| 1 | /* |
| 2 | SHA-1 in C |
| 3 | By Steve Reid <steve@edmweb.com> |
| 4 | 100% Public Domain |
| 5 | |
| 6 | Test Vectors (from FIPS PUB 180-1) |
| 7 | "abc" |
| 8 | A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D |
| 9 | "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" |
| 10 | 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1 |
| 11 | A million repetitions of "a" |
| 12 | 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F |
| 13 | */ |
| 14 | |
| 15 | /* #define LITTLE_ENDIAN * This should be #define'd already, if true. */ |
| 16 | /* #define SHA1HANDSOFF * Copies data before messing with it. */ |
| 17 | |
| 18 | #define SHA1HANDSOFF |
| 19 | |
| 20 | #include <stdio.h> |
| 21 | #include <string.h> |
| 22 | |
| 23 | /* for uint32_t */ |
| 24 | #include <stdint.h> |
| 25 | |
| 26 | #include "sha1.h" |
| 27 | |
| 28 | |
| 29 | #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) |
| 30 | |
| 31 | /* blk0() and blk() perform the initial expand. */ |
| 32 | /* I got the idea of expanding during the round function from SSLeay */ |
| 33 | #if BYTE_ORDER == LITTLE_ENDIAN |
| 34 | #define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \ |
| 35 | |(rol(block->l[i],8)&0x00FF00FF)) |
| 36 | #elif BYTE_ORDER == BIG_ENDIAN |
| 37 | #define blk0(i) block->l[i] |
| 38 | #else |
| 39 | #error "Endianness not defined!" |
| 40 | #endif |
| 41 | #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \ |
| 42 | ^block->l[(i+2)&15]^block->l[i&15],1)) |
| 43 | |
| 44 | /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ |
| 45 | #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30); |
| 46 | #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30); |
| 47 | #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30); |
| 48 | #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30); |
| 49 | #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); |
| 50 | |
| 51 | |
| 52 | /* Hash a single 512-bit block. This is the core of the algorithm. */ |
| 53 | |
| 54 | void SHA1Transform( |
| 55 | uint32_t state[5], |
| 56 | const unsigned char buffer[64] |
| 57 | ) |
| 58 | { |
| 59 | uint32_t a, b, c, d, e; |
| 60 | |
| 61 | typedef union |
| 62 | { |
| 63 | unsigned char c[64]; |
| 64 | uint32_t l[16]; |
| 65 | } CHAR64LONG16; |
| 66 | |
| 67 | #ifdef SHA1HANDSOFF |
| 68 | CHAR64LONG16 block[1]; /* use array to appear as a pointer */ |
| 69 | |
| 70 | memcpy(dest: block, src: buffer, n: 64); |
| 71 | #else |
| 72 | /* The following had better never be used because it causes the |
| 73 | * pointer-to-const buffer to be cast into a pointer to non-const. |
| 74 | * And the result is written through. I threw a "const" in, hoping |
| 75 | * this will cause a diagnostic. |
| 76 | */ |
| 77 | CHAR64LONG16 *block = (const CHAR64LONG16 *) buffer; |
| 78 | #endif |
| 79 | /* Copy context->state[] to working vars */ |
| 80 | a = state[0]; |
| 81 | b = state[1]; |
| 82 | c = state[2]; |
| 83 | d = state[3]; |
| 84 | e = state[4]; |
| 85 | /* 4 rounds of 20 operations each. Loop unrolled. */ |
| 86 | R0(a, b, c, d, e, 0); |
| 87 | R0(e, a, b, c, d, 1); |
| 88 | R0(d, e, a, b, c, 2); |
| 89 | R0(c, d, e, a, b, 3); |
| 90 | R0(b, c, d, e, a, 4); |
| 91 | R0(a, b, c, d, e, 5); |
| 92 | R0(e, a, b, c, d, 6); |
| 93 | R0(d, e, a, b, c, 7); |
| 94 | R0(c, d, e, a, b, 8); |
| 95 | R0(b, c, d, e, a, 9); |
| 96 | R0(a, b, c, d, e, 10); |
| 97 | R0(e, a, b, c, d, 11); |
| 98 | R0(d, e, a, b, c, 12); |
| 99 | R0(c, d, e, a, b, 13); |
| 100 | R0(b, c, d, e, a, 14); |
| 101 | R0(a, b, c, d, e, 15); |
| 102 | R1(e, a, b, c, d, 16); |
| 103 | R1(d, e, a, b, c, 17); |
| 104 | R1(c, d, e, a, b, 18); |
| 105 | R1(b, c, d, e, a, 19); |
| 106 | R2(a, b, c, d, e, 20); |
| 107 | R2(e, a, b, c, d, 21); |
| 108 | R2(d, e, a, b, c, 22); |
| 109 | R2(c, d, e, a, b, 23); |
| 110 | R2(b, c, d, e, a, 24); |
| 111 | R2(a, b, c, d, e, 25); |
| 112 | R2(e, a, b, c, d, 26); |
| 113 | R2(d, e, a, b, c, 27); |
| 114 | R2(c, d, e, a, b, 28); |
| 115 | R2(b, c, d, e, a, 29); |
| 116 | R2(a, b, c, d, e, 30); |
| 117 | R2(e, a, b, c, d, 31); |
| 118 | R2(d, e, a, b, c, 32); |
| 119 | R2(c, d, e, a, b, 33); |
| 120 | R2(b, c, d, e, a, 34); |
| 121 | R2(a, b, c, d, e, 35); |
| 122 | R2(e, a, b, c, d, 36); |
| 123 | R2(d, e, a, b, c, 37); |
| 124 | R2(c, d, e, a, b, 38); |
| 125 | R2(b, c, d, e, a, 39); |
| 126 | R3(a, b, c, d, e, 40); |
| 127 | R3(e, a, b, c, d, 41); |
| 128 | R3(d, e, a, b, c, 42); |
| 129 | R3(c, d, e, a, b, 43); |
| 130 | R3(b, c, d, e, a, 44); |
| 131 | R3(a, b, c, d, e, 45); |
| 132 | R3(e, a, b, c, d, 46); |
| 133 | R3(d, e, a, b, c, 47); |
| 134 | R3(c, d, e, a, b, 48); |
| 135 | R3(b, c, d, e, a, 49); |
| 136 | R3(a, b, c, d, e, 50); |
| 137 | R3(e, a, b, c, d, 51); |
| 138 | R3(d, e, a, b, c, 52); |
| 139 | R3(c, d, e, a, b, 53); |
| 140 | R3(b, c, d, e, a, 54); |
| 141 | R3(a, b, c, d, e, 55); |
| 142 | R3(e, a, b, c, d, 56); |
| 143 | R3(d, e, a, b, c, 57); |
| 144 | R3(c, d, e, a, b, 58); |
| 145 | R3(b, c, d, e, a, 59); |
| 146 | R4(a, b, c, d, e, 60); |
| 147 | R4(e, a, b, c, d, 61); |
| 148 | R4(d, e, a, b, c, 62); |
| 149 | R4(c, d, e, a, b, 63); |
| 150 | R4(b, c, d, e, a, 64); |
| 151 | R4(a, b, c, d, e, 65); |
| 152 | R4(e, a, b, c, d, 66); |
| 153 | R4(d, e, a, b, c, 67); |
| 154 | R4(c, d, e, a, b, 68); |
| 155 | R4(b, c, d, e, a, 69); |
| 156 | R4(a, b, c, d, e, 70); |
| 157 | R4(e, a, b, c, d, 71); |
| 158 | R4(d, e, a, b, c, 72); |
| 159 | R4(c, d, e, a, b, 73); |
| 160 | R4(b, c, d, e, a, 74); |
| 161 | R4(a, b, c, d, e, 75); |
| 162 | R4(e, a, b, c, d, 76); |
| 163 | R4(d, e, a, b, c, 77); |
| 164 | R4(c, d, e, a, b, 78); |
| 165 | R4(b, c, d, e, a, 79); |
| 166 | /* Add the working vars back into context.state[] */ |
| 167 | state[0] += a; |
| 168 | state[1] += b; |
| 169 | state[2] += c; |
| 170 | state[3] += d; |
| 171 | state[4] += e; |
| 172 | /* Wipe variables */ |
| 173 | a = b = c = d = e = 0; |
| 174 | #ifdef SHA1HANDSOFF |
| 175 | memset(s: block, c: '\0', n: sizeof(block)); |
| 176 | #endif |
| 177 | } |
| 178 | |
| 179 | |
| 180 | /* SHA1Init - Initialize new context */ |
| 181 | |
| 182 | void SHA1Init( |
| 183 | SHA1_CTX * context |
| 184 | ) |
| 185 | { |
| 186 | /* SHA1 initialization constants */ |
| 187 | context->state[0] = 0x67452301; |
| 188 | context->state[1] = 0xEFCDAB89; |
| 189 | context->state[2] = 0x98BADCFE; |
| 190 | context->state[3] = 0x10325476; |
| 191 | context->state[4] = 0xC3D2E1F0; |
| 192 | context->count[0] = context->count[1] = 0; |
| 193 | } |
| 194 | |
| 195 | |
| 196 | /* Run your data through this. */ |
| 197 | |
| 198 | void SHA1Update( |
| 199 | SHA1_CTX * context, |
| 200 | const unsigned char *data, |
| 201 | uint32_t len |
| 202 | ) |
| 203 | { |
| 204 | uint32_t i; |
| 205 | |
| 206 | uint32_t j; |
| 207 | |
| 208 | j = context->count[0]; |
| 209 | if ((context->count[0] += len << 3) < j) |
| 210 | context->count[1]++; |
| 211 | context->count[1] += (len >> 29); |
| 212 | j = (j >> 3) & 63; |
| 213 | if ((j + len) > 63) |
| 214 | { |
| 215 | memcpy(dest: &context->buffer[j], src: data, n: (i = 64 - j)); |
| 216 | SHA1Transform(state: context->state, buffer: context->buffer); |
| 217 | for (; i + 63 < len; i += 64) |
| 218 | { |
| 219 | SHA1Transform(state: context->state, buffer: &data[i]); |
| 220 | } |
| 221 | j = 0; |
| 222 | } |
| 223 | else |
| 224 | i = 0; |
| 225 | memcpy(dest: &context->buffer[j], src: &data[i], n: len - i); |
| 226 | } |
| 227 | |
| 228 | |
| 229 | /* Add padding and return the message digest. */ |
| 230 | |
| 231 | void SHA1Final( |
| 232 | unsigned char digest[20], |
| 233 | SHA1_CTX * context |
| 234 | ) |
| 235 | { |
| 236 | unsigned i; |
| 237 | |
| 238 | unsigned char finalcount[8]; |
| 239 | |
| 240 | unsigned char c; |
| 241 | |
| 242 | #if 0 /* untested "improvement" by DHR */ |
| 243 | /* Convert context->count to a sequence of bytes |
| 244 | * in finalcount. Second element first, but |
| 245 | * big-endian order within element. |
| 246 | * But we do it all backwards. |
| 247 | */ |
| 248 | unsigned char *fcp = &finalcount[8]; |
| 249 | |
| 250 | for (i = 0; i < 2; i++) |
| 251 | { |
| 252 | uint32_t t = context->count[i]; |
| 253 | |
| 254 | int j; |
| 255 | |
| 256 | for (j = 0; j < 4; t >>= 8, j++) |
| 257 | *--fcp = (unsigned char) t} |
| 258 | #else |
| 259 | for (i = 0; i < 8; i++) |
| 260 | { |
| 261 | finalcount[i] = (unsigned char) ((context->count[(i >= 4 ? 0 : 1)] >> ((3 - (i & 3)) * 8)) & 255); /* Endian independent */ |
| 262 | } |
| 263 | #endif |
| 264 | c = 0200; |
| 265 | SHA1Update(context, data: &c, len: 1); |
| 266 | while ((context->count[0] & 504) != 448) |
| 267 | { |
| 268 | c = 0000; |
| 269 | SHA1Update(context, data: &c, len: 1); |
| 270 | } |
| 271 | SHA1Update(context, data: finalcount, len: 8); /* Should cause a SHA1Transform() */ |
| 272 | for (i = 0; i < 20; i++) |
| 273 | { |
| 274 | digest[i] = (unsigned char) |
| 275 | ((context->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255); |
| 276 | } |
| 277 | /* Wipe variables */ |
| 278 | memset(s: context, c: '\0', n: sizeof(*context)); |
| 279 | memset(s: &finalcount, c: '\0', n: sizeof(finalcount)); |
| 280 | } |
| 281 | |
| 282 | void SHA1( |
| 283 | char *hash_out, |
| 284 | const char *str, |
| 285 | uint32_t len) |
| 286 | { |
| 287 | SHA1_CTX ctx; |
| 288 | unsigned int ii; |
| 289 | |
| 290 | SHA1Init(context: &ctx); |
| 291 | for (ii=0; ii<len; ii+=1) |
| 292 | SHA1Update(context: &ctx, data: (const unsigned char*)str + ii, len: 1); |
| 293 | SHA1Final(digest: (unsigned char *)hash_out, context: &ctx); |
| 294 | } |
| 295 | |
| 296 | |