1 | /* The PyObject_ memory family: high-level object memory interfaces. |
2 | See pymem.h for the low-level PyMem_ family. |
3 | */ |
4 | |
5 | #ifndef Py_OBJIMPL_H |
6 | #define Py_OBJIMPL_H |
7 | |
8 | #include "pymem.h" |
9 | |
10 | #ifdef __cplusplus |
11 | extern "C" { |
12 | #endif |
13 | |
14 | /* BEWARE: |
15 | |
16 | Each interface exports both functions and macros. Extension modules should |
17 | use the functions, to ensure binary compatibility across Python versions. |
18 | Because the Python implementation is free to change internal details, and |
19 | the macros may (or may not) expose details for speed, if you do use the |
20 | macros you must recompile your extensions with each Python release. |
21 | |
22 | Never mix calls to PyObject_ memory functions with calls to the platform |
23 | malloc/realloc/ calloc/free, or with calls to PyMem_. |
24 | */ |
25 | |
26 | /* |
27 | Functions and macros for modules that implement new object types. |
28 | |
29 | - PyObject_New(type, typeobj) allocates memory for a new object of the given |
30 | type, and initializes part of it. 'type' must be the C structure type used |
31 | to represent the object, and 'typeobj' the address of the corresponding |
32 | type object. Reference count and type pointer are filled in; the rest of |
33 | the bytes of the object are *undefined*! The resulting expression type is |
34 | 'type *'. The size of the object is determined by the tp_basicsize field |
35 | of the type object. |
36 | |
37 | - PyObject_NewVar(type, typeobj, n) is similar but allocates a variable-size |
38 | object with room for n items. In addition to the refcount and type pointer |
39 | fields, this also fills in the ob_size field. |
40 | |
41 | - PyObject_Del(op) releases the memory allocated for an object. It does not |
42 | run a destructor -- it only frees the memory. PyObject_Free is identical. |
43 | |
44 | - PyObject_Init(op, typeobj) and PyObject_InitVar(op, typeobj, n) don't |
45 | allocate memory. Instead of a 'type' parameter, they take a pointer to a |
46 | new object (allocated by an arbitrary allocator), and initialize its object |
47 | header fields. |
48 | |
49 | Note that objects created with PyObject_{New, NewVar} are allocated using the |
50 | specialized Python allocator (implemented in obmalloc.c), if WITH_PYMALLOC is |
51 | enabled. In addition, a special debugging allocator is used if PYMALLOC_DEBUG |
52 | is also #defined. |
53 | |
54 | In case a specific form of memory management is needed (for example, if you |
55 | must use the platform malloc heap(s), or shared memory, or C++ local storage or |
56 | operator new), you must first allocate the object with your custom allocator, |
57 | then pass its pointer to PyObject_{Init, InitVar} for filling in its Python- |
58 | specific fields: reference count, type pointer, possibly others. You should |
59 | be aware that Python has no control over these objects because they don't |
60 | cooperate with the Python memory manager. Such objects may not be eligible |
61 | for automatic garbage collection and you have to make sure that they are |
62 | released accordingly whenever their destructor gets called (cf. the specific |
63 | form of memory management you're using). |
64 | |
65 | Unless you have specific memory management requirements, use |
66 | PyObject_{New, NewVar, Del}. |
67 | */ |
68 | |
69 | /* |
70 | * Raw object memory interface |
71 | * =========================== |
72 | */ |
73 | |
74 | /* Functions to call the same malloc/realloc/free as used by Python's |
75 | object allocator. If WITH_PYMALLOC is enabled, these may differ from |
76 | the platform malloc/realloc/free. The Python object allocator is |
77 | designed for fast, cache-conscious allocation of many "small" objects, |
78 | and with low hidden memory overhead. |
79 | |
80 | PyObject_Malloc(0) returns a unique non-NULL pointer if possible. |
81 | |
82 | PyObject_Realloc(NULL, n) acts like PyObject_Malloc(n). |
83 | PyObject_Realloc(p != NULL, 0) does not return NULL, or free the memory |
84 | at p. |
85 | |
86 | Returned pointers must be checked for NULL explicitly; no action is |
87 | performed on failure other than to return NULL (no warning it printed, no |
88 | exception is set, etc). |
89 | |
90 | For allocating objects, use PyObject_{New, NewVar} instead whenever |
91 | possible. The PyObject_{Malloc, Realloc, Free} family is exposed |
92 | so that you can exploit Python's small-block allocator for non-object |
93 | uses. If you must use these routines to allocate object memory, make sure |
94 | the object gets initialized via PyObject_{Init, InitVar} after obtaining |
95 | the raw memory. |
96 | */ |
97 | PyAPI_FUNC(void *) PyObject_Malloc(size_t); |
98 | PyAPI_FUNC(void *) PyObject_Realloc(void *, size_t); |
99 | PyAPI_FUNC(void) PyObject_Free(void *); |
100 | |
101 | |
102 | /* Macros */ |
103 | #ifdef WITH_PYMALLOC |
104 | #ifdef PYMALLOC_DEBUG /* WITH_PYMALLOC && PYMALLOC_DEBUG */ |
105 | PyAPI_FUNC(void *) _PyObject_DebugMalloc(size_t nbytes); |
106 | PyAPI_FUNC(void *) _PyObject_DebugRealloc(void *p, size_t nbytes); |
107 | PyAPI_FUNC(void) _PyObject_DebugFree(void *p); |
108 | PyAPI_FUNC(void) _PyObject_DebugDumpAddress(const void *p); |
109 | PyAPI_FUNC(void) _PyObject_DebugCheckAddress(const void *p); |
110 | PyAPI_FUNC(void) _PyObject_DebugMallocStats(void); |
111 | PyAPI_FUNC(void *) _PyObject_DebugMallocApi(char api, size_t nbytes); |
112 | PyAPI_FUNC(void *) _PyObject_DebugReallocApi(char api, void *p, size_t nbytes); |
113 | PyAPI_FUNC(void) _PyObject_DebugFreeApi(char api, void *p); |
114 | PyAPI_FUNC(void) _PyObject_DebugCheckAddressApi(char api, const void *p); |
115 | PyAPI_FUNC(void *) _PyMem_DebugMalloc(size_t nbytes); |
116 | PyAPI_FUNC(void *) _PyMem_DebugRealloc(void *p, size_t nbytes); |
117 | PyAPI_FUNC(void) _PyMem_DebugFree(void *p); |
118 | #define PyObject_MALLOC _PyObject_DebugMalloc |
119 | #define PyObject_Malloc _PyObject_DebugMalloc |
120 | #define PyObject_REALLOC _PyObject_DebugRealloc |
121 | #define PyObject_Realloc _PyObject_DebugRealloc |
122 | #define PyObject_FREE _PyObject_DebugFree |
123 | #define PyObject_Free _PyObject_DebugFree |
124 | |
125 | #else /* WITH_PYMALLOC && ! PYMALLOC_DEBUG */ |
126 | #define PyObject_MALLOC PyObject_Malloc |
127 | #define PyObject_REALLOC PyObject_Realloc |
128 | #define PyObject_FREE PyObject_Free |
129 | #endif |
130 | |
131 | #else /* ! WITH_PYMALLOC */ |
132 | #define PyObject_MALLOC PyMem_MALLOC |
133 | #define PyObject_REALLOC PyMem_REALLOC |
134 | #define PyObject_FREE PyMem_FREE |
135 | |
136 | #endif /* WITH_PYMALLOC */ |
137 | |
138 | #define PyObject_Del PyObject_Free |
139 | #define PyObject_DEL PyObject_FREE |
140 | |
141 | /* for source compatibility with 2.2 */ |
142 | #define _PyObject_Del PyObject_Free |
143 | |
144 | /* |
145 | * Generic object allocator interface |
146 | * ================================== |
147 | */ |
148 | |
149 | /* Functions */ |
150 | PyAPI_FUNC(PyObject *) PyObject_Init(PyObject *, PyTypeObject *); |
151 | PyAPI_FUNC(PyVarObject *) PyObject_InitVar(PyVarObject *, |
152 | PyTypeObject *, Py_ssize_t); |
153 | PyAPI_FUNC(PyObject *) _PyObject_New(PyTypeObject *); |
154 | PyAPI_FUNC(PyVarObject *) _PyObject_NewVar(PyTypeObject *, Py_ssize_t); |
155 | |
156 | #define PyObject_New(type, typeobj) \ |
157 | ( (type *) _PyObject_New(typeobj) ) |
158 | #define PyObject_NewVar(type, typeobj, n) \ |
159 | ( (type *) _PyObject_NewVar((typeobj), (n)) ) |
160 | |
161 | /* Macros trading binary compatibility for speed. See also pymem.h. |
162 | Note that these macros expect non-NULL object pointers.*/ |
163 | #define PyObject_INIT(op, typeobj) \ |
164 | ( Py_TYPE(op) = (typeobj), _Py_NewReference((PyObject *)(op)), (op) ) |
165 | #define PyObject_INIT_VAR(op, typeobj, size) \ |
166 | ( Py_SIZE(op) = (size), PyObject_INIT((op), (typeobj)) ) |
167 | |
168 | #define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize ) |
169 | |
170 | /* _PyObject_VAR_SIZE returns the number of bytes (as size_t) allocated for a |
171 | vrbl-size object with nitems items, exclusive of gc overhead (if any). The |
172 | value is rounded up to the closest multiple of sizeof(void *), in order to |
173 | ensure that pointer fields at the end of the object are correctly aligned |
174 | for the platform (this is of special importance for subclasses of, e.g., |
175 | str or long, so that pointers can be stored after the embedded data). |
176 | |
177 | Note that there's no memory wastage in doing this, as malloc has to |
178 | return (at worst) pointer-aligned memory anyway. |
179 | */ |
180 | #if ((SIZEOF_VOID_P - 1) & SIZEOF_VOID_P) != 0 |
181 | # error "_PyObject_VAR_SIZE requires SIZEOF_VOID_P be a power of 2" |
182 | #endif |
183 | |
184 | #define _PyObject_VAR_SIZE(typeobj, nitems) \ |
185 | (size_t) \ |
186 | ( ( (typeobj)->tp_basicsize + \ |
187 | (nitems)*(typeobj)->tp_itemsize + \ |
188 | (SIZEOF_VOID_P - 1) \ |
189 | ) & ~(SIZEOF_VOID_P - 1) \ |
190 | ) |
191 | |
192 | #define PyObject_NEW(type, typeobj) \ |
193 | ( (type *) PyObject_Init( \ |
194 | (PyObject *) PyObject_MALLOC( _PyObject_SIZE(typeobj) ), (typeobj)) ) |
195 | |
196 | #define PyObject_NEW_VAR(type, typeobj, n) \ |
197 | ( (type *) PyObject_InitVar( \ |
198 | (PyVarObject *) PyObject_MALLOC(_PyObject_VAR_SIZE((typeobj),(n)) ),\ |
199 | (typeobj), (n)) ) |
200 | |
201 | /* This example code implements an object constructor with a custom |
202 | allocator, where PyObject_New is inlined, and shows the important |
203 | distinction between two steps (at least): |
204 | 1) the actual allocation of the object storage; |
205 | 2) the initialization of the Python specific fields |
206 | in this storage with PyObject_{Init, InitVar}. |
207 | |
208 | PyObject * |
209 | YourObject_New(...) |
210 | { |
211 | PyObject *op; |
212 | |
213 | op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct)); |
214 | if (op == NULL) |
215 | return PyErr_NoMemory(); |
216 | |
217 | PyObject_Init(op, &YourTypeStruct); |
218 | |
219 | op->ob_field = value; |
220 | ... |
221 | return op; |
222 | } |
223 | |
224 | Note that in C++, the use of the new operator usually implies that |
225 | the 1st step is performed automatically for you, so in a C++ class |
226 | constructor you would start directly with PyObject_Init/InitVar |
227 | */ |
228 | |
229 | /* |
230 | * Garbage Collection Support |
231 | * ========================== |
232 | */ |
233 | |
234 | /* C equivalent of gc.collect(). */ |
235 | PyAPI_FUNC(Py_ssize_t) PyGC_Collect(void); |
236 | |
237 | /* Test if a type has a GC head */ |
238 | #define PyType_IS_GC(t) PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC) |
239 | |
240 | /* Test if an object has a GC head */ |
241 | #define PyObject_IS_GC(o) (PyType_IS_GC(Py_TYPE(o)) && \ |
242 | (Py_TYPE(o)->tp_is_gc == NULL || Py_TYPE(o)->tp_is_gc(o))) |
243 | |
244 | PyAPI_FUNC(PyVarObject *) _PyObject_GC_Resize(PyVarObject *, Py_ssize_t); |
245 | #define PyObject_GC_Resize(type, op, n) \ |
246 | ( (type *) _PyObject_GC_Resize((PyVarObject *)(op), (n)) ) |
247 | |
248 | /* for source compatibility with 2.2 */ |
249 | #define _PyObject_GC_Del PyObject_GC_Del |
250 | |
251 | /* |
252 | * Former over-aligned definition of PyGC_Head, used to compute the size of the |
253 | * padding for the new version below. |
254 | */ |
255 | union _gc_head; |
256 | union _gc_head_old { |
257 | struct { |
258 | union _gc_head_old *gc_next; |
259 | union _gc_head_old *gc_prev; |
260 | Py_ssize_t gc_refs; |
261 | } gc; |
262 | long double dummy; |
263 | }; |
264 | |
265 | /* GC information is stored BEFORE the object structure. */ |
266 | typedef union _gc_head { |
267 | struct { |
268 | union _gc_head *gc_next; |
269 | union _gc_head *gc_prev; |
270 | Py_ssize_t gc_refs; |
271 | } gc; |
272 | double dummy; /* Force at least 8-byte alignment. */ |
273 | char dummy_padding[sizeof(union _gc_head_old)]; |
274 | } PyGC_Head; |
275 | |
276 | extern PyGC_Head *_PyGC_generation0; |
277 | |
278 | #define _Py_AS_GC(o) ((PyGC_Head *)(o)-1) |
279 | |
280 | #define _PyGC_REFS_UNTRACKED (-2) |
281 | #define _PyGC_REFS_REACHABLE (-3) |
282 | #define _PyGC_REFS_TENTATIVELY_UNREACHABLE (-4) |
283 | |
284 | /* Tell the GC to track this object. NB: While the object is tracked the |
285 | * collector it must be safe to call the ob_traverse method. */ |
286 | #define _PyObject_GC_TRACK(o) do { \ |
287 | PyGC_Head *g = _Py_AS_GC(o); \ |
288 | if (g->gc.gc_refs != _PyGC_REFS_UNTRACKED) \ |
289 | Py_FatalError("GC object already tracked"); \ |
290 | g->gc.gc_refs = _PyGC_REFS_REACHABLE; \ |
291 | g->gc.gc_next = _PyGC_generation0; \ |
292 | g->gc.gc_prev = _PyGC_generation0->gc.gc_prev; \ |
293 | g->gc.gc_prev->gc.gc_next = g; \ |
294 | _PyGC_generation0->gc.gc_prev = g; \ |
295 | } while (0); |
296 | |
297 | /* Tell the GC to stop tracking this object. |
298 | * gc_next doesn't need to be set to NULL, but doing so is a good |
299 | * way to provoke memory errors if calling code is confused. |
300 | */ |
301 | #define _PyObject_GC_UNTRACK(o) do { \ |
302 | PyGC_Head *g = _Py_AS_GC(o); \ |
303 | assert(g->gc.gc_refs != _PyGC_REFS_UNTRACKED); \ |
304 | g->gc.gc_refs = _PyGC_REFS_UNTRACKED; \ |
305 | g->gc.gc_prev->gc.gc_next = g->gc.gc_next; \ |
306 | g->gc.gc_next->gc.gc_prev = g->gc.gc_prev; \ |
307 | g->gc.gc_next = NULL; \ |
308 | } while (0); |
309 | |
310 | /* True if the object is currently tracked by the GC. */ |
311 | #define _PyObject_GC_IS_TRACKED(o) \ |
312 | ((_Py_AS_GC(o))->gc.gc_refs != _PyGC_REFS_UNTRACKED) |
313 | |
314 | /* True if the object may be tracked by the GC in the future, or already is. |
315 | This can be useful to implement some optimizations. */ |
316 | #define _PyObject_GC_MAY_BE_TRACKED(obj) \ |
317 | (PyObject_IS_GC(obj) && \ |
318 | (!PyTuple_CheckExact(obj) || _PyObject_GC_IS_TRACKED(obj))) |
319 | |
320 | |
321 | PyAPI_FUNC(PyObject *) _PyObject_GC_Malloc(size_t); |
322 | PyAPI_FUNC(PyObject *) _PyObject_GC_New(PyTypeObject *); |
323 | PyAPI_FUNC(PyVarObject *) _PyObject_GC_NewVar(PyTypeObject *, Py_ssize_t); |
324 | PyAPI_FUNC(void) PyObject_GC_Track(void *); |
325 | PyAPI_FUNC(void) PyObject_GC_UnTrack(void *); |
326 | PyAPI_FUNC(void) PyObject_GC_Del(void *); |
327 | |
328 | #define PyObject_GC_New(type, typeobj) \ |
329 | ( (type *) _PyObject_GC_New(typeobj) ) |
330 | #define PyObject_GC_NewVar(type, typeobj, n) \ |
331 | ( (type *) _PyObject_GC_NewVar((typeobj), (n)) ) |
332 | |
333 | |
334 | /* Utility macro to help write tp_traverse functions. |
335 | * To use this macro, the tp_traverse function must name its arguments |
336 | * "visit" and "arg". This is intended to keep tp_traverse functions |
337 | * looking as much alike as possible. |
338 | */ |
339 | #define Py_VISIT(op) \ |
340 | do { \ |
341 | if (op) { \ |
342 | int vret = visit((PyObject *)(op), arg); \ |
343 | if (vret) \ |
344 | return vret; \ |
345 | } \ |
346 | } while (0) |
347 | |
348 | /* This is here for the sake of backwards compatibility. Extensions that |
349 | * use the old GC API will still compile but the objects will not be |
350 | * tracked by the GC. */ |
351 | #define PyGC_HEAD_SIZE 0 |
352 | #define PyObject_GC_Init(op) |
353 | #define PyObject_GC_Fini(op) |
354 | #define PyObject_AS_GC(op) (op) |
355 | #define PyObject_FROM_GC(op) (op) |
356 | |
357 | |
358 | /* Test if a type supports weak references */ |
359 | #define PyType_SUPPORTS_WEAKREFS(t) \ |
360 | (PyType_HasFeature((t), Py_TPFLAGS_HAVE_WEAKREFS) \ |
361 | && ((t)->tp_weaklistoffset > 0)) |
362 | |
363 | #define PyObject_GET_WEAKREFS_LISTPTR(o) \ |
364 | ((PyObject **) (((char *) (o)) + Py_TYPE(o)->tp_weaklistoffset)) |
365 | |
366 | #ifdef __cplusplus |
367 | } |
368 | #endif |
369 | #endif /* !Py_OBJIMPL_H */ |
370 | |