = hairness_ptr[i]; j < hairness_ptr[i+1]; j++){ |
| 4047 | fprintf(stderr,"%d," ,hairness_list[j]); |
| 4048 | } |
| 4049 | #endif |
| 4050 | fprintf(stderr,"\n" ); |
| 4051 | } |
| 4052 | } |
| 4053 | } |
| 4054 | if (Verbose) |
| 4055 | |
| 4056 | |
| 4057 | if (B != A) SparseMatrix_delete(B); |
| 4058 | FREE(mask); |
| 4059 | } |
| 4060 | |
| 4061 | |
| 4062 | void SparseMatrix_khairness(SparseMatrix A, int **hairness){ |
| 4063 | |
| 4064 | int hairness_max, *hairness_ptr = NULL, *hairness_list = NULL, i, j; |
| 4065 | |
| 4066 | if (!(*hairness)) hairness = MALLOC(sizeof(int)*A->m); |
| 4067 | |
| 4068 | SparseMatrix_khair_decomposition(A, &hairness_max, &hairness_ptr, &hairness_list); |
| 4069 | |
| 4070 | for (i = 0; i <= hairness_max; i++){ |
| 4071 | for (j = hairness_ptr[i]; j < hairness_ptr[i+1]; j++){ |
| 4072 | (*hairness)[hairness_list[j]] = i; |
| 4073 | } |
| 4074 | } |
| 4075 | |
| 4076 | assert(hairness_ptr[hairness_ptr[hairness_max+1]] = A->m); |
| 4077 | |
| 4078 | } |
| 4079 | #endif |
| 4080 | |
| 4081 | void SparseMatrix_page_rank(SparseMatrix A, real teleport_probablity, int weighted, real epsilon, real **page_rank){ |
| 4082 | /* A(i,j)/Sum_k A(i,k) gives the probablity of the random surfer walking from i to j |
| 4083 | A: n x n square matrix |
| 4084 | weighted: whether to use the wedge weights (matrix entries) |
| 4085 | page_rank: array of length n. If *page_rank was null on entry, will be assigned. |
| 4086 | |
| 4087 | */ |
| 4088 | int n = A->n; |
| 4089 | int i, j; |
| 4090 | int *ia = A->ia, *ja = A->ja; |
| 4091 | real *x, *y, *diag, res; |
| 4092 | real *a = NULL; |
| 4093 | int iter = 0; |
| 4094 | |
| 4095 | assert(A->m == n); |
| 4096 | assert(teleport_probablity >= 0); |
| 4097 | |
| 4098 | if (weighted){ |
| 4099 | switch (A->type){ |
| 4100 | case MATRIX_TYPE_REAL: |
| 4101 | a = (real*) A->a; |
| 4102 | break; |
| 4103 | case MATRIX_TYPE_COMPLEX:/* take real part */ |
| 4104 | a = MALLOC(sizeof(real)*n); |
| 4105 | for (i = 0; i < n; i++) a[i] = ((real*) A->a)[2*i]; |
| 4106 | break; |
| 4107 | case MATRIX_TYPE_INTEGER: |
| 4108 | a = MALLOC(sizeof(real)*n); |
| 4109 | for (i = 0; i < n; i++) a[i] = ((int*) A->a)[i]; |
| 4110 | break; |
| 4111 | case MATRIX_TYPE_PATTERN: |
| 4112 | case MATRIX_TYPE_UNKNOWN: |
| 4113 | default: |
| 4114 | weighted = FALSE; |
| 4115 | break; |
| 4116 | } |
| 4117 | } |
| 4118 | |
| 4119 | |
| 4120 | if (!(*page_rank)) *page_rank = MALLOC(sizeof(real)*n); |
| 4121 | x = *page_rank; |
| 4122 | |
| 4123 | diag = MALLOC(sizeof(real)*n); |
| 4124 | for (i = 0; i < n; i++) diag[i] = 0; |
| 4125 | y = MALLOC(sizeof(real)*n); |
| 4126 | |
| 4127 | for (i = 0; i < n; i++) x[i] = 1./n; |
| 4128 | |
| 4129 | /* find the column sum */ |
| 4130 | if (weighted){ |
| 4131 | for (i = 0; i < n; i++){ |
| 4132 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 4133 | if (ja[j] == i) continue; |
| 4134 | diag[i] += ABS(a[j]); |
| 4135 | } |
| 4136 | } |
| 4137 | } else { |
| 4138 | for (i = 0; i < n; i++){ |
| 4139 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 4140 | if (ja[j] == i) continue; |
| 4141 | diag[i]++; |
| 4142 | } |
| 4143 | } |
| 4144 | } |
| 4145 | for (i = 0; i < n; i++) diag[i] = 1./MAX(diag[i], MACHINEACC); |
| 4146 | |
| 4147 | /* iterate */ |
| 4148 | do { |
| 4149 | iter++; |
| 4150 | for (i = 0; i < n; i++) y[i] = 0; |
| 4151 | if (weighted){ |
| 4152 | for (i = 0; i < n; i++){ |
| 4153 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 4154 | if (ja[j] == i) continue; |
| 4155 | y[ja[j]] += a[j]*x[i]*diag[i]; |
| 4156 | } |
| 4157 | } |
| 4158 | } else { |
| 4159 | for (i = 0; i < n; i++){ |
| 4160 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 4161 | if (ja[j] == i) continue; |
| 4162 | y[ja[j]] += x[i]*diag[i]; |
| 4163 | } |
| 4164 | } |
| 4165 | } |
| 4166 | for (i = 0; i < n; i++){ |
| 4167 | y[i] = (1-teleport_probablity)*y[i] + teleport_probablity/n; |
| 4168 | } |
| 4169 | |
| 4170 | /* |
| 4171 | fprintf(stderr,"\n============\nx="); |
| 4172 | for (i = 0; i < n; i++) fprintf(stderr,"%f,",x[i]); |
| 4173 | fprintf(stderr,"\nx="); |
| 4174 | for (i = 0; i < n; i++) fprintf(stderr,"%f,",y[i]); |
| 4175 | fprintf(stderr,"\n"); |
| 4176 | */ |
| 4177 | |
| 4178 | res = 0; |
| 4179 | for (i = 0; i < n; i++) res += ABS(x[i] - y[i]); |
| 4180 | if (Verbose) fprintf(stderr,"page rank iter -- %d, res = %f\n" ,iter, res); |
| 4181 | MEMCPY(x, y, sizeof(real)*n); |
| 4182 | } while (res > epsilon); |
| 4183 | |
| 4184 | FREE(y); |
| 4185 | FREE(diag); |
| 4186 | if (a && a != A->a) FREE(a); |
| 4187 | } |
| 4188 | |