| 1 | #include "arg.h" |
| 2 | #include "common.h" |
| 3 | #include "log.h" |
| 4 | #include "llama.h" |
| 5 | |
| 6 | #include <ctime> |
| 7 | #include <algorithm> |
| 8 | |
| 9 | #if defined(_MSC_VER) |
| 10 | #pragma warning(disable: 4244 4267) // possible loss of data |
| 11 | #endif |
| 12 | |
| 13 | static std::vector<std::string> split_lines(const std::string & s, const std::string & separator = "\n" ) { |
| 14 | std::vector<std::string> lines; |
| 15 | size_t start = 0; |
| 16 | size_t end = s.find(str: separator); |
| 17 | |
| 18 | while (end != std::string::npos) { |
| 19 | lines.push_back(x: s.substr(pos: start, n: end - start)); |
| 20 | start = end + separator.length(); |
| 21 | end = s.find(str: separator, pos: start); |
| 22 | } |
| 23 | |
| 24 | lines.push_back(x: s.substr(pos: start)); // Add the last part |
| 25 | |
| 26 | return lines; |
| 27 | } |
| 28 | |
| 29 | static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) { |
| 30 | size_t n_tokens = tokens.size(); |
| 31 | for (size_t i = 0; i < n_tokens; i++) { |
| 32 | common_batch_add(batch, id: tokens[i], pos: i, seq_ids: { seq_id }, logits: true); |
| 33 | } |
| 34 | } |
| 35 | |
| 36 | static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) { |
| 37 | const enum llama_pooling_type pooling_type = llama_pooling_type(ctx); |
| 38 | |
| 39 | // clear previous kv_cache values (irrelevant for embeddings) |
| 40 | llama_memory_clear(mem: llama_get_memory(ctx), data: true); |
| 41 | |
| 42 | // run model |
| 43 | LOG_INF("%s: n_tokens = %d, n_seq = %d\n" , __func__, batch.n_tokens, n_seq); |
| 44 | if (llama_decode(ctx, batch) < 0) { |
| 45 | LOG_ERR("%s : failed to process\n" , __func__); |
| 46 | } |
| 47 | |
| 48 | for (int i = 0; i < batch.n_tokens; i++) { |
| 49 | if (!batch.logits[i]) { |
| 50 | continue; |
| 51 | } |
| 52 | |
| 53 | const float * embd = nullptr; |
| 54 | int embd_pos = 0; |
| 55 | |
| 56 | if (pooling_type == LLAMA_POOLING_TYPE_NONE) { |
| 57 | // try to get token embeddings |
| 58 | embd = llama_get_embeddings_ith(ctx, i); |
| 59 | embd_pos = i; |
| 60 | GGML_ASSERT(embd != NULL && "failed to get token embeddings" ); |
| 61 | } else { |
| 62 | // try to get sequence embeddings - supported only when pooling_type is not NONE |
| 63 | embd = llama_get_embeddings_seq(ctx, seq_id: batch.seq_id[i][0]); |
| 64 | embd_pos = batch.seq_id[i][0]; |
| 65 | GGML_ASSERT(embd != NULL && "failed to get sequence embeddings" ); |
| 66 | } |
| 67 | |
| 68 | float * out = output + embd_pos * n_embd; |
| 69 | common_embd_normalize(inp: embd, out, n: n_embd, embd_norm); |
| 70 | } |
| 71 | } |
| 72 | |
| 73 | // plain, pipe-friendly output: one embedding per line |
| 74 | static void print_raw_embeddings(const float * emb, |
| 75 | int n_embd_count, |
| 76 | int n_embd, |
| 77 | const llama_model * model, |
| 78 | enum llama_pooling_type pooling_type, |
| 79 | int embd_normalize) { |
| 80 | const uint32_t n_cls_out = llama_model_n_cls_out(model); |
| 81 | const bool is_rank = (pooling_type == LLAMA_POOLING_TYPE_RANK); |
| 82 | const int cols = is_rank ? std::min<int>(a: n_embd, b: (int) n_cls_out) : n_embd; |
| 83 | |
| 84 | for (int j = 0; j < n_embd_count; ++j) { |
| 85 | for (int i = 0; i < cols; ++i) { |
| 86 | if (embd_normalize == 0) { |
| 87 | LOG("%1.0f%s" , emb[j * n_embd + i], (i + 1 < cols ? " " : "" )); |
| 88 | } else { |
| 89 | LOG("%1.7f%s" , emb[j * n_embd + i], (i + 1 < cols ? " " : "" )); |
| 90 | } |
| 91 | } |
| 92 | LOG("\n" ); |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | int main(int argc, char ** argv) { |
| 97 | common_params params; |
| 98 | |
| 99 | if (!common_params_parse(argc, argv, params, ex: LLAMA_EXAMPLE_EMBEDDING)) { |
| 100 | return 1; |
| 101 | } |
| 102 | |
| 103 | common_init(); |
| 104 | |
| 105 | params.embedding = true; |
| 106 | |
| 107 | // if the number of prompts that would be encoded is known in advance, it's more efficient to specify the |
| 108 | // --parallel argument accordingly. for convenience, if not specified, we fallback to unified KV cache |
| 109 | // in order to support any number of prompts |
| 110 | if (params.n_parallel == 1) { |
| 111 | LOG_INF("%s: n_parallel == 1 -> unified KV cache is enabled\n" , __func__); |
| 112 | params.kv_unified = true; |
| 113 | } |
| 114 | |
| 115 | // utilize the full context |
| 116 | if (params.n_batch < params.n_ctx) { |
| 117 | LOG_WRN("%s: setting batch size to %d\n" , __func__, params.n_ctx); |
| 118 | params.n_batch = params.n_ctx; |
| 119 | } |
| 120 | |
| 121 | // for non-causal models, batch size must be equal to ubatch size |
| 122 | if (params.attention_type != LLAMA_ATTENTION_TYPE_CAUSAL) { |
| 123 | params.n_ubatch = params.n_batch; |
| 124 | } |
| 125 | |
| 126 | // get max number of sequences per batch |
| 127 | const int n_seq_max = llama_max_parallel_sequences(); |
| 128 | |
| 129 | llama_backend_init(); |
| 130 | llama_numa_init(numa: params.numa); |
| 131 | |
| 132 | // load the model |
| 133 | common_init_result llama_init = common_init_from_params(params); |
| 134 | |
| 135 | llama_model * model = llama_init.model.get(); |
| 136 | llama_context * ctx = llama_init.context.get(); |
| 137 | |
| 138 | if (model == NULL) { |
| 139 | LOG_ERR("%s: unable to load model\n" , __func__); |
| 140 | return 1; |
| 141 | } |
| 142 | |
| 143 | const llama_vocab * vocab = llama_model_get_vocab(model); |
| 144 | |
| 145 | const int n_ctx_train = llama_model_n_ctx_train(model); |
| 146 | const int n_ctx = llama_n_ctx(ctx); |
| 147 | |
| 148 | const enum llama_pooling_type pooling_type = llama_pooling_type(ctx); |
| 149 | |
| 150 | if (llama_model_has_encoder(model) && llama_model_has_decoder(model)) { |
| 151 | LOG_ERR("%s: computing embeddings in encoder-decoder models is not supported\n" , __func__); |
| 152 | return 1; |
| 153 | } |
| 154 | |
| 155 | if (n_ctx > n_ctx_train) { |
| 156 | LOG_WRN("%s: warning: model was trained on only %d context tokens (%d specified)\n" , |
| 157 | __func__, n_ctx_train, n_ctx); |
| 158 | } |
| 159 | |
| 160 | // print system information |
| 161 | { |
| 162 | LOG_INF("\n" ); |
| 163 | LOG_INF("%s\n" , common_params_get_system_info(params).c_str()); |
| 164 | } |
| 165 | |
| 166 | // split the prompt into lines |
| 167 | std::vector<std::string> prompts = split_lines(s: params.prompt, separator: params.embd_sep); |
| 168 | |
| 169 | // max batch size |
| 170 | const uint64_t n_batch = params.n_batch; |
| 171 | |
| 172 | // get added sep and eos token, if any |
| 173 | const std::string added_sep_token = llama_vocab_get_add_sep(vocab) ? llama_vocab_get_text(vocab, token: llama_vocab_sep(vocab)) : "" ; |
| 174 | const std::string added_eos_token = llama_vocab_get_add_eos(vocab) ? llama_vocab_get_text(vocab, token: llama_vocab_eos(vocab)) : "" ; |
| 175 | const char * rerank_prompt = llama_model_chat_template(model, name: "rerank" ); |
| 176 | |
| 177 | // tokenize the prompts and trim |
| 178 | std::vector<std::vector<int32_t>> inputs; |
| 179 | for (const auto & prompt : prompts) { |
| 180 | std::vector<llama_token> inp; |
| 181 | |
| 182 | // split classification pairs and insert expected separator tokens |
| 183 | if (pooling_type == LLAMA_POOLING_TYPE_RANK && prompt.find(str: params.cls_sep) != std::string::npos) { |
| 184 | std::vector<std::string> pairs = split_lines(s: prompt, separator: params.cls_sep); |
| 185 | if (rerank_prompt != nullptr) { |
| 186 | const std::string query = pairs[0]; |
| 187 | const std::string doc = pairs[1]; |
| 188 | std::string final_prompt = rerank_prompt; |
| 189 | string_replace_all(s&: final_prompt, search: "{query}" , replace: query); |
| 190 | string_replace_all(s&: final_prompt, search: "{document}" , replace: doc ); |
| 191 | inp = common_tokenize(vocab, text: final_prompt, add_special: true, parse_special: true); |
| 192 | } else { |
| 193 | std::string final_prompt; |
| 194 | for (size_t i = 0; i < pairs.size(); i++) { |
| 195 | final_prompt += pairs[i]; |
| 196 | if (i != pairs.size() - 1) { |
| 197 | if (!added_eos_token.empty()) { |
| 198 | final_prompt += added_eos_token; |
| 199 | } |
| 200 | if (!added_sep_token.empty()) { |
| 201 | final_prompt += added_sep_token; |
| 202 | } |
| 203 | } |
| 204 | } |
| 205 | inp = common_tokenize(ctx, text: final_prompt, add_special: true, parse_special: true); |
| 206 | } |
| 207 | } else { |
| 208 | inp = common_tokenize(ctx, text: prompt, add_special: true, parse_special: true); |
| 209 | } |
| 210 | if (inp.size() > n_batch) { |
| 211 | LOG_ERR("%s: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n" , |
| 212 | __func__, (long long int) inp.size(), (long long int) n_batch); |
| 213 | return 1; |
| 214 | } |
| 215 | inputs.push_back(x: inp); |
| 216 | } |
| 217 | |
| 218 | // check if the last token is SEP/EOS |
| 219 | // it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true' |
| 220 | for (auto & inp : inputs) { |
| 221 | if (inp.empty() || (inp.back() != llama_vocab_sep(vocab) && inp.back() != llama_vocab_eos(vocab))) { |
| 222 | LOG_WRN("%s: last token in the prompt is not SEP or EOS\n" , __func__); |
| 223 | LOG_WRN("%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n" , __func__); |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | // tokenization stats |
| 228 | if (params.verbose_prompt) { |
| 229 | for (int i = 0; i < (int) inputs.size(); i++) { |
| 230 | LOG_INF("%s: prompt %d: '%s'\n" , __func__, i, prompts[i].c_str()); |
| 231 | LOG_INF("%s: number of tokens in prompt = %zu\n" , __func__, inputs[i].size()); |
| 232 | for (int j = 0; j < (int) inputs[i].size(); j++) { |
| 233 | LOG("%6d -> '%s'\n" , inputs[i][j], common_token_to_piece(ctx, inputs[i][j]).c_str()); |
| 234 | } |
| 235 | LOG("\n\n" ); |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | // initialize batch |
| 240 | const int n_prompts = prompts.size(); |
| 241 | struct llama_batch batch = llama_batch_init(n_tokens: n_batch, embd: 0, n_seq_max: 1); |
| 242 | |
| 243 | // count number of embeddings |
| 244 | int n_embd_count = 0; |
| 245 | if (pooling_type == LLAMA_POOLING_TYPE_NONE) { |
| 246 | for (int k = 0; k < n_prompts; k++) { |
| 247 | n_embd_count += inputs[k].size(); |
| 248 | } |
| 249 | } else { |
| 250 | n_embd_count = n_prompts; |
| 251 | } |
| 252 | |
| 253 | // allocate output |
| 254 | const int n_embd = llama_model_n_embd(model); |
| 255 | std::vector<float> embeddings(n_embd_count * n_embd, 0); |
| 256 | float * emb = embeddings.data(); |
| 257 | |
| 258 | // break into batches |
| 259 | int e = 0; // number of embeddings already stored |
| 260 | int s = 0; // number of prompts in current batch |
| 261 | for (int k = 0; k < n_prompts; k++) { |
| 262 | // clamp to n_batch tokens |
| 263 | auto & inp = inputs[k]; |
| 264 | |
| 265 | const uint64_t n_toks = inp.size(); |
| 266 | |
| 267 | // encode if at capacity |
| 268 | if (batch.n_tokens + n_toks > n_batch || s >= n_seq_max) { |
| 269 | float * out = emb + e * n_embd; |
| 270 | batch_decode(ctx, batch, output: out, n_seq: s, n_embd, embd_norm: params.embd_normalize); |
| 271 | e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s; |
| 272 | s = 0; |
| 273 | common_batch_clear(batch); |
| 274 | } |
| 275 | |
| 276 | // add to batch |
| 277 | batch_add_seq(batch, tokens: inp, seq_id: s); |
| 278 | s += 1; |
| 279 | } |
| 280 | |
| 281 | // final batch |
| 282 | float * out = emb + e * n_embd; |
| 283 | batch_decode(ctx, batch, output: out, n_seq: s, n_embd, embd_norm: params.embd_normalize); |
| 284 | |
| 285 | if (params.embd_out.empty()) { |
| 286 | LOG("\n" ); |
| 287 | |
| 288 | if (pooling_type == LLAMA_POOLING_TYPE_NONE) { |
| 289 | for (int j = 0; j < n_embd_count; j++) { |
| 290 | LOG("embedding %d: " , j); |
| 291 | for (int i = 0; i < std::min(a: 3, b: n_embd); i++) { |
| 292 | if (params.embd_normalize == 0) { |
| 293 | LOG("%6.0f " , emb[j * n_embd + i]); |
| 294 | } else { |
| 295 | LOG("%9.6f " , emb[j * n_embd + i]); |
| 296 | } |
| 297 | } |
| 298 | LOG(" ... " ); |
| 299 | for (int i = n_embd - 3; i < n_embd; i++) { |
| 300 | if (params.embd_normalize == 0) { |
| 301 | LOG("%6.0f " , emb[j * n_embd + i]); |
| 302 | } else { |
| 303 | LOG("%9.6f " , emb[j * n_embd + i]); |
| 304 | } |
| 305 | } |
| 306 | LOG("\n" ); |
| 307 | } |
| 308 | } else if (pooling_type == LLAMA_POOLING_TYPE_RANK) { |
| 309 | const uint32_t n_cls_out = llama_model_n_cls_out(model); |
| 310 | std::vector<std::string> cls_out_labels; |
| 311 | |
| 312 | for (uint32_t i = 0; i < n_cls_out; i++) { |
| 313 | const char * label = llama_model_cls_label(model, i); |
| 314 | const std::string label_i(label == nullptr ? "" : label); |
| 315 | cls_out_labels.emplace_back(args: label_i.empty() ? std::to_string(val: i) : label_i); |
| 316 | } |
| 317 | |
| 318 | for (int j = 0; j < n_embd_count; j++) { |
| 319 | for (uint32_t i = 0; i < n_cls_out; i++) { |
| 320 | // NOTE: if you change this log - update the tests in ci/run.sh |
| 321 | if (n_cls_out == 1) { |
| 322 | LOG("rerank score %d: %8.3f\n" , j, emb[j * n_embd]); |
| 323 | } else { |
| 324 | LOG("rerank score %d: %8.3f [%s]\n" , j, emb[j * n_embd + i], cls_out_labels[i].c_str()); |
| 325 | } |
| 326 | } |
| 327 | } |
| 328 | } else { |
| 329 | // print the first part of the embeddings or for a single prompt, the full embedding |
| 330 | for (int j = 0; j < n_prompts; j++) { |
| 331 | LOG("embedding %d: " , j); |
| 332 | for (int i = 0; i < (n_prompts > 1 ? std::min(a: 16, b: n_embd) : n_embd); i++) { |
| 333 | if (params.embd_normalize == 0) { |
| 334 | LOG("%6.0f " , emb[j * n_embd + i]); |
| 335 | } else { |
| 336 | LOG("%9.6f " , emb[j * n_embd + i]); |
| 337 | } |
| 338 | } |
| 339 | LOG("\n" ); |
| 340 | } |
| 341 | |
| 342 | // print cosine similarity matrix |
| 343 | if (n_prompts > 1) { |
| 344 | LOG("\n" ); |
| 345 | LOG("cosine similarity matrix:\n\n" ); |
| 346 | for (int i = 0; i < n_prompts; i++) { |
| 347 | LOG("%6.6s " , prompts[i].c_str()); |
| 348 | } |
| 349 | LOG("\n" ); |
| 350 | for (int i = 0; i < n_prompts; i++) { |
| 351 | for (int j = 0; j < n_prompts; j++) { |
| 352 | float sim = common_embd_similarity_cos(embd1: emb + i * n_embd, embd2: emb + j * n_embd, n: n_embd); |
| 353 | LOG("%6.2f " , sim); |
| 354 | } |
| 355 | LOG("%1.10s" , prompts[i].c_str()); |
| 356 | LOG("\n" ); |
| 357 | } |
| 358 | } |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | if (params.embd_out == "json" || params.embd_out == "json+" || params.embd_out == "array" ) { |
| 363 | const bool notArray = params.embd_out != "array" ; |
| 364 | |
| 365 | LOG(notArray ? "{\n \"object\": \"list\",\n \"data\": [\n" : "[" ); |
| 366 | for (int j = 0;;) { // at least one iteration (one prompt) |
| 367 | if (notArray) LOG(" {\n \"object\": \"embedding\",\n \"index\": %d,\n \"embedding\": " ,j); |
| 368 | LOG("[" ); |
| 369 | for (int i = 0;;) { // at least one iteration (n_embd > 0) |
| 370 | LOG(params.embd_normalize == 0 ? "%1.0f" : "%1.7f" , emb[j * n_embd + i]); |
| 371 | i++; |
| 372 | if (i < n_embd) LOG("," ); else break; |
| 373 | } |
| 374 | LOG(notArray ? "]\n }" : "]" ); |
| 375 | j++; |
| 376 | if (j < n_embd_count) LOG(notArray ? ",\n" : "," ); else break; |
| 377 | } |
| 378 | LOG(notArray ? "\n ]" : "]\n" ); |
| 379 | |
| 380 | if (params.embd_out == "json+" && n_prompts > 1) { |
| 381 | LOG(",\n \"cosineSimilarity\": [\n" ); |
| 382 | for (int i = 0;;) { // at least two iteration (n_embd_count > 1) |
| 383 | LOG(" [" ); |
| 384 | for (int j = 0;;) { // at least two iteration (n_embd_count > 1) |
| 385 | float sim = common_embd_similarity_cos(embd1: emb + i * n_embd, embd2: emb + j * n_embd, n: n_embd); |
| 386 | LOG("%6.2f" , sim); |
| 387 | j++; |
| 388 | if (j < n_embd_count) LOG(", " ); else break; |
| 389 | } |
| 390 | LOG(" ]" ); |
| 391 | i++; |
| 392 | if (i < n_embd_count) LOG(",\n" ); else break; |
| 393 | } |
| 394 | LOG("\n ]" ); |
| 395 | } |
| 396 | |
| 397 | if (notArray) LOG("\n}\n" ); |
| 398 | } else if (params.embd_out == "raw" ) { |
| 399 | print_raw_embeddings(emb, n_embd_count, n_embd, model, pooling_type, embd_normalize: params.embd_normalize); |
| 400 | } |
| 401 | |
| 402 | LOG("\n" ); |
| 403 | llama_perf_context_print(ctx); |
| 404 | |
| 405 | // clean up |
| 406 | llama_batch_free(batch); |
| 407 | llama_backend_free(); |
| 408 | |
| 409 | return 0; |
| 410 | } |
| 411 | |