| 1 | //---------------------------------------------------------------------- |
| 2 | // File: ANN.h |
| 3 | // Programmer: Sunil Arya and David Mount |
| 4 | // Description: Basic include file for approximate nearest |
| 5 | // neighbor searching. |
| 6 | // Last modified: 01/27/10 (Version 1.1.2) |
| 7 | //---------------------------------------------------------------------- |
| 8 | // Copyright (c) 1997-2010 University of Maryland and Sunil Arya and |
| 9 | // David Mount. All Rights Reserved. |
| 10 | // |
| 11 | // This software and related documentation is part of the Approximate |
| 12 | // Nearest Neighbor Library (ANN). This software is provided under |
| 13 | // the provisions of the Lesser GNU Public License (LGPL). See the |
| 14 | // file ../ReadMe.txt for further information. |
| 15 | // |
| 16 | // The University of Maryland (U.M.) and the authors make no |
| 17 | // representations about the suitability or fitness of this software for |
| 18 | // any purpose. It is provided "as is" without express or implied |
| 19 | // warranty. |
| 20 | //---------------------------------------------------------------------- |
| 21 | // History: |
| 22 | // Revision 0.1 03/04/98 |
| 23 | // Initial release |
| 24 | // Revision 1.0 04/01/05 |
| 25 | // Added copyright and revision information |
| 26 | // Added ANNcoordPrec for coordinate precision. |
| 27 | // Added methods theDim, nPoints, maxPoints, thePoints to ANNpointSet. |
| 28 | // Cleaned up C++ structure for modern compilers |
| 29 | // Revision 1.1 05/03/05 |
| 30 | // Added fixed-radius k-NN searching |
| 31 | // Revision 1.1.2 01/27/10 |
| 32 | // Fixed minor compilation bugs for new versions of gcc |
| 33 | //---------------------------------------------------------------------- |
| 34 | |
| 35 | //---------------------------------------------------------------------- |
| 36 | // ANN - approximate nearest neighbor searching |
| 37 | // ANN is a library for approximate nearest neighbor searching, |
| 38 | // based on the use of standard and priority search in kd-trees |
| 39 | // and balanced box-decomposition (bbd) trees. Here are some |
| 40 | // references to the main algorithmic techniques used here: |
| 41 | // |
| 42 | // kd-trees: |
| 43 | // Friedman, Bentley, and Finkel, ``An algorithm for finding |
| 44 | // best matches in logarithmic expected time,'' ACM |
| 45 | // Transactions on Mathematical Software, 3(3):209-226, 1977. |
| 46 | // |
| 47 | // Priority search in kd-trees: |
| 48 | // Arya and Mount, ``Algorithms for fast vector quantization,'' |
| 49 | // Proc. of DCC '93: Data Compression Conference, eds. J. A. |
| 50 | // Storer and M. Cohn, IEEE Press, 1993, 381-390. |
| 51 | // |
| 52 | // Approximate nearest neighbor search and bbd-trees: |
| 53 | // Arya, Mount, Netanyahu, Silverman, and Wu, ``An optimal |
| 54 | // algorithm for approximate nearest neighbor searching,'' |
| 55 | // 5th Ann. ACM-SIAM Symposium on Discrete Algorithms, |
| 56 | // 1994, 573-582. |
| 57 | //---------------------------------------------------------------------- |
| 58 | |
| 59 | #ifndef ANN_H |
| 60 | #define ANN_H |
| 61 | |
| 62 | #ifdef WIN32 |
| 63 | //---------------------------------------------------------------------- |
| 64 | // For Microsoft Visual C++, externally accessible symbols must be |
| 65 | // explicitly indicated with DLL_API, which is somewhat like "extern." |
| 66 | // |
| 67 | // The following ifdef block is the standard way of creating macros |
| 68 | // which make exporting from a DLL simpler. All files within this DLL |
| 69 | // are compiled with the DLL_EXPORTS preprocessor symbol defined on the |
| 70 | // command line. In contrast, projects that use (or import) the DLL |
| 71 | // objects do not define the DLL_EXPORTS symbol. This way any other |
| 72 | // project whose source files include this file see DLL_API functions as |
| 73 | // being imported from a DLL, wheras this DLL sees symbols defined with |
| 74 | // this macro as being exported. |
| 75 | //---------------------------------------------------------------------- |
| 76 | #ifdef DLL_EXPORTS |
| 77 | #define DLL_API __declspec(dllexport) |
| 78 | #else |
| 79 | #define DLL_API __declspec(dllimport) |
| 80 | #endif |
| 81 | //---------------------------------------------------------------------- |
| 82 | // DLL_API is ignored for all other systems |
| 83 | //---------------------------------------------------------------------- |
| 84 | #else |
| 85 | #define DLL_API |
| 86 | #endif |
| 87 | |
| 88 | //---------------------------------------------------------------------- |
| 89 | // basic includes |
| 90 | //---------------------------------------------------------------------- |
| 91 | |
| 92 | #include <cstdlib> // standard lib includes |
| 93 | #include <cmath> // math includes |
| 94 | #include <iostream> // I/O streams |
| 95 | #include <cstring> // C-style strings |
| 96 | |
| 97 | //---------------------------------------------------------------------- |
| 98 | // Limits |
| 99 | // There are a number of places where we use the maximum double value as |
| 100 | // default initializers (and others may be used, depending on the |
| 101 | // data/distance representation). These can usually be found in limits.h |
| 102 | // (as LONG_MAX, INT_MAX) or in float.h (as DBL_MAX, FLT_MAX). |
| 103 | // |
| 104 | // Not all systems have these files. If you are using such a system, |
| 105 | // you should set the preprocessor symbol ANN_NO_LIMITS_H when |
| 106 | // compiling, and modify the statements below to generate the |
| 107 | // appropriate value. For practical purposes, this does not need to be |
| 108 | // the maximum double value. It is sufficient that it be at least as |
| 109 | // large than the maximum squared distance between between any two |
| 110 | // points. |
| 111 | //---------------------------------------------------------------------- |
| 112 | #ifdef ANN_NO_LIMITS_H // limits.h unavailable |
| 113 | #include <cvalues> // replacement for limits.h |
| 114 | const double ANN_DBL_MAX = MAXDOUBLE; // insert maximum double |
| 115 | #else |
| 116 | #include <climits> |
| 117 | #include <cfloat> |
| 118 | const double ANN_DBL_MAX = DBL_MAX; |
| 119 | #endif |
| 120 | |
| 121 | #define ANNversion "1.1.2" // ANN version and information |
| 122 | #define ANNversionCmt "" |
| 123 | #define ANNcopyright "David M. Mount and Sunil Arya" |
| 124 | #define ANNlatestRev "Jan 27, 2010" |
| 125 | |
| 126 | //---------------------------------------------------------------------- |
| 127 | // ANNbool |
| 128 | // This is a simple boolean type. Although ANSI C++ is supposed |
| 129 | // to support the type bool, some compilers do not have it. |
| 130 | //---------------------------------------------------------------------- |
| 131 | |
| 132 | enum ANNbool {ANNfalse = 0, ANNtrue = 1}; // ANN boolean type (non ANSI C++) |
| 133 | |
| 134 | //---------------------------------------------------------------------- |
| 135 | // ANNcoord, ANNdist |
| 136 | // ANNcoord and ANNdist are the types used for representing |
| 137 | // point coordinates and distances. They can be modified by the |
| 138 | // user, with some care. It is assumed that they are both numeric |
| 139 | // types, and that ANNdist is generally of an equal or higher type |
| 140 | // from ANNcoord. A variable of type ANNdist should be large |
| 141 | // enough to store the sum of squared components of a variable |
| 142 | // of type ANNcoord for the number of dimensions needed in the |
| 143 | // application. For example, the following combinations are |
| 144 | // legal: |
| 145 | // |
| 146 | // ANNcoord ANNdist |
| 147 | // --------- ------------------------------- |
| 148 | // short short, int, long, float, double |
| 149 | // int int, long, float, double |
| 150 | // long long, float, double |
| 151 | // float float, double |
| 152 | // double double |
| 153 | // |
| 154 | // It is the user's responsibility to make sure that overflow does |
| 155 | // not occur in distance calculation. |
| 156 | //---------------------------------------------------------------------- |
| 157 | |
| 158 | typedef double ANNcoord; // coordinate data type |
| 159 | typedef double ANNdist; // distance data type |
| 160 | |
| 161 | //---------------------------------------------------------------------- |
| 162 | // ANNidx |
| 163 | // ANNidx is a point index. When the data structure is built, the |
| 164 | // points are given as an array. Nearest neighbor results are |
| 165 | // returned as an integer index into this array. To make it |
| 166 | // clearer when this is happening, we define the integer type |
| 167 | // ANNidx. Indexing starts from 0. |
| 168 | // |
| 169 | // For fixed-radius near neighbor searching, it is possible that |
| 170 | // there are not k nearest neighbors within the search radius. To |
| 171 | // indicate this, the algorithm returns ANN_NULL_IDX as its result. |
| 172 | // It should be distinguishable from any valid array index. |
| 173 | //---------------------------------------------------------------------- |
| 174 | |
| 175 | typedef int ANNidx; // point index |
| 176 | const ANNidx ANN_NULL_IDX = -1; // a NULL point index |
| 177 | |
| 178 | //---------------------------------------------------------------------- |
| 179 | // Infinite distance: |
| 180 | // The code assumes that there is an "infinite distance" which it |
| 181 | // uses to initialize distances before performing nearest neighbor |
| 182 | // searches. It should be as larger or larger than any legitimate |
| 183 | // nearest neighbor distance. |
| 184 | // |
| 185 | // On most systems, these should be found in the standard include |
| 186 | // file <limits.h> or possibly <float.h>. If you do not have these |
| 187 | // file, some suggested values are listed below, assuming 64-bit |
| 188 | // long, 32-bit int and 16-bit short. |
| 189 | // |
| 190 | // ANNdist ANN_DIST_INF Values (see <limits.h> or <float.h>) |
| 191 | // ------- ------------ ------------------------------------ |
| 192 | // double DBL_MAX 1.79769313486231570e+308 |
| 193 | // float FLT_MAX 3.40282346638528860e+38 |
| 194 | // long LONG_MAX 0x7fffffffffffffff |
| 195 | // int INT_MAX 0x7fffffff |
| 196 | // short SHRT_MAX 0x7fff |
| 197 | //---------------------------------------------------------------------- |
| 198 | |
| 199 | const ANNdist ANN_DIST_INF = ANN_DBL_MAX; |
| 200 | |
| 201 | //---------------------------------------------------------------------- |
| 202 | // Significant digits for tree dumps: |
| 203 | // When floating point coordinates are used, the routine that dumps |
| 204 | // a tree needs to know roughly how many significant digits there |
| 205 | // are in a ANNcoord, so it can output points to full precision. |
| 206 | // This is defined to be ANNcoordPrec. On most systems these |
| 207 | // values can be found in the standard include files <limits.h> or |
| 208 | // <float.h>. For integer types, the value is essentially ignored. |
| 209 | // |
| 210 | // ANNcoord ANNcoordPrec Values (see <limits.h> or <float.h>) |
| 211 | // -------- ------------ ------------------------------------ |
| 212 | // double DBL_DIG 15 |
| 213 | // float FLT_DIG 6 |
| 214 | // long doesn't matter 19 |
| 215 | // int doesn't matter 10 |
| 216 | // short doesn't matter 5 |
| 217 | //---------------------------------------------------------------------- |
| 218 | |
| 219 | #ifdef DBL_DIG // number of sig. bits in ANNcoord |
| 220 | const int ANNcoordPrec = DBL_DIG; |
| 221 | #else |
| 222 | const int ANNcoordPrec = 15; // default precision |
| 223 | #endif |
| 224 | |
| 225 | //---------------------------------------------------------------------- |
| 226 | // Self match? |
| 227 | // In some applications, the nearest neighbor of a point is not |
| 228 | // allowed to be the point itself. This occurs, for example, when |
| 229 | // computing all nearest neighbors in a set. By setting the |
| 230 | // parameter ANN_ALLOW_SELF_MATCH to ANNfalse, the nearest neighbor |
| 231 | // is the closest point whose distance from the query point is |
| 232 | // strictly positive. |
| 233 | //---------------------------------------------------------------------- |
| 234 | |
| 235 | const ANNbool ANN_ALLOW_SELF_MATCH = ANNtrue; |
| 236 | |
| 237 | //---------------------------------------------------------------------- |
| 238 | // Norms and metrics: |
| 239 | // ANN supports any Minkowski norm for defining distance. In |
| 240 | // particular, for any p >= 1, the L_p Minkowski norm defines the |
| 241 | // length of a d-vector (v0, v1, ..., v(d-1)) to be |
| 242 | // |
| 243 | // (|v0|^p + |v1|^p + ... + |v(d-1)|^p)^(1/p), |
| 244 | // |
| 245 | // (where ^ denotes exponentiation, and |.| denotes absolute |
| 246 | // value). The distance between two points is defined to be the |
| 247 | // norm of the vector joining them. Some common distance metrics |
| 248 | // include |
| 249 | // |
| 250 | // Euclidean metric p = 2 |
| 251 | // Manhattan metric p = 1 |
| 252 | // Max metric p = infinity |
| 253 | // |
| 254 | // In the case of the max metric, the norm is computed by taking |
| 255 | // the maxima of the absolute values of the components. ANN is |
| 256 | // highly "coordinate-based" and does not support general distances |
| 257 | // functions (e.g. those obeying just the triangle inequality). It |
| 258 | // also does not support distance functions based on |
| 259 | // inner-products. |
| 260 | // |
| 261 | // For the purpose of computing nearest neighbors, it is not |
| 262 | // necessary to compute the final power (1/p). Thus the only |
| 263 | // component that is used by the program is |v(i)|^p. |
| 264 | // |
| 265 | // ANN parameterizes the distance computation through the following |
| 266 | // macros. (Macros are used rather than procedures for |
| 267 | // efficiency.) Recall that the distance between two points is |
| 268 | // given by the length of the vector joining them, and the length |
| 269 | // or norm of a vector v is given by formula: |
| 270 | // |
| 271 | // |v| = ROOT(POW(v0) # POW(v1) # ... # POW(v(d-1))) |
| 272 | // |
| 273 | // where ROOT, POW are unary functions and # is an associative and |
| 274 | // commutative binary operator mapping the following types: |
| 275 | // |
| 276 | // ** POW: ANNcoord --> ANNdist |
| 277 | // ** #: ANNdist x ANNdist --> ANNdist |
| 278 | // ** ROOT: ANNdist (>0) --> double |
| 279 | // |
| 280 | // For early termination in distance calculation (partial distance |
| 281 | // calculation) we assume that POW and # together are monotonically |
| 282 | // increasing on sequences of arguments, meaning that for all |
| 283 | // v0..vk and y: |
| 284 | // |
| 285 | // POW(v0) #...# POW(vk) <= (POW(v0) #...# POW(vk)) # POW(y). |
| 286 | // |
| 287 | // Incremental Distance Calculation: |
| 288 | // The program uses an optimized method of computing distances for |
| 289 | // kd-trees and bd-trees, called incremental distance calculation. |
| 290 | // It is used when distances are to be updated when only a single |
| 291 | // coordinate of a point has been changed. In order to use this, |
| 292 | // we assume that there is an incremental update function DIFF(x,y) |
| 293 | // for #, such that if: |
| 294 | // |
| 295 | // s = x0 # ... # xi # ... # xk |
| 296 | // |
| 297 | // then if s' is equal to s but with xi replaced by y, that is, |
| 298 | // |
| 299 | // s' = x0 # ... # y # ... # xk |
| 300 | // |
| 301 | // then the length of s' can be computed by: |
| 302 | // |
| 303 | // |s'| = |s| # DIFF(xi,y). |
| 304 | // |
| 305 | // Thus, if # is + then DIFF(xi,y) is (yi-x). For the L_infinity |
| 306 | // norm we make use of the fact that in the program this function |
| 307 | // is only invoked when y > xi, and hence DIFF(xi,y)=y. |
| 308 | // |
| 309 | // Finally, for approximate nearest neighbor queries we assume |
| 310 | // that POW and ROOT are related such that |
| 311 | // |
| 312 | // v*ROOT(x) = ROOT(POW(v)*x) |
| 313 | // |
| 314 | // Here are the values for the various Minkowski norms: |
| 315 | // |
| 316 | // L_p: p even: p odd: |
| 317 | // ------------------------- ------------------------ |
| 318 | // POW(v) = v^p POW(v) = |v|^p |
| 319 | // ROOT(x) = x^(1/p) ROOT(x) = x^(1/p) |
| 320 | // # = + # = + |
| 321 | // DIFF(x,y) = y - x DIFF(x,y) = y - x |
| 322 | // |
| 323 | // L_inf: |
| 324 | // POW(v) = |v| |
| 325 | // ROOT(x) = x |
| 326 | // # = max |
| 327 | // DIFF(x,y) = y |
| 328 | // |
| 329 | // By default the Euclidean norm is assumed. To change the norm, |
| 330 | // uncomment the appropriate set of macros below. |
| 331 | //---------------------------------------------------------------------- |
| 332 | |
| 333 | //---------------------------------------------------------------------- |
| 334 | // Use the following for the Euclidean norm |
| 335 | //---------------------------------------------------------------------- |
| 336 | #define ANN_POW(v) ((v)*(v)) |
| 337 | #define ANN_ROOT(x) sqrt(x) |
| 338 | #define ANN_SUM(x,y) ((x) + (y)) |
| 339 | #define ANN_DIFF(x,y) ((y) - (x)) |
| 340 | |
| 341 | //---------------------------------------------------------------------- |
| 342 | // Use the following for the L_1 (Manhattan) norm |
| 343 | //---------------------------------------------------------------------- |
| 344 | // #define ANN_POW(v) fabs(v) |
| 345 | // #define ANN_ROOT(x) (x) |
| 346 | // #define ANN_SUM(x,y) ((x) + (y)) |
| 347 | // #define ANN_DIFF(x,y) ((y) - (x)) |
| 348 | |
| 349 | //---------------------------------------------------------------------- |
| 350 | // Use the following for a general L_p norm |
| 351 | //---------------------------------------------------------------------- |
| 352 | // #define ANN_POW(v) pow(fabs(v),p) |
| 353 | // #define ANN_ROOT(x) pow(fabs(x),1/p) |
| 354 | // #define ANN_SUM(x,y) ((x) + (y)) |
| 355 | // #define ANN_DIFF(x,y) ((y) - (x)) |
| 356 | |
| 357 | //---------------------------------------------------------------------- |
| 358 | // Use the following for the L_infinity (Max) norm |
| 359 | //---------------------------------------------------------------------- |
| 360 | // #define ANN_POW(v) fabs(v) |
| 361 | // #define ANN_ROOT(x) (x) |
| 362 | // #define ANN_SUM(x,y) ((x) > (y) ? (x) : (y)) |
| 363 | // #define ANN_DIFF(x,y) (y) |
| 364 | |
| 365 | //---------------------------------------------------------------------- |
| 366 | // Array types |
| 367 | // The following array types are of basic interest. A point is |
| 368 | // just a dimensionless array of coordinates, a point array is a |
| 369 | // dimensionless array of points. A distance array is a |
| 370 | // dimensionless array of distances and an index array is a |
| 371 | // dimensionless array of point indices. The latter two are used |
| 372 | // when returning the results of k-nearest neighbor queries. |
| 373 | //---------------------------------------------------------------------- |
| 374 | |
| 375 | typedef ANNcoord* ANNpoint; // a point |
| 376 | typedef ANNpoint* ANNpointArray; // an array of points |
| 377 | typedef ANNdist* ANNdistArray; // an array of distances |
| 378 | typedef ANNidx* ANNidxArray; // an array of point indices |
| 379 | |
| 380 | //---------------------------------------------------------------------- |
| 381 | // Basic point and array utilities: |
| 382 | // The following procedures are useful supplements to ANN's nearest |
| 383 | // neighbor capabilities. |
| 384 | // |
| 385 | // annDist(): |
| 386 | // Computes the (squared) distance between a pair of points. |
| 387 | // Note that this routine is not used internally by ANN for |
| 388 | // computing distance calculations. For reasons of efficiency |
| 389 | // this is done using incremental distance calculation. Thus, |
| 390 | // this routine cannot be modified as a method of changing the |
| 391 | // metric. |
| 392 | // |
| 393 | // Because points (somewhat like strings in C) are stored as |
| 394 | // pointers. Consequently, creating and destroying copies of |
| 395 | // points may require storage allocation. These procedures do |
| 396 | // this. |
| 397 | // |
| 398 | // annAllocPt() and annDeallocPt(): |
| 399 | // Allocate a deallocate storage for a single point, and |
| 400 | // return a pointer to it. The argument to AllocPt() is |
| 401 | // used to initialize all components. |
| 402 | // |
| 403 | // annAllocPts() and annDeallocPts(): |
| 404 | // Allocate and deallocate an array of points as well a |
| 405 | // place to store their coordinates, and initializes the |
| 406 | // points to point to their respective coordinates. It |
| 407 | // allocates point storage in a contiguous block large |
| 408 | // enough to store all the points. It performs no |
| 409 | // initialization. |
| 410 | // |
| 411 | // annCopyPt(): |
| 412 | // Creates a copy of a given point, allocating space for |
| 413 | // the new point. It returns a pointer to the newly |
| 414 | // allocated copy. |
| 415 | //---------------------------------------------------------------------- |
| 416 | |
| 417 | DLL_API ANNdist annDist( |
| 418 | int dim, // dimension of space |
| 419 | ANNpoint p, // points |
| 420 | ANNpoint q); |
| 421 | |
| 422 | DLL_API ANNpoint annAllocPt( |
| 423 | int dim, // dimension |
| 424 | ANNcoord c = 0); // coordinate value (all equal) |
| 425 | |
| 426 | DLL_API ANNpointArray annAllocPts( |
| 427 | int n, // number of points |
| 428 | int dim); // dimension |
| 429 | |
| 430 | DLL_API void annDeallocPt( |
| 431 | ANNpoint &p); // deallocate 1 point |
| 432 | |
| 433 | DLL_API void annDeallocPts( |
| 434 | ANNpointArray &pa); // point array |
| 435 | |
| 436 | DLL_API ANNpoint annCopyPt( |
| 437 | int dim, // dimension |
| 438 | ANNpoint source); // point to copy |
| 439 | |
| 440 | //---------------------------------------------------------------------- |
| 441 | //Overall structure: ANN supports a number of different data structures |
| 442 | //for approximate and exact nearest neighbor searching. These are: |
| 443 | // |
| 444 | // ANNbruteForce A simple brute-force search structure. |
| 445 | // ANNkd_tree A kd-tree tree search structure. ANNbd_tree |
| 446 | // A bd-tree tree search structure (a kd-tree with shrink |
| 447 | // capabilities). |
| 448 | // |
| 449 | // At a minimum, each of these data structures support k-nearest |
| 450 | // neighbor queries. The nearest neighbor query, annkSearch, |
| 451 | // returns an integer identifier and the distance to the nearest |
| 452 | // neighbor(s) and annRangeSearch returns the nearest points that |
| 453 | // lie within a given query ball. |
| 454 | // |
| 455 | // Each structure is built by invoking the appropriate constructor |
| 456 | // and passing it (at a minimum) the array of points, the total |
| 457 | // number of points and the dimension of the space. Each structure |
| 458 | // is also assumed to support a destructor and member functions |
| 459 | // that return basic information about the point set. |
| 460 | // |
| 461 | // Note that the array of points is not copied by the data |
| 462 | // structure (for reasons of space efficiency), and it is assumed |
| 463 | // to be constant throughout the lifetime of the search structure. |
| 464 | // |
| 465 | // The search algorithm, annkSearch, is given the query point (q), |
| 466 | // and the desired number of nearest neighbors to report (k), and |
| 467 | // the error bound (eps) (whose default value is 0, implying exact |
| 468 | // nearest neighbors). It returns two arrays which are assumed to |
| 469 | // contain at least k elements: one (nn_idx) contains the indices |
| 470 | // (within the point array) of the nearest neighbors and the other |
| 471 | // (dd) contains the squared distances to these nearest neighbors. |
| 472 | // |
| 473 | // The search algorithm, annkFRSearch, is a fixed-radius kNN |
| 474 | // search. In addition to a query point, it is given a (squared) |
| 475 | // radius bound. (This is done for consistency, because the search |
| 476 | // returns distances as squared quantities.) It does two things. |
| 477 | // First, it computes the k nearest neighbors within the radius |
| 478 | // bound, and second, it returns the total number of points lying |
| 479 | // within the radius bound. It is permitted to set k = 0, in which |
| 480 | // case it effectively answers a range counting query. If the |
| 481 | // error bound epsilon is positive, then the search is approximate |
| 482 | // in the sense that it is free to ignore any point that lies |
| 483 | // outside a ball of radius r/(1+epsilon), where r is the given |
| 484 | // (unsquared) radius bound. |
| 485 | // |
| 486 | // The generic object from which all the search structures are |
| 487 | // dervied is given below. It is a virtual object, and is useless |
| 488 | // by itself. |
| 489 | //---------------------------------------------------------------------- |
| 490 | |
| 491 | class DLL_API ANNpointSet { |
| 492 | public: |
| 493 | virtual ~ANNpointSet() {} // virtual distructor |
| 494 | |
| 495 | virtual void annkSearch( // approx k near neighbor search |
| 496 | ANNpoint q, // query point |
| 497 | int k, // number of near neighbors to return |
| 498 | ANNidxArray nn_idx, // nearest neighbor array (modified) |
| 499 | ANNdistArray dd, // dist to near neighbors (modified) |
| 500 | double eps=0.0 // error bound |
| 501 | ) = 0; // pure virtual (defined elsewhere) |
| 502 | |
| 503 | virtual int annkFRSearch( // approx fixed-radius kNN search |
| 504 | ANNpoint q, // query point |
| 505 | ANNdist sqRad, // squared radius |
| 506 | int k = 0, // number of near neighbors to return |
| 507 | ANNidxArray nn_idx = NULL, // nearest neighbor array (modified) |
| 508 | ANNdistArray dd = NULL, // dist to near neighbors (modified) |
| 509 | double eps=0.0 // error bound |
| 510 | ) = 0; // pure virtual (defined elsewhere) |
| 511 | |
| 512 | virtual int theDim() = 0; // return dimension of space |
| 513 | virtual int nPoints() = 0; // return number of points |
| 514 | // return pointer to points |
| 515 | virtual ANNpointArray thePoints() = 0; |
| 516 | }; |
| 517 | |
| 518 | //---------------------------------------------------------------------- |
| 519 | // Brute-force nearest neighbor search: |
| 520 | // The brute-force search structure is very simple but inefficient. |
| 521 | // It has been provided primarily for the sake of comparison with |
| 522 | // and validation of the more complex search structures. |
| 523 | // |
| 524 | // Query processing is the same as described above, but the value |
| 525 | // of epsilon is ignored, since all distance calculations are |
| 526 | // performed exactly. |
| 527 | // |
| 528 | // WARNING: This data structure is very slow, and should not be |
| 529 | // used unless the number of points is very small. |
| 530 | // |
| 531 | // Internal information: |
| 532 | // --------------------- |
| 533 | // This data structure bascially consists of the array of points |
| 534 | // (each a pointer to an array of coordinates). The search is |
| 535 | // performed by a simple linear scan of all the points. |
| 536 | //---------------------------------------------------------------------- |
| 537 | |
| 538 | class DLL_API ANNbruteForce: public ANNpointSet { |
| 539 | int dim; // dimension |
| 540 | int n_pts; // number of points |
| 541 | ANNpointArray pts; // point array |
| 542 | public: |
| 543 | ANNbruteForce( // constructor from point array |
| 544 | ANNpointArray pa, // point array |
| 545 | int n, // number of points |
| 546 | int dd); // dimension |
| 547 | |
| 548 | ~ANNbruteForce(); // destructor |
| 549 | |
| 550 | void annkSearch( // approx k near neighbor search |
| 551 | ANNpoint q, // query point |
| 552 | int k, // number of near neighbors to return |
| 553 | ANNidxArray nn_idx, // nearest neighbor array (modified) |
| 554 | ANNdistArray dd, // dist to near neighbors (modified) |
| 555 | double eps=0.0); // error bound |
| 556 | |
| 557 | int annkFRSearch( // approx fixed-radius kNN search |
| 558 | ANNpoint q, // query point |
| 559 | ANNdist sqRad, // squared radius |
| 560 | int k = 0, // number of near neighbors to return |
| 561 | ANNidxArray nn_idx = NULL, // nearest neighbor array (modified) |
| 562 | ANNdistArray dd = NULL, // dist to near neighbors (modified) |
| 563 | double eps=0.0); // error bound |
| 564 | |
| 565 | int theDim() // return dimension of space |
| 566 | { return dim; } |
| 567 | |
| 568 | int nPoints() // return number of points |
| 569 | { return n_pts; } |
| 570 | |
| 571 | ANNpointArray thePoints() // return pointer to points |
| 572 | { return pts; } |
| 573 | }; |
| 574 | |
| 575 | //---------------------------------------------------------------------- |
| 576 | // kd- and bd-tree splitting and shrinking rules |
| 577 | // kd-trees supports a collection of different splitting rules. |
| 578 | // In addition to the standard kd-tree splitting rule proposed |
| 579 | // by Friedman, Bentley, and Finkel, we have introduced a |
| 580 | // number of other splitting rules, which seem to perform |
| 581 | // as well or better (for the distributions we have tested). |
| 582 | // |
| 583 | // The splitting methods given below allow the user to tailor |
| 584 | // the data structure to the particular data set. They are |
| 585 | // are described in greater details in the kd_split.cc source |
| 586 | // file. The method ANN_KD_SUGGEST is the method chosen (rather |
| 587 | // subjectively) by the implementors as the one giving the |
| 588 | // fastest performance, and is the default splitting method. |
| 589 | // |
| 590 | // As with splitting rules, there are a number of different |
| 591 | // shrinking rules. The shrinking rule ANN_BD_NONE does no |
| 592 | // shrinking (and hence produces a kd-tree tree). The rule |
| 593 | // ANN_BD_SUGGEST uses the implementors favorite rule. |
| 594 | //---------------------------------------------------------------------- |
| 595 | |
| 596 | enum ANNsplitRule { |
| 597 | ANN_KD_STD = 0, // the optimized kd-splitting rule |
| 598 | ANN_KD_MIDPT = 1, // midpoint split |
| 599 | ANN_KD_FAIR = 2, // fair split |
| 600 | ANN_KD_SL_MIDPT = 3, // sliding midpoint splitting method |
| 601 | ANN_KD_SL_FAIR = 4, // sliding fair split method |
| 602 | ANN_KD_SUGGEST = 5}; // the authors' suggestion for best |
| 603 | const int ANN_N_SPLIT_RULES = 6; // number of split rules |
| 604 | |
| 605 | enum ANNshrinkRule { |
| 606 | ANN_BD_NONE = 0, // no shrinking at all (just kd-tree) |
| 607 | ANN_BD_SIMPLE = 1, // simple splitting |
| 608 | ANN_BD_CENTROID = 2, // centroid splitting |
| 609 | ANN_BD_SUGGEST = 3}; // the authors' suggested choice |
| 610 | const int ANN_N_SHRINK_RULES = 4; // number of shrink rules |
| 611 | |
| 612 | //---------------------------------------------------------------------- |
| 613 | // kd-tree: |
| 614 | // The main search data structure supported by ANN is a kd-tree. |
| 615 | // The main constructor is given a set of points and a choice of |
| 616 | // splitting method to use in building the tree. |
| 617 | // |
| 618 | // Construction: |
| 619 | // ------------- |
| 620 | // The constructor is given the point array, number of points, |
| 621 | // dimension, bucket size (default = 1), and the splitting rule |
| 622 | // (default = ANN_KD_SUGGEST). The point array is not copied, and |
| 623 | // is assumed to be kept constant throughout the lifetime of the |
| 624 | // search structure. There is also a "load" constructor that |
| 625 | // builds a tree from a file description that was created by the |
| 626 | // Dump operation. |
| 627 | // |
| 628 | // Search: |
| 629 | // ------- |
| 630 | // There are two search methods: |
| 631 | // |
| 632 | // Standard search (annkSearch()): |
| 633 | // Searches nodes in tree-traversal order, always visiting |
| 634 | // the closer child first. |
| 635 | // Priority search (annkPriSearch()): |
| 636 | // Searches nodes in order of increasing distance of the |
| 637 | // associated cell from the query point. For many |
| 638 | // distributions the standard search seems to work just |
| 639 | // fine, but priority search is safer for worst-case |
| 640 | // performance. |
| 641 | // |
| 642 | // Printing: |
| 643 | // --------- |
| 644 | // There are two methods provided for printing the tree. Print() |
| 645 | // is used to produce a "human-readable" display of the tree, with |
| 646 | // indenation, which is handy for debugging. Dump() produces a |
| 647 | // format that is suitable reading by another program. There is a |
| 648 | // "load" constructor, which constructs a tree which is assumed to |
| 649 | // have been saved by the Dump() procedure. |
| 650 | // |
| 651 | // Performance and Structure Statistics: |
| 652 | // ------------------------------------- |
| 653 | // The procedure getStats() collects statistics information on the |
| 654 | // tree (its size, height, etc.) See ANNperf.h for information on |
| 655 | // the stats structure it returns. |
| 656 | // |
| 657 | // Internal information: |
| 658 | // --------------------- |
| 659 | // The data structure consists of three major chunks of storage. |
| 660 | // The first (implicit) storage are the points themselves (pts), |
| 661 | // which have been provided by the users as an argument to the |
| 662 | // constructor, or are allocated dynamically if the tree is built |
| 663 | // using the load constructor). These should not be changed during |
| 664 | // the lifetime of the search structure. It is the user's |
| 665 | // responsibility to delete these after the tree is destroyed. |
| 666 | // |
| 667 | // The second is the tree itself (which is dynamically allocated in |
| 668 | // the constructor) and is given as a pointer to its root node |
| 669 | // (root). These nodes are automatically deallocated when the tree |
| 670 | // is deleted. See the file src/kd_tree.h for further information |
| 671 | // on the structure of the tree nodes. |
| 672 | // |
| 673 | // Each leaf of the tree does not contain a pointer directly to a |
| 674 | // point, but rather contains a pointer to a "bucket", which is an |
| 675 | // array consisting of point indices. The third major chunk of |
| 676 | // storage is an array (pidx), which is a large array in which all |
| 677 | // these bucket subarrays reside. (The reason for storing them |
| 678 | // separately is the buckets are typically small, but of varying |
| 679 | // sizes. This was done to avoid fragmentation.) This array is |
| 680 | // also deallocated when the tree is deleted. |
| 681 | // |
| 682 | // In addition to this, the tree consists of a number of other |
| 683 | // pieces of information which are used in searching and for |
| 684 | // subsequent tree operations. These consist of the following: |
| 685 | // |
| 686 | // dim Dimension of space |
| 687 | // n_pts Number of points currently in the tree |
| 688 | // n_max Maximum number of points that are allowed |
| 689 | // in the tree |
| 690 | // bkt_size Maximum bucket size (no. of points per leaf) |
| 691 | // bnd_box_lo Bounding box low point |
| 692 | // bnd_box_hi Bounding box high point |
| 693 | // splitRule Splitting method used |
| 694 | // |
| 695 | //---------------------------------------------------------------------- |
| 696 | |
| 697 | //---------------------------------------------------------------------- |
| 698 | // Some types and objects used by kd-tree functions |
| 699 | // See src/kd_tree.h and src/kd_tree.cpp for definitions |
| 700 | //---------------------------------------------------------------------- |
| 701 | class ANNkdStats; // stats on kd-tree |
| 702 | class ANNkd_node; // generic node in a kd-tree |
| 703 | typedef ANNkd_node* ANNkd_ptr; // pointer to a kd-tree node |
| 704 | |
| 705 | class DLL_API ANNkd_tree: public ANNpointSet { |
| 706 | protected: |
| 707 | int dim; // dimension of space |
| 708 | int n_pts; // number of points in tree |
| 709 | int bkt_size; // bucket size |
| 710 | ANNpointArray pts; // the points |
| 711 | ANNidxArray pidx; // point indices (to pts array) |
| 712 | ANNkd_ptr root; // root of kd-tree |
| 713 | ANNpoint bnd_box_lo; // bounding box low point |
| 714 | ANNpoint bnd_box_hi; // bounding box high point |
| 715 | |
| 716 | void SkeletonTree( // construct skeleton tree |
| 717 | int n, // number of points |
| 718 | int dd, // dimension |
| 719 | int bs, // bucket size |
| 720 | ANNpointArray pa = NULL, // point array (optional) |
| 721 | ANNidxArray pi = NULL); // point indices (optional) |
| 722 | |
| 723 | public: |
| 724 | ANNkd_tree( // build skeleton tree |
| 725 | int n = 0, // number of points |
| 726 | int dd = 0, // dimension |
| 727 | int bs = 1); // bucket size |
| 728 | |
| 729 | ANNkd_tree( // build from point array |
| 730 | ANNpointArray pa, // point array |
| 731 | int n, // number of points |
| 732 | int dd, // dimension |
| 733 | int bs = 1, // bucket size |
| 734 | ANNsplitRule split = ANN_KD_SUGGEST); // splitting method |
| 735 | |
| 736 | ANNkd_tree( // build from dump file |
| 737 | std::istream& in); // input stream for dump file |
| 738 | |
| 739 | ~ANNkd_tree(); // tree destructor |
| 740 | |
| 741 | void annkSearch( // approx k near neighbor search |
| 742 | ANNpoint q, // query point |
| 743 | int k, // number of near neighbors to return |
| 744 | ANNidxArray nn_idx, // nearest neighbor array (modified) |
| 745 | ANNdistArray dd, // dist to near neighbors (modified) |
| 746 | double eps=0.0); // error bound |
| 747 | |
| 748 | void annkPriSearch( // priority k near neighbor search |
| 749 | ANNpoint q, // query point |
| 750 | int k, // number of near neighbors to return |
| 751 | ANNidxArray nn_idx, // nearest neighbor array (modified) |
| 752 | ANNdistArray dd, // dist to near neighbors (modified) |
| 753 | double eps=0.0); // error bound |
| 754 | |
| 755 | int annkFRSearch( // approx fixed-radius kNN search |
| 756 | ANNpoint q, // the query point |
| 757 | ANNdist sqRad, // squared radius of query ball |
| 758 | int k = 0, // number of neighbors to return |
| 759 | ANNidxArray nn_idx = NULL, // nearest neighbor array (modified) |
| 760 | ANNdistArray dd = NULL, // dist to near neighbors (modified) |
| 761 | double eps=0.0); // error bound |
| 762 | |
| 763 | int theDim() // return dimension of space |
| 764 | { return dim; } |
| 765 | |
| 766 | int nPoints() // return number of points |
| 767 | { return n_pts; } |
| 768 | |
| 769 | ANNpointArray thePoints() // return pointer to points |
| 770 | { return pts; } |
| 771 | |
| 772 | virtual void Print( // print the tree (for debugging) |
| 773 | ANNbool with_pts, // print points as well? |
| 774 | std::ostream& out); // output stream |
| 775 | |
| 776 | virtual void Dump( // dump entire tree |
| 777 | ANNbool with_pts, // print points as well? |
| 778 | std::ostream& out); // output stream |
| 779 | |
| 780 | virtual void getStats( // compute tree statistics |
| 781 | ANNkdStats& st); // the statistics (modified) |
| 782 | }; |
| 783 | |
| 784 | //---------------------------------------------------------------------- |
| 785 | // Box decomposition tree (bd-tree) |
| 786 | // The bd-tree is inherited from a kd-tree. The main difference |
| 787 | // in the bd-tree and the kd-tree is a new type of internal node |
| 788 | // called a shrinking node (in the kd-tree there is only one type |
| 789 | // of internal node, a splitting node). The shrinking node |
| 790 | // makes it possible to generate balanced trees in which the |
| 791 | // cells have bounded aspect ratio, by allowing the decomposition |
| 792 | // to zoom in on regions of dense point concentration. Although |
| 793 | // this is a nice idea in theory, few point distributions are so |
| 794 | // densely clustered that this is really needed. |
| 795 | //---------------------------------------------------------------------- |
| 796 | |
| 797 | class DLL_API ANNbd_tree: public ANNkd_tree { |
| 798 | public: |
| 799 | ANNbd_tree( // build skeleton tree |
| 800 | int n, // number of points |
| 801 | int dd, // dimension |
| 802 | int bs = 1) // bucket size |
| 803 | : ANNkd_tree(n, dd, bs) {} // build base kd-tree |
| 804 | |
| 805 | ANNbd_tree( // build from point array |
| 806 | ANNpointArray pa, // point array |
| 807 | int n, // number of points |
| 808 | int dd, // dimension |
| 809 | int bs = 1, // bucket size |
| 810 | ANNsplitRule split = ANN_KD_SUGGEST, // splitting rule |
| 811 | ANNshrinkRule shrink = ANN_BD_SUGGEST); // shrinking rule |
| 812 | |
| 813 | ANNbd_tree( // build from dump file |
| 814 | std::istream& in); // input stream for dump file |
| 815 | }; |
| 816 | |
| 817 | //---------------------------------------------------------------------- |
| 818 | // Other functions |
| 819 | // annMaxPtsVisit Sets a limit on the maximum number of points |
| 820 | // to visit in the search. |
| 821 | // annClose Can be called when all use of ANN is finished. |
| 822 | // It clears up a minor memory leak. |
| 823 | //---------------------------------------------------------------------- |
| 824 | |
| 825 | DLL_API void annMaxPtsVisit( // max. pts to visit in search |
| 826 | int maxPts); // the limit |
| 827 | |
| 828 | DLL_API void annClose(); // called to end use of ANN |
| 829 | |
| 830 | #endif |
| 831 | |