| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | |
| 15 | #include "circle.h" |
| 16 | #include <ctype.h> |
| 17 | #include <stdlib.h> |
| 18 | #define DEF_RANKSEP 1.00 |
| 19 | #define UNSET 10.00 |
| 20 | |
| 21 | /* dfs to set distance from a particular leaf. |
| 22 | * Note that termination is implicit in the test |
| 23 | * for reduced number of steps. Proof? |
| 24 | */ |
| 25 | static void setNStepsToLeaf(Agraph_t * g, Agnode_t * n, Agnode_t * prev) |
| 26 | { |
| 27 | Agnode_t *next; |
| 28 | Agedge_t *ep; |
| 29 | |
| 30 | int nsteps = SLEAF(n) + 1; |
| 31 | |
| 32 | for (ep = agfstedge(g, n); ep; ep = agnxtedge(g, ep, n)) { |
| 33 | if ((next = agtail(ep)) == n) |
| 34 | next = aghead(ep); |
| 35 | |
| 36 | if (prev == next) |
| 37 | continue; |
| 38 | |
| 39 | if (nsteps < SLEAF(next)) { /* handles loops and multiedges */ |
| 40 | SLEAF(next) = nsteps; |
| 41 | setNStepsToLeaf(g, next, n); |
| 42 | } |
| 43 | } |
| 44 | } |
| 45 | |
| 46 | /* isLeaf: |
| 47 | * Return true if n is a leaf node. |
| 48 | */ |
| 49 | static int isLeaf(Agraph_t * g, Agnode_t * n) |
| 50 | { |
| 51 | Agedge_t *ep; |
| 52 | Agnode_t *neighp = 0; |
| 53 | Agnode_t *np; |
| 54 | |
| 55 | for (ep = agfstedge(g, n); ep; ep = agnxtedge(g, ep, n)) { |
| 56 | if ((np = agtail(ep)) == n) |
| 57 | np = aghead(ep); |
| 58 | if (n == np) |
| 59 | continue; /* loop */ |
| 60 | if (neighp) { |
| 61 | if (neighp != np) |
| 62 | return 0; /* two different neighbors */ |
| 63 | } else |
| 64 | neighp = np; |
| 65 | } |
| 66 | return 1; |
| 67 | } |
| 68 | |
| 69 | static void initLayout(Agraph_t * g) |
| 70 | { |
| 71 | Agnode_t *n; |
| 72 | int nnodes = agnnodes(g); |
| 73 | int INF = nnodes * nnodes; |
| 74 | |
| 75 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 76 | /* STSIZE(n) = 0; */ |
| 77 | /* NCHILD(n) = 0; */ |
| 78 | SCENTER(n) = INF; |
| 79 | THETA(n) = UNSET; /* marks theta as unset, since 0 <= theta <= 2PI */ |
| 80 | if (isLeaf(g, n)) |
| 81 | SLEAF(n) = 0; |
| 82 | else |
| 83 | SLEAF(n) = INF; |
| 84 | } |
| 85 | } |
| 86 | |
| 87 | /* |
| 88 | * Working recursively in from each leaf node (ie, each node |
| 89 | * with nStepsToLeaf == 0; see initLayout), set the |
| 90 | * minimum value of nStepsToLeaf for each node. Using |
| 91 | * that information, assign some node to be the centerNode. |
| 92 | */ |
| 93 | static Agnode_t *findCenterNode(Agraph_t * g) |
| 94 | { |
| 95 | Agnode_t *n; |
| 96 | Agnode_t *center = NULL; |
| 97 | int maxNStepsToLeaf = 0; |
| 98 | |
| 99 | /* With just 1 or 2 nodes, return anything. */ |
| 100 | if (agnnodes(g) <= 2) |
| 101 | return (agfstnode(g)); |
| 102 | |
| 103 | /* dfs from each leaf node */ |
| 104 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 105 | if (SLEAF(n) == 0) |
| 106 | setNStepsToLeaf(g, n, 0); |
| 107 | } |
| 108 | |
| 109 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 110 | if (SLEAF(n) > maxNStepsToLeaf) { |
| 111 | maxNStepsToLeaf = SLEAF(n); |
| 112 | center = n; |
| 113 | } |
| 114 | } |
| 115 | return center; |
| 116 | } |
| 117 | |
| 118 | #if 0 |
| 119 | /* dfs to set distance from center |
| 120 | * Note that termination is implicit in the test |
| 121 | * for reduced number of steps. Proof? |
| 122 | */ |
| 123 | static void setNStepsToCenter(Agraph_t * g, Agnode_t * n, Agnode_t * prev) |
| 124 | { |
| 125 | Agnode_t *next; |
| 126 | Agedge_t *ep; |
| 127 | int nsteps = SCENTER(n) + 1; |
| 128 | |
| 129 | for (ep = agfstedge(g, n); ep; ep = agnxtedge(g, ep, n)) { |
| 130 | if ((next = agtail(ep)) == n) |
| 131 | next = aghead(ep); |
| 132 | |
| 133 | if (prev == next) |
| 134 | continue; |
| 135 | |
| 136 | if (nsteps < SCENTER(next)) { /* handles loops and multiedges */ |
| 137 | SCENTER(next) = nsteps; |
| 138 | if (SPARENT(next)) |
| 139 | NCHILD(SPARENT(next))--; |
| 140 | SPARENT(next) = n; |
| 141 | NCHILD(n)++; |
| 142 | setNStepsToCenter(g, next, n); |
| 143 | } |
| 144 | } |
| 145 | } |
| 146 | #endif |
| 147 | |
| 148 | typedef struct item_s { |
| 149 | void* p; |
| 150 | struct item_s* s; |
| 151 | } item_t; |
| 152 | typedef struct { |
| 153 | item_t* head; |
| 154 | item_t* tail; |
| 155 | } queue; |
| 156 | static void push(queue* q, void* p) |
| 157 | { |
| 158 | item_t* ip = NEW(item_t); |
| 159 | ip->p = p; |
| 160 | if (q->tail) { /* non-empty q */ |
| 161 | q->tail->s = ip; |
| 162 | q->tail = ip; |
| 163 | } |
| 164 | else |
| 165 | q->tail = q->head = ip; |
| 166 | } |
| 167 | static void* pull(queue* q) |
| 168 | { |
| 169 | item_t* ip; |
| 170 | void* p; |
| 171 | if ((ip = q->head)) { |
| 172 | p = ip->p; |
| 173 | q->head = ip->s; |
| 174 | free (ip); |
| 175 | if (!q->head) |
| 176 | q->tail = NULL; |
| 177 | return p; |
| 178 | } |
| 179 | else |
| 180 | return NULL; |
| 181 | } |
| 182 | |
| 183 | /* bfs to create tree structure */ |
| 184 | static void setNStepsToCenter(Agraph_t * g, Agnode_t * n) |
| 185 | { |
| 186 | Agnode_t *next; |
| 187 | Agedge_t *ep; |
| 188 | Agsym_t* wt = agfindedgeattr(g,"weight" ); |
| 189 | queue qd; |
| 190 | queue* q = &qd; |
| 191 | |
| 192 | qd.head = qd.tail = NULL; |
| 193 | push(q,n); |
| 194 | while ((n = (Agnode_t*)pull(q))) { |
| 195 | int nsteps = SCENTER(n) + 1; |
| 196 | for (ep = agfstedge(g, n); ep; ep = agnxtedge(g, ep, n)) { |
| 197 | if (wt && streq(ag_xget(ep,wt),"0" )) continue; |
| 198 | if ((next = agtail(ep)) == n) |
| 199 | next = aghead(ep); |
| 200 | if (nsteps < SCENTER(next)) { |
| 201 | SCENTER(next) = nsteps; |
| 202 | SPARENT(next) = n; |
| 203 | NCHILD(n)++; |
| 204 | push (q, next); |
| 205 | } |
| 206 | } |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | /* |
| 211 | * Work out from the center and determine the value of |
| 212 | * nStepsToCenter and parent node for each node. |
| 213 | * Return -1 if some node was not reached. |
| 214 | */ |
| 215 | static int setParentNodes(Agraph_t * sg, Agnode_t * center) |
| 216 | { |
| 217 | Agnode_t *n; |
| 218 | int maxn = 0; |
| 219 | int unset = SCENTER(center); |
| 220 | |
| 221 | SCENTER(center) = 0; |
| 222 | SPARENT(center) = 0; |
| 223 | setNStepsToCenter(sg, center); |
| 224 | |
| 225 | /* find the maximum number of steps from the center */ |
| 226 | for (n = agfstnode(sg); n; n = agnxtnode(sg, n)) { |
| 227 | if (SCENTER(n) == unset) { |
| 228 | return -1; |
| 229 | } |
| 230 | else if (SCENTER(n) > maxn) { |
| 231 | maxn = SCENTER(n); |
| 232 | } |
| 233 | } |
| 234 | return maxn; |
| 235 | } |
| 236 | |
| 237 | /* Sets each node's subtreeSize, which counts the number of |
| 238 | * leaves in subtree rooted at the node. |
| 239 | * At present, this is done bottom-up. |
| 240 | */ |
| 241 | static void setSubtreeSize(Agraph_t * g) |
| 242 | { |
| 243 | Agnode_t *n; |
| 244 | Agnode_t *parent; |
| 245 | |
| 246 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 247 | if (NCHILD(n) > 0) |
| 248 | continue; |
| 249 | STSIZE(n)++; |
| 250 | parent = SPARENT(n); |
| 251 | while (parent) { |
| 252 | STSIZE(parent)++; |
| 253 | parent = SPARENT(parent); |
| 254 | } |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | static void setChildSubtreeSpans(Agraph_t * g, Agnode_t * n) |
| 259 | { |
| 260 | Agedge_t *ep; |
| 261 | Agnode_t *next; |
| 262 | double ratio; |
| 263 | |
| 264 | ratio = SPAN(n) / STSIZE(n); |
| 265 | for (ep = agfstedge(g, n); ep; ep = agnxtedge(g, ep, n)) { |
| 266 | if ((next = agtail(ep)) == n) |
| 267 | next = aghead(ep); |
| 268 | if (SPARENT(next) != n) |
| 269 | continue; /* handles loops */ |
| 270 | |
| 271 | if (SPAN(next) != 0.0) |
| 272 | continue; /* multiedges */ |
| 273 | (SPAN(next) = ratio * STSIZE(next)); |
| 274 | |
| 275 | if (NCHILD(next) > 0) { |
| 276 | setChildSubtreeSpans(g, next); |
| 277 | } |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | static void setSubtreeSpans(Agraph_t * sg, Agnode_t * center) |
| 282 | { |
| 283 | SPAN(center) = 2 * M_PI; |
| 284 | setChildSubtreeSpans(sg, center); |
| 285 | } |
| 286 | |
| 287 | /* Set the node positions for the 2nd and later rings. */ |
| 288 | static void setChildPositions(Agraph_t * sg, Agnode_t * n) |
| 289 | { |
| 290 | Agnode_t *next; |
| 291 | Agedge_t *ep; |
| 292 | double theta; /* theta is the lower boundary radius of the fan */ |
| 293 | |
| 294 | if (SPARENT(n) == 0) /* center */ |
| 295 | theta = 0; |
| 296 | else |
| 297 | theta = THETA(n) - SPAN(n) / 2; |
| 298 | |
| 299 | for (ep = agfstedge(sg, n); ep; ep = agnxtedge(sg, ep, n)) { |
| 300 | if ((next = agtail(ep)) == n) |
| 301 | next = aghead(ep); |
| 302 | if (SPARENT(next) != n) |
| 303 | continue; /* handles loops */ |
| 304 | if (THETA(next) != UNSET) |
| 305 | continue; /* handles multiedges */ |
| 306 | |
| 307 | THETA(next) = theta + SPAN(next) / 2.0; |
| 308 | theta += SPAN(next); |
| 309 | |
| 310 | if (NCHILD(next) > 0) |
| 311 | setChildPositions(sg, next); |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | static void setPositions(Agraph_t * sg, Agnode_t * center) |
| 316 | { |
| 317 | THETA(center) = 0; |
| 318 | setChildPositions(sg, center); |
| 319 | } |
| 320 | |
| 321 | /* getRankseps: |
| 322 | * Return array of doubles of size maxrank+1 containing the radius of each |
| 323 | * rank. Position 0 always contains 0. Use the colon-separated list of |
| 324 | * doubles provided by ranksep to get the deltas for each additional rank. |
| 325 | * If not enough values are provided, the last value is repeated. |
| 326 | * If the ranksep attribute is not provided, use DEF_RANKSEP for all values. |
| 327 | */ |
| 328 | static double* |
| 329 | getRankseps (Agraph_t* g, int maxrank) |
| 330 | { |
| 331 | char *p; |
| 332 | char *endp; |
| 333 | char c; |
| 334 | int i, rk = 1; |
| 335 | double* ranks = N_NEW(maxrank+1, double); |
| 336 | double xf = 0.0, delx = 0.0, d; |
| 337 | |
| 338 | if ((p = late_string(g, agfindgraphattr(g->root, "ranksep" ), NULL))) { |
| 339 | while ((rk <= maxrank) && ((d = strtod (p, &endp)) > 0)) { |
| 340 | delx = MAX(d, MIN_RANKSEP); |
| 341 | xf += delx; |
| 342 | ranks[rk++] = xf; |
| 343 | p = endp; |
| 344 | while ((c = *p) && (isspace(c) || (c == ':'))) |
| 345 | p++; |
| 346 | } |
| 347 | } |
| 348 | else { |
| 349 | delx = DEF_RANKSEP; |
| 350 | } |
| 351 | |
| 352 | for (i = rk; i <= maxrank; i++) { |
| 353 | xf += delx; |
| 354 | ranks[i] = xf; |
| 355 | } |
| 356 | |
| 357 | return ranks; |
| 358 | } |
| 359 | |
| 360 | static void setAbsolutePos(Agraph_t * g, int maxrank) |
| 361 | { |
| 362 | Agnode_t *n; |
| 363 | double hyp; |
| 364 | double* ranksep; |
| 365 | int i; |
| 366 | |
| 367 | ranksep = getRankseps (g, maxrank); |
| 368 | if (Verbose) { |
| 369 | fputs ("Rank separation = " , stderr); |
| 370 | for (i = 0; i <= maxrank; i++) |
| 371 | fprintf (stderr, "%.03lf " , ranksep[i]); |
| 372 | fputs ("\n" , stderr); |
| 373 | } |
| 374 | |
| 375 | /* Convert circular to cartesian coordinates */ |
| 376 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 377 | hyp = ranksep[SCENTER(n)]; |
| 378 | ND_pos(n)[0] = hyp * cos(THETA(n)); |
| 379 | ND_pos(n)[1] = hyp * sin(THETA(n)); |
| 380 | } |
| 381 | free (ranksep); |
| 382 | } |
| 383 | |
| 384 | #if 0 /* not used */ |
| 385 | static void dumpGraph(Agraph_t * g) |
| 386 | { |
| 387 | Agnode_t *n; |
| 388 | char *p; |
| 389 | |
| 390 | fprintf(stderr, |
| 391 | " : leaf stsz nkids cntr parent span theta\n" ); |
| 392 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 393 | if (SPARENT(n)) |
| 394 | p = SPARENT(n)->name; |
| 395 | else |
| 396 | p = "<C>" ; |
| 397 | fprintf(stderr, "%4s :%6d%6d%6d%6d%7s%7.3f%7.3f%8.3f%8.3f\n" , |
| 398 | n->name, SLEAF(n), STSIZE(n), NCHILD(n), |
| 399 | SCENTER(n), p, SPAN(n), THETA(n), ND_pos(n)[0], |
| 400 | ND_pos(n)[1]); |
| 401 | } |
| 402 | } |
| 403 | #endif |
| 404 | |
| 405 | /* circleLayout: |
| 406 | * We assume sg is is connected and non-empty. |
| 407 | * Also, if center != 0, we are guaranteed that center is |
| 408 | * in the graph. |
| 409 | */ |
| 410 | Agnode_t* circleLayout(Agraph_t * sg, Agnode_t * center) |
| 411 | { |
| 412 | int maxNStepsToCenter; |
| 413 | |
| 414 | if (agnnodes(sg) == 1) { |
| 415 | Agnode_t *n = agfstnode(sg); |
| 416 | ND_pos(n)[0] = 0; |
| 417 | ND_pos(n)[1] = 0; |
| 418 | return center; |
| 419 | } |
| 420 | |
| 421 | initLayout(sg); |
| 422 | |
| 423 | if (!center) |
| 424 | center = findCenterNode(sg); |
| 425 | |
| 426 | maxNStepsToCenter = setParentNodes(sg,center); |
| 427 | if (Verbose) |
| 428 | fprintf(stderr, "root = %s max steps to root = %d\n" , agnameof(center), maxNStepsToCenter); |
| 429 | if (maxNStepsToCenter < 0) { |
| 430 | agerr(AGERR, "twopi: use of weight=0 creates disconnected component.\n" ); |
| 431 | return center; |
| 432 | } |
| 433 | |
| 434 | setSubtreeSize(sg); |
| 435 | |
| 436 | setSubtreeSpans(sg, center); |
| 437 | |
| 438 | setPositions(sg, center); |
| 439 | |
| 440 | setAbsolutePos(sg, maxNStepsToCenter); |
| 441 | /* dumpGraph (sg); */ |
| 442 | return center; |
| 443 | } |
| 444 | |