| 1 | #include "arg.h" |
| 2 | #include "chat.h" |
| 3 | #include "common.h" |
| 4 | #include "llama.h" |
| 5 | #include "log.h" |
| 6 | |
| 7 | #include <limits.h> |
| 8 | |
| 9 | #include <algorithm> |
| 10 | #include <cmath> |
| 11 | #include <cstring> |
| 12 | #include <limits> |
| 13 | #include <random> |
| 14 | #include <string> |
| 15 | #include <vector> |
| 16 | |
| 17 | enum diffusion_algorithm { ORIGIN = 0, ENTROPY_BASED = 1, MARGIN_BASED = 2, RANDOM = 3, CONFIDENCE_BASED = 4 }; |
| 18 | |
| 19 | // Unified transfer scheduling methods |
| 20 | enum transfer_schedule { |
| 21 | TIMESTEP_BASED = 0, // Dream-style: (1.0 - s/t) * remaining |
| 22 | BLOCK_BASED = 1, // LLaDA-style: process in blocks with get_num_transfer_tokens |
| 23 | }; |
| 24 | |
| 25 | typedef bool (*diffusion_step_callback_t)(int32_t step, |
| 26 | int32_t total_steps, |
| 27 | const llama_token * tokens, |
| 28 | int32_t n_tokens, |
| 29 | void * user_data); |
| 30 | |
| 31 | struct diffusion_params { |
| 32 | int32_t steps = 0; |
| 33 | float temperature = 0; |
| 34 | llama_token mask_token_id = LLAMA_TOKEN_NULL; |
| 35 | diffusion_step_callback_t step_callback = nullptr; |
| 36 | void * step_callback_user_data = nullptr; |
| 37 | int32_t seed = 0; |
| 38 | bool visual_mode = false; |
| 39 | bool shift_logits = false; // Shift logits by -1 after decode |
| 40 | |
| 41 | float top_p = 0.; |
| 42 | int32_t top_k = 0.; |
| 43 | |
| 44 | diffusion_algorithm algorithm = CONFIDENCE_BASED; |
| 45 | transfer_schedule schedule = TIMESTEP_BASED; |
| 46 | |
| 47 | float cfg_scale = 0.; // Config scale for classifier-free guidance |
| 48 | float eps = 0.; // Timestep scheduling |
| 49 | int32_t block_length = 0; // Block size (for block scheduling) |
| 50 | float alg_temp = 0; // algorithm temperature (0.0 = deterministic) |
| 51 | bool add_gumbel_noise = false; // Add gumbel noise to the logits if temp > 0.0 |
| 52 | |
| 53 | int32_t max_length = 0; // Maximum sequence length |
| 54 | }; |
| 55 | |
| 56 | struct callback_data { |
| 57 | diffusion_params * diff_params; |
| 58 | const llama_vocab * vocab; |
| 59 | int32_t n_input; |
| 60 | }; |
| 61 | |
| 62 | static float calculate_confidence(const llama_token_data_array & cur_p, |
| 63 | diffusion_algorithm algorithm, |
| 64 | std::mt19937 & rng) { |
| 65 | switch (algorithm) { |
| 66 | case CONFIDENCE_BASED: |
| 67 | return cur_p.data[cur_p.selected].p; // Selected token probability |
| 68 | |
| 69 | case ENTROPY_BASED: |
| 70 | { |
| 71 | float entropy = 0.0f; |
| 72 | const float epsilon = 1e-10f; |
| 73 | for (size_t i = 0; i < cur_p.size; i++) { |
| 74 | float prob = cur_p.data[i].p; |
| 75 | entropy += prob * logf(x: prob + epsilon); |
| 76 | } |
| 77 | return -entropy; // Higher entropy = lower confidence |
| 78 | } |
| 79 | |
| 80 | case MARGIN_BASED: |
| 81 | return (cur_p.size > 1) ? cur_p.data[0].p - cur_p.data[1].p : cur_p.data[0].p; |
| 82 | |
| 83 | case RANDOM: |
| 84 | { |
| 85 | std::uniform_real_distribution<float> uniform(0.0f, 1.0f); |
| 86 | return uniform(rng); // Random confidence |
| 87 | } |
| 88 | |
| 89 | case ORIGIN: |
| 90 | return cur_p.data[cur_p.selected].p; |
| 91 | |
| 92 | default: |
| 93 | return 0.0f; |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | // Unified transfer count calculation function |
| 98 | static int32_t calculate_transfer_count(int32_t step, |
| 99 | int32_t total_steps, |
| 100 | int32_t remaining_masked, |
| 101 | transfer_schedule schedule, |
| 102 | float eps, |
| 103 | const std::vector<int32_t> & num_transfer_tokens = {}) { |
| 104 | switch (schedule) { |
| 105 | case TIMESTEP_BASED: |
| 106 | { |
| 107 | float t = 1.0f - (float) step / total_steps * (1.0f - eps); |
| 108 | float s = 1.0f - (float) (step + 1) / total_steps * (1.0f - eps); |
| 109 | float p_transfer = (step < total_steps - 1) ? (1.0f - s / t) : 1.0f; |
| 110 | return (int32_t) (remaining_masked * p_transfer); |
| 111 | } |
| 112 | |
| 113 | case BLOCK_BASED: |
| 114 | if (!num_transfer_tokens.empty() && step < (int32_t) num_transfer_tokens.size()) { |
| 115 | return num_transfer_tokens[step]; |
| 116 | } |
| 117 | return remaining_masked / (total_steps - step); // Fallback |
| 118 | |
| 119 | default: |
| 120 | return remaining_masked / (total_steps - step); |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | static bool diffusion_step_callback(int32_t step, |
| 125 | int32_t total_steps, |
| 126 | const llama_token * tokens, |
| 127 | int32_t n_tokens, |
| 128 | void * user_data) { |
| 129 | (void) user_data; |
| 130 | |
| 131 | callback_data * data = static_cast<callback_data *>(user_data); |
| 132 | |
| 133 | auto print_progress_bar = [](int32_t step, int32_t total_steps) { |
| 134 | int progress_percent = (step * 100) / total_steps; |
| 135 | int progress_bars = (step * 50) / total_steps; |
| 136 | LOG_INF("\rdiffusion step: %d/%d [%s%s] %d%%" , |
| 137 | step, |
| 138 | total_steps, |
| 139 | std::string(progress_bars, '=').c_str(), |
| 140 | std::string(50 - progress_bars, ' ').c_str(), |
| 141 | progress_percent); |
| 142 | }; |
| 143 | |
| 144 | if (data->diff_params->visual_mode) { |
| 145 | // Visual mode: clear |
| 146 | LOG_INF("\033[2J\033[H" ); // Clear screen and move cursor to top-left |
| 147 | |
| 148 | print_progress_bar(step, total_steps); |
| 149 | |
| 150 | LOG_INF("\n" ); |
| 151 | |
| 152 | std::string current_text = " " ; |
| 153 | |
| 154 | for (int32_t i = data->n_input; i < n_tokens; i++) { |
| 155 | std::string token_str; |
| 156 | if (tokens[i] != llama_vocab_mask(vocab: data->vocab)) { |
| 157 | char piece[256]; |
| 158 | int n_chars = llama_token_to_piece(vocab: data->vocab, token: tokens[i], buf: piece, length: sizeof(piece), lstrip: 0, special: false); |
| 159 | if (n_chars > 0) { |
| 160 | piece[n_chars] = '\0'; |
| 161 | token_str = piece; |
| 162 | } |
| 163 | } else { |
| 164 | token_str = " " ; |
| 165 | } |
| 166 | |
| 167 | current_text += token_str; |
| 168 | } |
| 169 | |
| 170 | LOG_INF("%s\n" , current_text.c_str()); |
| 171 | } else { |
| 172 | print_progress_bar(step, total_steps); |
| 173 | } |
| 174 | |
| 175 | return true; |
| 176 | } |
| 177 | |
| 178 | static void add_gumbel_noise(float * logits, int32_t n_vocab, float temperature, std::mt19937 & rng) { |
| 179 | if (temperature == 0.0f) { |
| 180 | return; |
| 181 | } |
| 182 | |
| 183 | std::uniform_real_distribution<double> uniform(0.0, 1.0); |
| 184 | for (int32_t i = 0; i < n_vocab; i++) { |
| 185 | double noise = uniform(rng); |
| 186 | // Prevent log(0) |
| 187 | noise = std::max(a: noise, b: 1e-20); |
| 188 | double gumbel_noise = std::pow(x: -std::log(x: noise), y: temperature); |
| 189 | logits[i] = std::exp(x: logits[i]) / gumbel_noise; |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | static std::vector<int32_t> get_num_transfer_tokens(int32_t mask_count, int32_t steps) { |
| 194 | std::vector<int32_t> num_transfer_tokens(steps); |
| 195 | |
| 196 | int32_t base = mask_count / steps; |
| 197 | int32_t remainder = mask_count % steps; |
| 198 | |
| 199 | for (int32_t i = 0; i < steps; i++) { |
| 200 | num_transfer_tokens[i] = base + (i < remainder ? 1 : 0); |
| 201 | } |
| 202 | |
| 203 | return num_transfer_tokens; |
| 204 | } |
| 205 | |
| 206 | static void diffusion_generate(llama_context * ctx, |
| 207 | const llama_token * input_tokens, |
| 208 | llama_token * output_tokens, |
| 209 | int32_t n_input, |
| 210 | const diffusion_params & params, |
| 211 | int32_t & n_generated) { |
| 212 | n_generated = 0; |
| 213 | if (!ctx || !input_tokens || !output_tokens || n_input <= 0 || params.max_length <= n_input) { |
| 214 | return; |
| 215 | } |
| 216 | |
| 217 | const llama_model * model = llama_get_model(ctx); |
| 218 | |
| 219 | // Initialize with input and pad with mask tokens |
| 220 | std::copy(first: input_tokens, last: input_tokens + n_input, result: output_tokens); |
| 221 | std::fill(first: output_tokens + n_input, last: output_tokens + params.max_length, value: params.mask_token_id); |
| 222 | |
| 223 | std::mt19937 rng(params.seed); |
| 224 | |
| 225 | llama_set_causal_attn(ctx, causal_attn: false); |
| 226 | |
| 227 | int32_t n_vocab = llama_vocab_n_tokens(vocab: llama_model_get_vocab(model)); |
| 228 | |
| 229 | std::vector<llama_token_data> candidates(n_vocab); |
| 230 | std::vector<llama_token_data> conf_candidates; |
| 231 | conf_candidates.reserve(n: params.max_length); |
| 232 | std::vector<int32_t> mask_positions; |
| 233 | mask_positions.reserve(n: params.max_length); |
| 234 | |
| 235 | // Setup sampler chain |
| 236 | struct llama_sampler * sampler = llama_sampler_chain_init(params: llama_sampler_chain_default_params()); |
| 237 | if (params.top_k > 0) { |
| 238 | llama_sampler_chain_add(chain: sampler, smpl: llama_sampler_init_top_k(k: params.top_k)); |
| 239 | } |
| 240 | if (params.top_p < 1.0f) { |
| 241 | llama_sampler_chain_add(chain: sampler, smpl: llama_sampler_init_top_p(p: params.top_p, min_keep: 1)); |
| 242 | } |
| 243 | if (params.temperature > 0.0f) { |
| 244 | llama_sampler_chain_add(chain: sampler, smpl: llama_sampler_init_temp(t: params.temperature)); |
| 245 | } |
| 246 | llama_sampler_chain_add(chain: sampler, smpl: llama_sampler_init_dist(seed: params.seed)); |
| 247 | |
| 248 | struct llama_sampler * dist_sampler = llama_sampler_init_dist(seed: params.seed); |
| 249 | |
| 250 | llama_batch batch = llama_batch_init(n_tokens: params.max_length, embd: 0, n_seq_max: 1); |
| 251 | batch.n_tokens = params.max_length; |
| 252 | |
| 253 | // Pre-allocate buffers for CFG if needed |
| 254 | int32_t logits_size = n_vocab * params.max_length; |
| 255 | std::vector<float> cond_logits_buffer; |
| 256 | std::vector<llama_token> un_x_buffer; |
| 257 | if (params.cfg_scale > 0.0f) { |
| 258 | cond_logits_buffer.resize(new_size: logits_size); |
| 259 | un_x_buffer.resize(new_size: params.max_length); |
| 260 | } |
| 261 | |
| 262 | // For block-based processing |
| 263 | std::vector<int32_t> num_transfer_tokens; |
| 264 | int32_t num_blocks = 1; |
| 265 | int32_t steps_per_block = params.steps; |
| 266 | |
| 267 | if (params.schedule == BLOCK_BASED) { |
| 268 | GGML_ASSERT(params.max_length % params.block_length == 0); |
| 269 | num_blocks = params.max_length / params.block_length; |
| 270 | GGML_ASSERT(params.steps % num_blocks == 0); |
| 271 | steps_per_block = params.steps / num_blocks; |
| 272 | } |
| 273 | |
| 274 | std::vector<float> confidence(params.max_length); |
| 275 | |
| 276 | int64_t total_sampling_time = 0; |
| 277 | int64_t total_time = 0; |
| 278 | int64_t time_start = ggml_time_us(); |
| 279 | |
| 280 | for (int block_num = 0; block_num < num_blocks; block_num++) { |
| 281 | int32_t block_start = (params.schedule == BLOCK_BASED) ? n_input + block_num * params.block_length : 0; |
| 282 | int32_t block_end = (params.schedule == BLOCK_BASED) ? |
| 283 | std::min(a: n_input + (block_num + 1) * params.block_length, b: params.max_length) : |
| 284 | params.max_length; |
| 285 | |
| 286 | // Count masked tokens in current block for block-based processing |
| 287 | if (params.schedule == BLOCK_BASED) { |
| 288 | int32_t block_mask_count = 0; |
| 289 | for (int i = block_start; i < block_end; i++) { |
| 290 | if (output_tokens[i] == params.mask_token_id) { |
| 291 | block_mask_count++; |
| 292 | } |
| 293 | } |
| 294 | num_transfer_tokens = get_num_transfer_tokens(mask_count: block_mask_count, steps: steps_per_block); |
| 295 | } |
| 296 | |
| 297 | for (int32_t step = 0; step < steps_per_block; step++) { |
| 298 | int32_t global_step = block_num * steps_per_block + step; |
| 299 | |
| 300 | if (params.step_callback) { |
| 301 | if (!params.step_callback( |
| 302 | global_step, params.steps, output_tokens, params.max_length, params.step_callback_user_data)) { |
| 303 | break; |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | // Setup batch |
| 308 | for (int32_t i = 0; i < params.max_length; i++) { |
| 309 | batch.token[i] = output_tokens[i]; |
| 310 | batch.pos[i] = i; |
| 311 | batch.n_seq_id[i] = 1; |
| 312 | batch.seq_id[i][0] = 0; |
| 313 | batch.logits[i] = 1; |
| 314 | } |
| 315 | |
| 316 | float * logits = nullptr; |
| 317 | |
| 318 | if (params.cfg_scale > 0.0f) { |
| 319 | int ret = llama_decode(ctx, batch); |
| 320 | if (ret != 0) { |
| 321 | LOG_ERR("Failed to generate conditional" ); |
| 322 | break; |
| 323 | } |
| 324 | float * cond_logits_ptr = llama_get_logits(ctx); |
| 325 | std::memcpy(dest: cond_logits_buffer.data(), src: cond_logits_ptr, n: logits_size * sizeof(float)); |
| 326 | |
| 327 | // Unconditional generation (mask input) |
| 328 | std::copy(first: output_tokens, last: output_tokens + params.max_length, result: un_x_buffer.begin()); |
| 329 | for (int32_t i = 0; i < n_input; i++) { |
| 330 | un_x_buffer[i] = params.mask_token_id; |
| 331 | } |
| 332 | |
| 333 | for (int32_t i = 0; i < params.max_length; i++) { |
| 334 | batch.token[i] = un_x_buffer[i]; |
| 335 | } |
| 336 | ret = llama_decode(ctx, batch); |
| 337 | if (ret != 0) { |
| 338 | LOG_ERR("Failed to generate unconditional" ); |
| 339 | break; |
| 340 | } |
| 341 | float * uncond_logits = llama_get_logits(ctx); |
| 342 | |
| 343 | // Apply CFG |
| 344 | for (int32_t i = 0; i < logits_size; i++) { |
| 345 | cond_logits_buffer[i] = |
| 346 | uncond_logits[i] + (params.cfg_scale + 1.0f) * (cond_logits_buffer[i] - uncond_logits[i]); |
| 347 | } |
| 348 | logits = cond_logits_buffer.data(); |
| 349 | } else { |
| 350 | int ret = llama_decode(ctx, batch); |
| 351 | if (ret != 0) { |
| 352 | LOG_ERR("%s: failed to decode at step %d, ret = %d\n" , __func__, global_step, ret); |
| 353 | break; |
| 354 | } |
| 355 | logits = llama_get_logits(ctx); |
| 356 | } |
| 357 | |
| 358 | if (!logits) { |
| 359 | LOG_ERR("%s: failed to get logits at step %d\n" , __func__, global_step); |
| 360 | break; |
| 361 | } |
| 362 | |
| 363 | auto get_logits_for_pos = [&](int32_t pos) -> const float * { |
| 364 | if (params.shift_logits) { |
| 365 | return pos == 0 ? logits : logits + (pos - 1) * n_vocab; |
| 366 | } |
| 367 | return logits + (pos) *n_vocab; |
| 368 | }; |
| 369 | |
| 370 | int64_t time_start_sampling = ggml_time_us(); |
| 371 | |
| 372 | mask_positions.clear(); |
| 373 | for (int32_t i = 0; i < params.max_length; i++) { |
| 374 | if (output_tokens[i] == params.mask_token_id) { |
| 375 | // For block-based, only consider current block |
| 376 | if (params.schedule != BLOCK_BASED || (i >= block_start && i < block_end)) { |
| 377 | mask_positions.push_back(x: i); |
| 378 | } |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | if (mask_positions.empty()) { |
| 383 | break; |
| 384 | } |
| 385 | |
| 386 | if (params.add_gumbel_noise && params.temperature > 0.0f) { |
| 387 | add_gumbel_noise(logits, n_vocab, temperature: params.temperature, rng); |
| 388 | } |
| 389 | |
| 390 | if (params.algorithm == ORIGIN) { |
| 391 | int32_t transfer_count = calculate_transfer_count( |
| 392 | step, total_steps: steps_per_block, remaining_masked: mask_positions.size(), schedule: params.schedule, eps: params.eps, num_transfer_tokens); |
| 393 | float p_transfer = (float) transfer_count / mask_positions.size(); |
| 394 | |
| 395 | for (int32_t pos : mask_positions) { |
| 396 | if (std::uniform_real_distribution<float>(0.0f, 1.0f)(rng) < p_transfer) { |
| 397 | const float * pos_logits = get_logits_for_pos(pos); |
| 398 | for (int32_t token_id = 0; token_id < n_vocab; token_id++) { |
| 399 | candidates[token_id].id = token_id; |
| 400 | candidates[token_id].logit = pos_logits[token_id]; |
| 401 | candidates[token_id].p = 0.0f; |
| 402 | } |
| 403 | |
| 404 | llama_token_data_array cur_p = { |
| 405 | .data: candidates.data(), |
| 406 | .size: (size_t) n_vocab, |
| 407 | .selected: -1, |
| 408 | .sorted: false, |
| 409 | }; |
| 410 | |
| 411 | llama_sampler_apply(smpl: sampler, cur_p: &cur_p); |
| 412 | output_tokens[pos] = cur_p.data[cur_p.selected].id; |
| 413 | } |
| 414 | } |
| 415 | } else { |
| 416 | std::vector<std::pair<float, int32_t>> confidences; |
| 417 | std::vector<llama_token> sampled_tokens(mask_positions.size()); |
| 418 | |
| 419 | for (size_t i = 0; i < mask_positions.size(); i++) { |
| 420 | int32_t pos = mask_positions[i]; |
| 421 | const float * pos_logits = get_logits_for_pos(pos); |
| 422 | |
| 423 | for (int32_t token_id = 0; token_id < n_vocab; token_id++) { |
| 424 | candidates[token_id].logit = pos_logits[token_id]; |
| 425 | candidates[token_id].p = 0.0f; |
| 426 | candidates[token_id].id = token_id; |
| 427 | } |
| 428 | |
| 429 | llama_token_data_array cur_p = { |
| 430 | .data: candidates.data(), |
| 431 | .size: candidates.size(), |
| 432 | .selected: -1, |
| 433 | .sorted: false, |
| 434 | }; |
| 435 | |
| 436 | llama_sampler_apply(smpl: sampler, cur_p: &cur_p); |
| 437 | llama_token sampled_token = cur_p.data[cur_p.selected].id; |
| 438 | |
| 439 | float conf = calculate_confidence(cur_p, algorithm: params.algorithm, rng); |
| 440 | |
| 441 | sampled_tokens[i] = sampled_token; |
| 442 | confidences.emplace_back(args&: conf, args&: i); |
| 443 | } |
| 444 | |
| 445 | int32_t transfer_count = calculate_transfer_count( |
| 446 | step, total_steps: steps_per_block, remaining_masked: mask_positions.size(), schedule: params.schedule, eps: params.eps, num_transfer_tokens); |
| 447 | |
| 448 | if (transfer_count > 0) { |
| 449 | if (params.alg_temp == 0.0f) { |
| 450 | std::partial_sort(first: confidences.begin(), |
| 451 | middle: confidences.begin() + std::min(a: transfer_count, b: (int32_t) confidences.size()), |
| 452 | last: confidences.end(), |
| 453 | comp: [](const std::pair<float, int32_t> & a, const std::pair<float, int32_t> & b) { |
| 454 | if (a.first != b.first) { |
| 455 | return a.first > b.first; |
| 456 | } |
| 457 | return a.second < b.second; |
| 458 | }); |
| 459 | |
| 460 | for (int32_t i = 0; i < std::min(a: transfer_count, b: (int32_t) confidences.size()); i++) { |
| 461 | int32_t mask_idx = confidences[i].second; |
| 462 | int32_t pos = mask_positions[mask_idx]; |
| 463 | output_tokens[pos] = sampled_tokens[mask_idx]; |
| 464 | } |
| 465 | } else { |
| 466 | conf_candidates.clear(); |
| 467 | for (size_t i = 0; i < confidences.size(); i++) { |
| 468 | float conf_logit = confidences[i].first / params.alg_temp; |
| 469 | conf_candidates.emplace_back(args: llama_token_data{ .id: (int32_t) i, .logit: conf_logit, .p: 0.0f }); |
| 470 | } |
| 471 | |
| 472 | llama_token_data_array conf_array = { |
| 473 | .data: conf_candidates.data(), |
| 474 | .size: conf_candidates.size(), |
| 475 | .selected: -1, |
| 476 | .sorted: false, |
| 477 | }; |
| 478 | |
| 479 | for (int32_t i = 0; i < std::min(a: transfer_count, b: (int32_t) confidences.size()); i++) { |
| 480 | llama_sampler_apply(smpl: dist_sampler, cur_p: &conf_array); |
| 481 | int32_t selected_idx = conf_array.selected; |
| 482 | int32_t mask_idx = selected_idx; |
| 483 | int32_t pos = mask_positions[mask_idx]; |
| 484 | output_tokens[pos] = sampled_tokens[mask_idx]; |
| 485 | |
| 486 | conf_candidates[selected_idx].p = 0.0f; |
| 487 | conf_array.selected = -1; |
| 488 | } |
| 489 | } |
| 490 | } |
| 491 | } |
| 492 | |
| 493 | int64_t time_end_sampling = ggml_time_us(); |
| 494 | total_sampling_time += time_end_sampling - time_start_sampling; |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | int64_t time_end = ggml_time_us(); |
| 499 | total_time += time_end - time_start; |
| 500 | |
| 501 | LOG_INF("\ntotal time: %0.2fms, time per step: %0.2fms, sampling time per step: %0.2fms\n" , |
| 502 | total_time / 1000.0, |
| 503 | total_time / 1000.0 / params.steps, |
| 504 | total_sampling_time / 1000.0 / params.steps); |
| 505 | |
| 506 | llama_batch_free(batch); |
| 507 | llama_sampler_free(smpl: sampler); |
| 508 | llama_sampler_free(smpl: dist_sampler); |
| 509 | |
| 510 | n_generated = params.max_length; |
| 511 | } |
| 512 | |
| 513 | static std::string format_input_text(const std::string & prompt, const std::string & system_prompt, bool use_chat_template, llama_model * model) { |
| 514 | if (!use_chat_template) { |
| 515 | return prompt; |
| 516 | } |
| 517 | |
| 518 | auto chat_templates = common_chat_templates_init(model, chat_template_override: "" ); |
| 519 | common_chat_templates_inputs inputs; |
| 520 | common_chat_msg system_msg; |
| 521 | |
| 522 | if (!system_prompt.empty()) { |
| 523 | system_msg.role = "system" ; |
| 524 | system_msg.content = system_prompt; |
| 525 | inputs.messages.push_back(x: system_msg); |
| 526 | } |
| 527 | |
| 528 | common_chat_msg user_msg; |
| 529 | user_msg.role = "user" ; |
| 530 | user_msg.content = prompt; |
| 531 | |
| 532 | inputs.messages.push_back(x: user_msg); |
| 533 | inputs.add_generation_prompt = true; |
| 534 | |
| 535 | auto result = common_chat_templates_apply(tmpls: chat_templates.get(), inputs); |
| 536 | |
| 537 | return result.prompt; |
| 538 | } |
| 539 | |
| 540 | int main(int argc, char ** argv) { |
| 541 | ggml_time_init(); |
| 542 | |
| 543 | common_params params; |
| 544 | |
| 545 | if (!common_params_parse(argc, argv, params, ex: LLAMA_EXAMPLE_DIFFUSION)) { |
| 546 | return 1; |
| 547 | } |
| 548 | |
| 549 | common_init(); |
| 550 | llama_backend_init(); |
| 551 | |
| 552 | llama_model_params model_params = llama_model_default_params(); |
| 553 | model_params.n_gpu_layers = params.n_gpu_layers; |
| 554 | model_params.devices = params.devices.data(); |
| 555 | model_params.use_mmap = params.use_mmap; |
| 556 | model_params.use_mlock = params.use_mlock; |
| 557 | model_params.check_tensors = params.check_tensors; |
| 558 | |
| 559 | llama_model * model = llama_model_load_from_file(path_model: params.model.path.c_str(), params: model_params); |
| 560 | if (!model) { |
| 561 | LOG_ERR("error: failed to load model '%s'\n" , params.model.path.c_str()); |
| 562 | return 1; |
| 563 | } |
| 564 | |
| 565 | if (!llama_model_is_diffusion(model)) { |
| 566 | LOG_ERR("error: unsupported model for diffusion" ); |
| 567 | llama_model_free(model); |
| 568 | return 1; |
| 569 | } |
| 570 | |
| 571 | llama_context_params ctx_params = llama_context_default_params(); |
| 572 | ctx_params.n_ctx = params.n_ctx; |
| 573 | ctx_params.n_batch = params.n_batch; |
| 574 | ctx_params.n_ubatch = params.n_ubatch; |
| 575 | ctx_params.flash_attn_type = params.flash_attn_type; |
| 576 | ctx_params.no_perf = params.no_perf; |
| 577 | ctx_params.type_k = params.cache_type_k; |
| 578 | ctx_params.type_v = params.cache_type_v; |
| 579 | |
| 580 | llama_context * ctx = llama_init_from_model(model, params: ctx_params); |
| 581 | if (!ctx) { |
| 582 | LOG_ERR("error: failed to create context\n" ); |
| 583 | llama_model_free(model); |
| 584 | return 1; |
| 585 | } |
| 586 | |
| 587 | llama_set_n_threads(ctx, n_threads: params.cpuparams.n_threads, n_threads_batch: params.cpuparams_batch.n_threads); |
| 588 | |
| 589 | const llama_vocab * vocab = llama_model_get_vocab(model); |
| 590 | |
| 591 | std::string formatted_prompt = format_input_text(prompt: params.prompt, system_prompt: params.system_prompt, use_chat_template: params.enable_chat_template, model); |
| 592 | |
| 593 | std::vector<llama_token> input_tokens = common_tokenize(vocab, |
| 594 | text: formatted_prompt, |
| 595 | /*add special tokens*/ add_special: true, |
| 596 | /*parse special*/ parse_special: true); |
| 597 | |
| 598 | int n_input = input_tokens.size(); |
| 599 | |
| 600 | if (n_input >= params.n_ctx) { |
| 601 | LOG_ERR("error: input too long (%d tokens), max context is %d\n" , n_input, params.n_ctx); |
| 602 | llama_free(ctx); |
| 603 | llama_model_free(model); |
| 604 | return 1; |
| 605 | } |
| 606 | |
| 607 | llama_token mask_token_id = llama_vocab_mask(vocab); |
| 608 | |
| 609 | GGML_ASSERT(mask_token_id != LLAMA_TOKEN_NULL); |
| 610 | |
| 611 | bool visual_mode = params.diffusion.visual_mode; |
| 612 | |
| 613 | int32_t n_generated = 0; |
| 614 | std::vector<llama_token> output_tokens(params.n_ubatch); |
| 615 | |
| 616 | struct diffusion_params diff_params; |
| 617 | |
| 618 | char shift_logits_str[8]; |
| 619 | if (llama_model_meta_val_str(model, key: "diffusion.shift_logits" , buf: shift_logits_str, buf_size: sizeof(shift_logits_str)) >= 0) { |
| 620 | diff_params.shift_logits = (strcmp(s1: shift_logits_str, s2: "true" ) == 0); |
| 621 | } else { |
| 622 | diff_params.shift_logits = true; |
| 623 | } |
| 624 | |
| 625 | //Use either eps or block length, but not both |
| 626 | GGML_ASSERT((params.diffusion.eps == 0) ^ (params.diffusion.block_length == 0)); |
| 627 | |
| 628 | if (params.diffusion.eps) { |
| 629 | diff_params.schedule = TIMESTEP_BASED; |
| 630 | diff_params.eps = params.diffusion.eps; |
| 631 | } else if (params.diffusion.block_length) { |
| 632 | diff_params.schedule = BLOCK_BASED; |
| 633 | diff_params.block_length = params.diffusion.block_length; |
| 634 | } |
| 635 | |
| 636 | diff_params.mask_token_id = mask_token_id; |
| 637 | diff_params.seed = params.sampling.seed; |
| 638 | diff_params.temperature = params.sampling.temp; |
| 639 | diff_params.steps = params.diffusion.steps; |
| 640 | diff_params.algorithm = static_cast<diffusion_algorithm>(params.diffusion.algorithm); |
| 641 | diff_params.max_length = params.n_ubatch; |
| 642 | diff_params.top_p = params.sampling.top_p; |
| 643 | diff_params.top_k = params.sampling.top_k; |
| 644 | diff_params.visual_mode = params.diffusion.visual_mode; |
| 645 | diff_params.add_gumbel_noise = params.diffusion.add_gumbel_noise; |
| 646 | |
| 647 | diff_params.step_callback = diffusion_step_callback; |
| 648 | callback_data cb_data = { .diff_params: &diff_params, .vocab: vocab, .n_input: n_input }; |
| 649 | diff_params.step_callback_user_data = &cb_data; |
| 650 | |
| 651 | const char * alg_names[] = { "ORIGIN" , "ENTROPY_BASED" , "MARGIN_BASED" , "RANDOM" , "CONFIDENCE_BASED" }; |
| 652 | const char * sched_names[] = { "TIMESTEP_BASED" , "BLOCK_BASED" }; |
| 653 | const char * alg_name = |
| 654 | (diff_params.algorithm >= 0 && diff_params.algorithm <= 4) ? alg_names[diff_params.algorithm] : "UNKNOWN" ; |
| 655 | const char * sched_name = |
| 656 | (diff_params.schedule >= 0 && diff_params.schedule <= 1) ? sched_names[diff_params.schedule] : "UNKNOWN" ; |
| 657 | |
| 658 | LOG_INF("diffusion_params: - %-25s llama_token = %d\n" , "mask_token_id" , mask_token_id); |
| 659 | LOG_INF("diffusion_params: - %-25s u32 = %d\n" , "steps" , diff_params.steps); |
| 660 | LOG_INF("diffusion_params: - %-25s u32 = %d\n" , "max_length" , diff_params.max_length); |
| 661 | LOG_INF("diffusion_params: - %-25s enum = %d (%s)\n" , "algorithm" , diff_params.algorithm, alg_name); |
| 662 | LOG_INF("diffusion_params: - %-25s enum = %d (%s)\n" , "schedule" , diff_params.schedule, sched_name); |
| 663 | LOG_INF("diffusion_params: - %-25s f32 = %.3f\n" , "temperature" , diff_params.temperature); |
| 664 | if (diff_params.schedule == TIMESTEP_BASED) { |
| 665 | LOG_INF("diffusion_params: - %-25s f32 = %.6f\n" , "eps" , diff_params.eps); |
| 666 | LOG_INF("diffusion_params: - %-25s f32 = %.3f\n" , "alg_temp" , diff_params.alg_temp); |
| 667 | } |
| 668 | if (diff_params.schedule == BLOCK_BASED) { |
| 669 | LOG_INF("diffusion_params: - %-25s u32 = %d\n" , "block_length" , diff_params.block_length); |
| 670 | LOG_INF("diffusion_params: - %-25s f32 = %.3f\n" , "cfg_scale" , diff_params.cfg_scale); |
| 671 | } |
| 672 | |
| 673 | diffusion_generate(ctx, input_tokens: input_tokens.data(), output_tokens: output_tokens.data(), n_input, params: diff_params, n_generated); |
| 674 | |
| 675 | if (n_generated > 0) { |
| 676 | if (visual_mode) { |
| 677 | //clear screen and move cursor to top-left |
| 678 | LOG_INF("\033[2J\033[H" ); |
| 679 | } |
| 680 | |
| 681 | output_tokens.erase(first: output_tokens.begin(), last: output_tokens.begin() + n_input); |
| 682 | std::string output_data = common_detokenize(vocab, tokens: output_tokens, special: false); |
| 683 | LOG_INF("\n%s\n" , output_data.c_str()); |
| 684 | } else { |
| 685 | LOG_INF("Error: diffusion generation failed\n" ); |
| 686 | } |
| 687 | |
| 688 | llama_free(ctx); |
| 689 | llama_model_free(model); |
| 690 | llama_backend_free(); |
| 691 | |
| 692 | return 0; |
| 693 | } |
| 694 | |