| 1 | #include "speculative.h" |
| 2 | |
| 3 | #include "ggml.h" |
| 4 | #include "llama.h" |
| 5 | #include "log.h" |
| 6 | #include "common.h" |
| 7 | #include "sampling.h" |
| 8 | |
| 9 | #include <cstring> |
| 10 | #include <algorithm> |
| 11 | #include <map> |
| 12 | |
| 13 | #define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128 |
| 14 | #define SPEC_VOCAB_CHECK_START_TOKEN_ID 5 |
| 15 | |
| 16 | struct common_speculative { |
| 17 | struct llama_context * ctx_tgt; // only used for retokenizing from ctx_dft |
| 18 | struct llama_context * ctx_dft; |
| 19 | struct common_sampler * smpl; |
| 20 | |
| 21 | llama_batch batch; |
| 22 | llama_tokens prompt_dft; |
| 23 | bool vocab_dft_compatible = true; // whether retokenization is needed |
| 24 | std::map<std::string, std::string> tgt_dft_replacements = {}; |
| 25 | }; |
| 26 | |
| 27 | struct common_speculative * common_speculative_init( |
| 28 | struct llama_context * ctx_tgt, |
| 29 | struct llama_context * ctx_dft) { |
| 30 | auto * result = new common_speculative { |
| 31 | /* .ctx_tgt = */ ctx_tgt, |
| 32 | /* .ctx_dft = */ ctx_dft, |
| 33 | /* .smpl = */ nullptr, |
| 34 | /* .batch = */ llama_batch_init(n_tokens: llama_n_batch(ctx: ctx_dft), embd: 0, n_seq_max: 1), |
| 35 | /* .prompt_dft = */ {}, |
| 36 | /* .vocab_dft_compatible = */ false, |
| 37 | }; |
| 38 | |
| 39 | // TODO: optimize or pass from outside? |
| 40 | #if 0 |
| 41 | { |
| 42 | common_params_sampling params; |
| 43 | params.no_perf = false; |
| 44 | |
| 45 | params.top_k = 40; |
| 46 | params.top_p = 0.9; |
| 47 | |
| 48 | params.samplers = { |
| 49 | COMMON_SAMPLER_TYPE_TOP_K, |
| 50 | COMMON_SAMPLER_TYPE_TOP_P, |
| 51 | COMMON_SAMPLER_TYPE_INFILL, |
| 52 | }; |
| 53 | |
| 54 | result->smpl = common_sampler_init(llama_get_model(ctx_dft), params); |
| 55 | } |
| 56 | #else |
| 57 | { |
| 58 | common_params_sampling params; |
| 59 | params.no_perf = false; |
| 60 | |
| 61 | params.top_k = 10; |
| 62 | |
| 63 | params.samplers = { |
| 64 | COMMON_SAMPLER_TYPE_TOP_K, |
| 65 | }; |
| 66 | |
| 67 | result->smpl = common_sampler_init(model: llama_get_model(ctx: ctx_dft), params); |
| 68 | } |
| 69 | #endif |
| 70 | |
| 71 | result->vocab_dft_compatible = common_speculative_are_compatible(ctx_tgt, ctx_dft); |
| 72 | LOG_DBG("vocab_dft_compatible = %d\n" , result->vocab_dft_compatible); |
| 73 | |
| 74 | return result; |
| 75 | } |
| 76 | |
| 77 | void common_speculative_free(struct common_speculative * spec) { |
| 78 | if (spec == nullptr) { |
| 79 | return; |
| 80 | } |
| 81 | |
| 82 | common_sampler_free(gsmpl: spec->smpl); |
| 83 | |
| 84 | llama_batch_free(batch: spec->batch); |
| 85 | |
| 86 | delete spec; |
| 87 | } |
| 88 | |
| 89 | bool common_speculative_are_compatible( |
| 90 | const struct llama_context * ctx_tgt, |
| 91 | const struct llama_context * ctx_dft) { |
| 92 | const struct llama_model * model_tgt = llama_get_model(ctx: ctx_tgt); |
| 93 | const struct llama_model * model_dft = llama_get_model(ctx: ctx_dft); |
| 94 | |
| 95 | const struct llama_vocab * vocab_tgt = llama_model_get_vocab(model: model_tgt); |
| 96 | const struct llama_vocab * vocab_dft = llama_model_get_vocab(model: model_dft); |
| 97 | |
| 98 | const bool vocab_type_tgt = llama_vocab_type(vocab: vocab_tgt); |
| 99 | LOG_DBG("%s: vocab_type tgt: %d\n" , __func__, vocab_type_tgt); |
| 100 | |
| 101 | const bool vocab_type_dft = llama_vocab_type(vocab: vocab_dft); |
| 102 | LOG_DBG("%s: vocab_type dft: %d\n" , __func__, vocab_type_dft); |
| 103 | |
| 104 | if (vocab_type_tgt != vocab_type_dft) { |
| 105 | LOG_DBG("%s: draft model vocab type must match target model to use speculation but " , __func__); |
| 106 | LOG_DBG("vocab_type_dft = %d while vocab_type_tgt = %d\n" , vocab_type_dft, vocab_type_tgt); |
| 107 | return false; |
| 108 | } |
| 109 | |
| 110 | if ( |
| 111 | llama_vocab_get_add_bos(vocab: vocab_tgt) != llama_vocab_get_add_bos(vocab: vocab_dft) || |
| 112 | llama_vocab_get_add_eos(vocab: vocab_tgt) != llama_vocab_get_add_eos(vocab: vocab_dft) || |
| 113 | llama_vocab_bos(vocab: vocab_tgt) != llama_vocab_bos(vocab: vocab_dft) || |
| 114 | llama_vocab_eos(vocab: vocab_tgt) != llama_vocab_eos(vocab: vocab_dft) |
| 115 | ) { |
| 116 | LOG_DBG("%s: draft model special tokens must match target model to use speculation\n" , __func__); |
| 117 | return false; |
| 118 | } |
| 119 | |
| 120 | { |
| 121 | const int n_vocab_tgt = llama_vocab_n_tokens(vocab: vocab_tgt); |
| 122 | const int n_vocab_dft = llama_vocab_n_tokens(vocab: vocab_dft); |
| 123 | const int vocab_diff = n_vocab_tgt > n_vocab_dft |
| 124 | ? n_vocab_tgt - n_vocab_dft |
| 125 | : n_vocab_dft - n_vocab_tgt; |
| 126 | |
| 127 | if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) { |
| 128 | LOG_DBG("%s: draft model vocab must closely match target model to use speculation but " , __func__); |
| 129 | LOG_DBG("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n" , |
| 130 | n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE); |
| 131 | return false; |
| 132 | } |
| 133 | |
| 134 | for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(a: n_vocab_tgt, b: n_vocab_dft); ++i) { |
| 135 | const char * token_text_tgt = llama_vocab_get_text(vocab: vocab_tgt, token: i); |
| 136 | const char * token_text_dft = llama_vocab_get_text(vocab: vocab_dft, token: i); |
| 137 | if (std::strcmp(s1: token_text_tgt, s2: token_text_dft) != 0) { |
| 138 | LOG_DBG("%s: draft model vocab must match target model to use speculation but " , __func__); |
| 139 | LOG_DBG("token %d content differs - target '%s', draft '%s'\n" , i, |
| 140 | common_token_to_piece(ctx_tgt, i).c_str(), |
| 141 | common_token_to_piece(ctx_dft, i).c_str()); |
| 142 | return false; |
| 143 | } |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | return true; |
| 148 | } |
| 149 | |
| 150 | void common_speculative_add_replacement_tgt_dft( |
| 151 | struct common_speculative * spec, |
| 152 | const char *source, const char *dest) { |
| 153 | spec->tgt_dft_replacements[source] = dest; |
| 154 | } |
| 155 | |
| 156 | static std::string replace_to_dft( |
| 157 | struct common_speculative * spec, |
| 158 | const std::string& input) { |
| 159 | std::string result = input; |
| 160 | for (const auto & pair : spec->tgt_dft_replacements) { |
| 161 | size_t pos = result.find(str: pair.first); |
| 162 | while (pos != std::string::npos) { |
| 163 | result.replace(pos: pos, n: pair.first.length(), str: pair.second); |
| 164 | pos = result.find(str: pair.first, pos: pos + pair.second.length()); |
| 165 | } |
| 166 | } |
| 167 | return result; |
| 168 | } |
| 169 | |
| 170 | static std::string replace_to_tgt( |
| 171 | struct common_speculative * spec, |
| 172 | const std::string& input) { |
| 173 | std::string result = input; |
| 174 | for (const auto& pair : spec->tgt_dft_replacements) { |
| 175 | size_t pos = result.find(str: pair.second); |
| 176 | while (pos != std::string::npos) { |
| 177 | result.replace(pos: pos, n: pair.second.length(), str: pair.first); |
| 178 | pos = result.find(str: pair.second, pos: pos + pair.first.length()); |
| 179 | } |
| 180 | } |
| 181 | return result; |
| 182 | } |
| 183 | |
| 184 | |
| 185 | llama_tokens common_speculative_gen_draft( |
| 186 | struct common_speculative * spec, |
| 187 | struct common_speculative_params params, |
| 188 | const llama_tokens & prompt_tgt_main_model, // specified in target model vocab |
| 189 | llama_token id_last) { |
| 190 | auto & batch = spec->batch; |
| 191 | auto & ctx_tgt = spec->ctx_tgt; |
| 192 | auto & ctx_dft = spec->ctx_dft; |
| 193 | auto & smpl = spec->smpl; |
| 194 | auto & prompt_dft = spec->prompt_dft; |
| 195 | |
| 196 | auto * mem_dft = llama_get_memory(ctx: ctx_dft); |
| 197 | |
| 198 | int reuse_i = 0; |
| 199 | int reuse_n = 0; |
| 200 | |
| 201 | const int n_ctx = llama_n_ctx(ctx: ctx_dft) - params.n_draft; |
| 202 | |
| 203 | llama_tokens prompt_tgt_draft_model; |
| 204 | if (!spec->vocab_dft_compatible) { |
| 205 | std::string text; |
| 206 | text = common_detokenize(ctx: ctx_tgt, tokens: prompt_tgt_main_model, special: true); |
| 207 | text = replace_to_dft(spec, input: text); |
| 208 | LOG_DBG("%s: main->draft detokenized string: '%s'\n" , __func__, text.c_str()); |
| 209 | prompt_tgt_draft_model = common_tokenize(ctx: ctx_dft, text, add_special: false, parse_special: true); |
| 210 | |
| 211 | // convert id_last to draft vocab. llama_detokenize is called directly to avoid an allocation |
| 212 | const auto * model_tgt = llama_get_model(ctx: ctx_tgt); |
| 213 | const auto * vocab_tgt = llama_model_get_vocab(model: model_tgt); |
| 214 | |
| 215 | int32_t n_chars = llama_detokenize(vocab: vocab_tgt, tokens: &id_last, n_tokens: 1, text: nullptr, text_len_max: 0, remove_special: false, unparse_special: false); |
| 216 | GGML_ASSERT(n_chars < 0 && "failed to detokenize id_last" ); |
| 217 | text.resize(n: -n_chars); |
| 218 | llama_detokenize(vocab: vocab_tgt, tokens: &id_last, n_tokens: 1, text: text.data(), text_len_max: text.size(), remove_special: false, unparse_special: false); |
| 219 | text = replace_to_dft(spec, input: text); |
| 220 | |
| 221 | LOG_DBG("main->draft detokenized id_last(%d): '%s'\n" , id_last, text.c_str()); |
| 222 | id_last = common_tokenize(ctx: ctx_dft, text, add_special: false, parse_special: true)[0]; |
| 223 | } |
| 224 | // prompt_tgt's tokens will always be compatible with ctx_dft |
| 225 | const llama_tokens &prompt_tgt = |
| 226 | spec->vocab_dft_compatible ? prompt_tgt_main_model : prompt_tgt_draft_model; |
| 227 | |
| 228 | const int i_start = std::max<int>(a: 0, b: (int) prompt_tgt.size() - n_ctx); |
| 229 | |
| 230 | // reuse as much as possible from the old draft context |
| 231 | // ideally, the draft context should be as big as the target context and we will always reuse the entire prompt |
| 232 | for (int i = 0; i < (int) prompt_dft.size(); ++i) { |
| 233 | int cur = 0; |
| 234 | while (i_start + cur < (int) prompt_tgt.size() && |
| 235 | i + cur < (int) prompt_dft.size() && |
| 236 | prompt_tgt[i_start + cur] == prompt_dft[i + cur]) { |
| 237 | cur++; |
| 238 | } |
| 239 | |
| 240 | if ((cur >= params.n_reuse || n_ctx >= (int) prompt_tgt.size()) && cur > reuse_n) { |
| 241 | reuse_i = i; |
| 242 | reuse_n = cur; |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n" , __func__, reuse_i, reuse_n, (int) prompt_dft.size()); |
| 247 | |
| 248 | llama_tokens result; |
| 249 | result.reserve(n: params.n_draft); |
| 250 | |
| 251 | if (reuse_n == 0) { |
| 252 | llama_memory_clear(mem: mem_dft, data: false); |
| 253 | prompt_dft.clear(); |
| 254 | } else { |
| 255 | // this happens when a previous draft has been discarded (for example, due to being too small), but the |
| 256 | // target model agreed with it. in this case, we simply pass back the previous results to save compute |
| 257 | if (reuse_i + reuse_n < (int) prompt_dft.size() && prompt_dft[reuse_i + reuse_n] == id_last) { |
| 258 | for (int i = reuse_i + reuse_n + 1; i < (int) prompt_dft.size(); ++i) { |
| 259 | result.push_back(x: prompt_dft[i]); |
| 260 | |
| 261 | if (params.n_draft <= (int) result.size()) { |
| 262 | break; |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | return result; |
| 267 | } |
| 268 | |
| 269 | if (reuse_i > 0) { |
| 270 | llama_memory_seq_rm (mem: mem_dft, seq_id: 0, p0: 0, p1: reuse_i); |
| 271 | llama_memory_seq_add(mem: mem_dft, seq_id: 0, p0: reuse_i, p1: -1, delta: -reuse_i); |
| 272 | |
| 273 | prompt_dft.erase(first: prompt_dft.begin(), last: prompt_dft.begin() + reuse_i); |
| 274 | } |
| 275 | |
| 276 | if (reuse_n < (int) prompt_dft.size()) { |
| 277 | llama_memory_seq_rm (mem: mem_dft, seq_id: 0, p0: reuse_n, p1: -1); |
| 278 | prompt_dft.erase(first: prompt_dft.begin() + reuse_n, last: prompt_dft.end()); |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | // prepare a batch to evaluate any new tokens in the prompt |
| 283 | common_batch_clear(batch); |
| 284 | |
| 285 | for (size_t i = i_start + reuse_n; i < prompt_tgt.size(); ++i) { |
| 286 | //LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]); |
| 287 | common_batch_add(batch, id: prompt_tgt[i], pos: i - i_start, seq_ids: { 0 }, logits: false); |
| 288 | |
| 289 | prompt_dft.push_back(x: prompt_tgt[i]); |
| 290 | } |
| 291 | |
| 292 | // we should rarely end-up here during normal decoding |
| 293 | if (batch.n_tokens > 0) { |
| 294 | //LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str()); |
| 295 | |
| 296 | llama_decode(ctx: ctx_dft, batch); |
| 297 | } |
| 298 | |
| 299 | const llama_pos n_past = prompt_dft.size(); |
| 300 | |
| 301 | LOG_DBG("%s: n_past = %d\n" , __func__, n_past); |
| 302 | |
| 303 | common_batch_clear(batch); |
| 304 | common_batch_add (batch, id: id_last, pos: n_past, seq_ids: { 0 }, logits: true); |
| 305 | |
| 306 | prompt_dft.push_back(x: id_last); |
| 307 | |
| 308 | LOG_DBG("%s: draft prompt: %s\n" , __func__, string_from(ctx_dft, prompt_dft).c_str()); |
| 309 | |
| 310 | llama_decode(ctx: ctx_dft, batch); |
| 311 | |
| 312 | common_sampler_reset(gsmpl: smpl); |
| 313 | |
| 314 | // sample n_draft tokens from the draft model |
| 315 | for (int i = 0; i < params.n_draft; ++i) { |
| 316 | common_batch_clear(batch); |
| 317 | |
| 318 | common_sampler_sample(gsmpl: smpl, ctx: ctx_dft, idx: 0, grammar_first: true); |
| 319 | |
| 320 | const auto * cur_p = common_sampler_get_candidates(gsmpl: smpl, do_sort: true); |
| 321 | |
| 322 | for (int k = 0; k < std::min(a: 3, b: (int) cur_p->size); ++k) { |
| 323 | LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n" , |
| 324 | k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx_dft, cur_p->data[k].id).c_str()); |
| 325 | } |
| 326 | |
| 327 | // add drafted token for each sequence |
| 328 | const llama_token id = cur_p->data[0].id; |
| 329 | |
| 330 | common_sampler_accept(gsmpl: smpl, token: id, accept_grammar: true); |
| 331 | |
| 332 | result.push_back(x: id); |
| 333 | |
| 334 | if (params.n_draft <= (int) result.size()) { |
| 335 | break; |
| 336 | } |
| 337 | |
| 338 | // only collect very high-confidence draft tokens |
| 339 | if (cur_p->data[0].p < params.p_min) { |
| 340 | break; |
| 341 | } |
| 342 | |
| 343 | common_batch_add(batch, id, pos: n_past + i + 1, seq_ids: { 0 }, logits: true); |
| 344 | |
| 345 | // evaluate the drafted tokens on the draft model |
| 346 | llama_decode(ctx: ctx_dft, batch); |
| 347 | |
| 348 | prompt_dft.push_back(x: id); |
| 349 | } |
| 350 | |
| 351 | if (!spec->vocab_dft_compatible) { |
| 352 | std::string detokenized = common_detokenize(ctx: ctx_dft, tokens: result, special: true); |
| 353 | detokenized = replace_to_tgt(spec, input: detokenized); |
| 354 | LOG_DBG("draft->main detokenized string: '%s'\n" , detokenized.c_str()); |
| 355 | result = common_tokenize(ctx: ctx_tgt, text: detokenized, add_special: false, parse_special: true); |
| 356 | if (result.size() > (size_t)params.n_draft) { |
| 357 | result.resize(new_size: params.n_draft); |
| 358 | } |
| 359 | } |
| 360 | return result; |
| 361 | } |
| 362 | |