| 1 | #include "arg.h" |
| 2 | #include "common.h" |
| 3 | #include "sampling.h" |
| 4 | #include "log.h" |
| 5 | #include "llama.h" |
| 6 | |
| 7 | #include <cstdio> |
| 8 | #include <string> |
| 9 | #include <vector> |
| 10 | #include <algorithm> |
| 11 | |
| 12 | struct ngram_data { |
| 13 | bool active = false; |
| 14 | |
| 15 | llama_seq_id seq_id = -1; |
| 16 | |
| 17 | std::vector<int> i_batch; |
| 18 | |
| 19 | std::vector<llama_token> tokens; |
| 20 | }; |
| 21 | |
| 22 | // n-gram container |
| 23 | struct ngram_container { |
| 24 | ngram_container(int n_vocab, int N, int G) { |
| 25 | cnt.resize(new_size: n_vocab); |
| 26 | head.resize(new_size: n_vocab); |
| 27 | tokens.resize(new_size: n_vocab * G * (N - 1)); |
| 28 | } |
| 29 | |
| 30 | int n_total = 0; |
| 31 | |
| 32 | std::vector<int> cnt; |
| 33 | std::vector<int> head; |
| 34 | |
| 35 | // [n_vocab][G][N - 1] |
| 36 | // for each token of the vocab, keep a ring-buffer of capacity G of n-grams of size N - 1 |
| 37 | std::vector<llama_token> tokens; |
| 38 | }; |
| 39 | |
| 40 | int main(int argc, char ** argv) { |
| 41 | common_params params; |
| 42 | |
| 43 | if (!common_params_parse(argc, argv, params, ex: LLAMA_EXAMPLE_COMMON)) { |
| 44 | return 1; |
| 45 | } |
| 46 | |
| 47 | common_init(); |
| 48 | |
| 49 | const int W = 15; // lookahead window |
| 50 | const int N = 5; // n-gram size |
| 51 | const int G = 15; // max verification n-grams |
| 52 | |
| 53 | // init llama.cpp |
| 54 | llama_backend_init(); |
| 55 | llama_numa_init(numa: params.numa); |
| 56 | |
| 57 | // load the target model |
| 58 | common_init_result llama_init = common_init_from_params(params); |
| 59 | |
| 60 | llama_model * model = llama_init.model.get(); |
| 61 | llama_context * ctx = llama_init.context.get(); |
| 62 | |
| 63 | auto * mem = llama_get_memory(ctx); |
| 64 | |
| 65 | const llama_vocab * vocab = llama_model_get_vocab(model); |
| 66 | |
| 67 | // Tokenize the prompt |
| 68 | std::vector<llama_token> inp; |
| 69 | std::vector<llama_token> all; |
| 70 | |
| 71 | inp = common_tokenize(ctx, text: params.prompt, add_special: true, parse_special: true); |
| 72 | all = inp; |
| 73 | |
| 74 | const int max_context_size = llama_n_ctx(ctx); |
| 75 | const int max_tokens_list_size = max_context_size - 4; |
| 76 | |
| 77 | if ((int) inp.size() > max_tokens_list_size) { |
| 78 | LOG_ERR("%s: prompt too long (%d tokens, max %d)\n" , __func__, (int) inp.size(), max_tokens_list_size); |
| 79 | return 1; |
| 80 | } |
| 81 | |
| 82 | LOG("\n\n" ); |
| 83 | |
| 84 | for (auto id : inp) { |
| 85 | LOG("%s" , common_token_to_piece(ctx, id).c_str()); |
| 86 | } |
| 87 | |
| 88 | fflush(stderr); |
| 89 | |
| 90 | const int n_input = inp.size(); |
| 91 | |
| 92 | const auto t_enc_start = ggml_time_us(); |
| 93 | |
| 94 | // eval the prompt |
| 95 | llama_decode(ctx, batch: llama_batch_get_one( tokens: inp.data(), n_tokens: n_input - 1)); |
| 96 | llama_decode(ctx, batch: llama_batch_get_one(tokens: &inp.back(), n_tokens: 1)); |
| 97 | |
| 98 | for (int s = 1; s < W + G + 1; ++s) { |
| 99 | llama_memory_seq_cp(mem, seq_id_src: 0, seq_id_dst: s, p0: -1, p1: -1); |
| 100 | } |
| 101 | |
| 102 | const auto t_enc_end = ggml_time_us(); |
| 103 | |
| 104 | int n_predict = 0; |
| 105 | int n_accept = 0; |
| 106 | |
| 107 | int n_past = inp.size(); |
| 108 | |
| 109 | llama_token id = 0; |
| 110 | |
| 111 | // used to determine end of generation |
| 112 | bool has_eos = false; |
| 113 | |
| 114 | // for each decoded batch, we have at most W + G + 1 distinct sequences: |
| 115 | // seq_id == 0 : the current input token |
| 116 | // seq_id [1, W] : tokens from the past N - 1 Jacobi iterations |
| 117 | // seq_id [W + 1, W + G] : verification n-grams |
| 118 | llama_batch batch = llama_batch_init(n_tokens: params.n_ctx, embd: 0, n_seq_max: W + G + 1); |
| 119 | |
| 120 | // target model sampling context |
| 121 | struct common_sampler * smpl = common_sampler_init(model, params: params.sampling); |
| 122 | |
| 123 | // verification n-grams |
| 124 | std::vector<ngram_data> ngrams_cur(G); |
| 125 | |
| 126 | // tokens for the past N - 1 Jacobi iterations |
| 127 | std::vector<llama_token> tokens_j_prev(W); |
| 128 | std::vector<std::vector<llama_token>> tokens_j(N - 1); |
| 129 | for (int j = 0; j < N - 1; j++) { |
| 130 | tokens_j[j].resize(new_size: W); |
| 131 | |
| 132 | for (int i = 0; i < W; i++) { |
| 133 | // there are different ways to init these tokens |
| 134 | if (0) { |
| 135 | // initialize randomly from the prompt tokens |
| 136 | tokens_j[j][i] = all[1 + rand() % (all.size() - 1)]; |
| 137 | } else { |
| 138 | // initialize with a sequence of increasing numbers |
| 139 | tokens_j[j][i] = 100 + i; |
| 140 | } |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | std::vector<llama_seq_id> seq_id_look; |
| 145 | |
| 146 | // the input token belongs both to all sequences |
| 147 | std::vector<llama_seq_id> seq_id_all(W + G + 1); |
| 148 | for (int i = 0; i < W + G + 1; i++) { |
| 149 | seq_id_all[i] = i; |
| 150 | } |
| 151 | |
| 152 | // here we keep adding new n-grams as we go |
| 153 | ngram_container ngrams_observed(llama_vocab_n_tokens(vocab), N, G); |
| 154 | |
| 155 | const auto t_dec_start = ggml_time_us(); |
| 156 | |
| 157 | // sample first token |
| 158 | { |
| 159 | id = common_sampler_sample(gsmpl: smpl, ctx, idx: 0); |
| 160 | |
| 161 | common_sampler_accept(gsmpl: smpl, token: id, accept_grammar: true); |
| 162 | |
| 163 | { |
| 164 | const std::string token_str = common_token_to_piece(ctx, token: id); |
| 165 | |
| 166 | LOG("%s" , token_str.c_str()); |
| 167 | fflush(stdout); |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | while (true) { |
| 172 | // build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/ |
| 173 | // |
| 174 | // Example for W = 5, N = 4, G = 2: |
| 175 | // (I = input, L = lookahead, V = verification) |
| 176 | // |
| 177 | // Batch: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
| 178 | // T: -2 -2 -2 -2 -1 -1 -1 -1 -1 0 0 0 0 0 0 |
| 179 | // Info: I L L L L L L L L L L L L L L V V V V V V |
| 180 | // Pos: 0 1 2 3 4 1 2 3 4 5 2 3 4 5 6 1 2 3 1 2 3 (+ n_past) |
| 181 | // Logits: 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 |
| 182 | // --------------------------------------------------------------------- |
| 183 | // Seq: 0 |
| 184 | // 1 1 1 |
| 185 | // 2 2 2 2 |
| 186 | // 3 3 3 3 3 |
| 187 | // 4 4 4 4 4 4 |
| 188 | // 5 5 5 5 5 5 5 |
| 189 | // 6 6 6 6 |
| 190 | // 7 7 7 7 |
| 191 | // --------------------------------------------------------------------- |
| 192 | // | | | | | | | | | | | |
| 193 | // V V V V V | | | | | | |
| 194 | // j_tokens | | | | | | |
| 195 | // V V V V V V |
| 196 | // id |
| 197 | { |
| 198 | common_batch_clear(batch); |
| 199 | |
| 200 | // current token - first token of the first level |
| 201 | common_batch_add(batch, id, pos: n_past, seq_ids: seq_id_all, logits: true); |
| 202 | |
| 203 | // verification n-grams - queue this before the lookahead tokens for less KV cache fragmentation |
| 204 | { |
| 205 | const int g_cur = ngrams_observed.cnt[id]; |
| 206 | |
| 207 | ngrams_cur.resize(new_size: g_cur); |
| 208 | for (int g = 0; g < g_cur; g++) { |
| 209 | ngrams_cur[g].active = true; |
| 210 | ngrams_cur[g].tokens.resize(new_size: N); |
| 211 | ngrams_cur[g].i_batch.resize(new_size: N); |
| 212 | ngrams_cur[g].seq_id = W + 1 + g; |
| 213 | ngrams_cur[g].i_batch[0] = 0; |
| 214 | ngrams_cur[g].tokens [0] = id; |
| 215 | } |
| 216 | |
| 217 | for (int j = 0; j < N - 1; j++) { |
| 218 | for (int g = 0; g < g_cur; g++) { |
| 219 | const int idx = id*(N - 1)*G + g*(N - 1); |
| 220 | |
| 221 | const llama_token t = ngrams_observed.tokens[idx + j]; |
| 222 | |
| 223 | ngrams_cur[g].tokens [j + 1] = t; |
| 224 | ngrams_cur[g].i_batch[j + 1] = batch.n_tokens; |
| 225 | |
| 226 | common_batch_add(batch, id: t, pos: n_past + j + 1, seq_ids: { W + 1 + g }, logits: true); |
| 227 | } |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | // fill the remaining W - 1 tokens for the first level |
| 232 | for (int i = 1; i < W; i++) { |
| 233 | seq_id_look.resize(new_size: W - i); |
| 234 | for (int j = 0; j < W - i; j++) { |
| 235 | seq_id_look[j] = i + j + 1; |
| 236 | } |
| 237 | |
| 238 | common_batch_add(batch, id: tokens_j[0][i], pos: n_past + i, seq_ids: seq_id_look, logits: false); |
| 239 | } |
| 240 | |
| 241 | // fill the rest of the levels |
| 242 | for (int j = 1; j < N - 1; j++) { |
| 243 | for (int i = 0; i < W; i++) { |
| 244 | common_batch_add(batch, id: tokens_j[j][i], pos: n_past + j + i, seq_ids: { i + 1 }, logits: j == N - 2); |
| 245 | } |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | if (llama_decode(ctx, batch) != 0) { |
| 250 | LOG_ERR("\n\n%s: llama_decode failed - increase KV cache size\n" , __func__); |
| 251 | return 1; |
| 252 | } |
| 253 | |
| 254 | int seq_id_best = 0; |
| 255 | |
| 256 | for (int v = 0; v < N; ++v) { |
| 257 | int i_batch = 0; |
| 258 | |
| 259 | // if no active ngrams are left, it means the sampled token does not pass the verification |
| 260 | if (v > 0) { |
| 261 | for (int g = 0; g < (int) ngrams_cur.size(); g++) { |
| 262 | if (ngrams_cur[g].active) { |
| 263 | i_batch = ngrams_cur[g].i_batch[v]; |
| 264 | seq_id_best = ngrams_cur[g].seq_id; |
| 265 | |
| 266 | ++n_accept; |
| 267 | break; |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | // no more matches -> create a new batch |
| 272 | if (i_batch == 0) { |
| 273 | break; |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | // sample the next token |
| 278 | id = common_sampler_sample(gsmpl: smpl, ctx, idx: i_batch); |
| 279 | |
| 280 | common_sampler_accept(gsmpl: smpl, token: id, accept_grammar: true); |
| 281 | |
| 282 | // print |
| 283 | { |
| 284 | const std::string token_str = common_token_to_piece(ctx, token: id); |
| 285 | |
| 286 | if (v == 0) { |
| 287 | LOG("%s" , token_str.c_str()); |
| 288 | } else { |
| 289 | // print light cyan |
| 290 | LOG("\033[0;96m%s\033[0m" , token_str.c_str()); |
| 291 | } |
| 292 | fflush(stdout); |
| 293 | |
| 294 | if (llama_vocab_is_eog(vocab, token: id)) { |
| 295 | has_eos = true; |
| 296 | } |
| 297 | |
| 298 | all.push_back(x: id); |
| 299 | } |
| 300 | |
| 301 | ++n_predict; |
| 302 | ++n_past; |
| 303 | |
| 304 | if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) { |
| 305 | break; |
| 306 | } |
| 307 | |
| 308 | // verify across active n-grams |
| 309 | for (int g = 0; g < (int) ngrams_cur.size(); g++) { |
| 310 | if (ngrams_cur[g].active) { |
| 311 | if (v == N - 1) { |
| 312 | ngrams_cur[g].active = false; |
| 313 | } else { |
| 314 | if (id != ngrams_cur[g].tokens[v + 1]) { |
| 315 | ngrams_cur[g].active = false; |
| 316 | } |
| 317 | } |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | // print known n-grams starting with token id (debug) |
| 322 | if (0 && v == 0) { |
| 323 | if (ngrams_observed.cnt[id] > 0) { |
| 324 | LOG("\n - %d n-grams starting with '%s'\n" , ngrams_observed.cnt[id], common_token_to_piece(ctx, id).c_str()); |
| 325 | } |
| 326 | |
| 327 | for (int i = 0; i < ngrams_observed.cnt[id]; i++) { |
| 328 | LOG(" - ngram %2d: " , i); |
| 329 | |
| 330 | const int idx = id*(N - 1)*G + i*(N - 1); |
| 331 | |
| 332 | for (int j = 0; j < N - 1; j++) { |
| 333 | const std::string token_str = common_token_to_piece(ctx, token: ngrams_observed.tokens[idx + j]); |
| 334 | |
| 335 | LOG("%s" , token_str.c_str()); |
| 336 | } |
| 337 | |
| 338 | LOG("\n" ); |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | // update lookahead tokens |
| 343 | { |
| 344 | for (int i = 0; i < W; i++) { |
| 345 | tokens_j_prev[i] = tokens_j[0][i]; |
| 346 | } |
| 347 | |
| 348 | for (int j = 0; j < N - 2; j++) { |
| 349 | tokens_j[j] = tokens_j[j + 1]; |
| 350 | } |
| 351 | |
| 352 | if (v == 0) { |
| 353 | // sample from the last level |
| 354 | for (int i = 0; i < W; i++) { |
| 355 | tokens_j[N - 2][i] = common_sampler_sample(gsmpl: smpl, ctx, idx: ngrams_cur.size()*(N-1) + W*(N - 2) + i); |
| 356 | } |
| 357 | } else { |
| 358 | for (int i = 0; i < W; i++) { |
| 359 | // there are different ways to init these tokens |
| 360 | if (0) { |
| 361 | // random init |
| 362 | tokens_j[N - 2][i] = all[1 + rand() % (all.size() - 1)]; |
| 363 | } else { |
| 364 | // init from the previous level |
| 365 | tokens_j[N - 2][i] = tokens_j[0][i]; |
| 366 | } |
| 367 | } |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | // update observed ngrams |
| 372 | if (v == 0) { |
| 373 | // the first token of the n-gram is determined by the index in the container so it is not stored |
| 374 | std::vector<llama_token> ngram(N - 1); |
| 375 | |
| 376 | // n-gram generation |
| 377 | // ref: https://github.com/hao-ai-lab/LookaheadDecoding/issues/14#issuecomment-1826198518 |
| 378 | for (int f = 0; f < W; ++f) { |
| 379 | const int ft = tokens_j_prev[f]; // first token of the n-gram |
| 380 | |
| 381 | for (int j = 0; j < N - 1; ++j) { |
| 382 | ngram[j] = tokens_j[j][f]; |
| 383 | } |
| 384 | |
| 385 | // filter-out repeating n-grams |
| 386 | { |
| 387 | bool is_unique = true; |
| 388 | |
| 389 | for (int k = 0; k < ngrams_observed.cnt[ft]; ++k) { |
| 390 | const int idx = ft*(N - 1)*G + k*(N - 1); |
| 391 | |
| 392 | bool is_match = true; |
| 393 | for (int j = 0; j < N - 1; ++j) { |
| 394 | if (ngrams_observed.tokens[idx + j] != ngram[j]) { |
| 395 | is_match = false; |
| 396 | break; |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | if (is_match) { |
| 401 | is_unique = false; |
| 402 | break; |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | if (!is_unique) { |
| 407 | continue; |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | const int head = ngrams_observed.head[ft]; |
| 412 | const int idx = ft*(N - 1)*G + head*(N - 1); |
| 413 | |
| 414 | for (int i = 0; i < N - 1; i++) { |
| 415 | ngrams_observed.tokens[idx + i] = ngram[i]; |
| 416 | } |
| 417 | |
| 418 | ngrams_observed.cnt[ft] = std::min(a: G, b: ngrams_observed.cnt[ft] + 1); |
| 419 | ngrams_observed.head[ft] = (head + 1) % G; |
| 420 | |
| 421 | ngrams_observed.n_total++; |
| 422 | } |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) { |
| 427 | break; |
| 428 | } |
| 429 | |
| 430 | // KV cache management |
| 431 | // if no verification token matched, we simply remove all cells from this batch -> no fragmentation |
| 432 | llama_memory_seq_rm(mem, seq_id: -1, p0: n_past, p1: -1); |
| 433 | |
| 434 | if (seq_id_best != 0) { |
| 435 | // if a verification token matched, we keep the best sequence and remove the rest |
| 436 | // this leads to some KV cache fragmentation |
| 437 | llama_memory_seq_keep(mem, seq_id: seq_id_best); |
| 438 | llama_memory_seq_cp (mem, seq_id_src: seq_id_best, seq_id_dst: 0, p0: -1, p1: -1); |
| 439 | llama_memory_seq_rm (mem, seq_id: seq_id_best, p0: -1, p1: -1); |
| 440 | |
| 441 | for (int s = 1; s < W + G + 1; ++s) { |
| 442 | llama_memory_seq_cp(mem, seq_id_src: 0, seq_id_dst: s, p0: -1, p1: -1); |
| 443 | } |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | auto t_dec_end = ggml_time_us(); |
| 448 | |
| 449 | LOG("\n\n" ); |
| 450 | |
| 451 | LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n" , n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); |
| 452 | LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n" , n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); |
| 453 | |
| 454 | LOG_INF("\n" ); |
| 455 | LOG_INF("W = %2d\n" , W); |
| 456 | LOG_INF("N = %2d\n" , N); |
| 457 | LOG_INF("G = %2d\n" , G); |
| 458 | LOG_INF("\n" ); |
| 459 | LOG_INF("n_predict = %d\n" , n_predict); |
| 460 | LOG_INF("n_accept = %d\n" , n_accept); |
| 461 | |
| 462 | LOG_INF("\n" ); |
| 463 | common_perf_print(ctx, gsmpl: smpl); |
| 464 | |
| 465 | common_sampler_free(gsmpl: smpl); |
| 466 | |
| 467 | llama_batch_free(batch); |
| 468 | |
| 469 | llama_backend_free(); |
| 470 | |
| 471 | LOG("\n\n" ); |
| 472 | |
| 473 | return 0; |
| 474 | } |
| 475 | |