| 1 | #include "arg.h" |
| 2 | #include "common.h" |
| 3 | #include "log.h" |
| 4 | #include "ngram-cache.h" |
| 5 | #include "llama.h" |
| 6 | #include "ggml.h" |
| 7 | |
| 8 | #include <cstdint> |
| 9 | #include <cstdio> |
| 10 | #include <cinttypes> |
| 11 | #include <fstream> |
| 12 | #include <string> |
| 13 | #include <vector> |
| 14 | |
| 15 | int main(int argc, char ** argv){ |
| 16 | common_params params; |
| 17 | |
| 18 | if (!common_params_parse(argc, argv, params, ex: LLAMA_EXAMPLE_LOOKUP)) { |
| 19 | return 1; |
| 20 | } |
| 21 | |
| 22 | common_init(); |
| 23 | |
| 24 | const int n_draft = params.speculative.n_max; |
| 25 | |
| 26 | // init llama.cpp |
| 27 | llama_backend_init(); |
| 28 | llama_numa_init(numa: params.numa); |
| 29 | |
| 30 | // load the model |
| 31 | common_init_result llama_init = common_init_from_params(params); |
| 32 | |
| 33 | llama_context_ptr & ctx = llama_init.context; |
| 34 | |
| 35 | // tokenize the prompt |
| 36 | std::vector<llama_token> inp; |
| 37 | inp = common_tokenize(ctx: ctx.get(), text: params.prompt, add_special: true, parse_special: true); |
| 38 | |
| 39 | common_ngram_cache ngram_cache_context; |
| 40 | common_ngram_cache ngram_cache_dynamic; |
| 41 | common_ngram_cache ngram_cache_static; |
| 42 | |
| 43 | int64_t t_draft_flat_us = 0; |
| 44 | int64_t t_draft_us = 0; |
| 45 | |
| 46 | { |
| 47 | const int64_t t_start_draft_us = ggml_time_us(); |
| 48 | |
| 49 | if (!params.lookup_cache_static.empty()) { |
| 50 | try { |
| 51 | ngram_cache_static = common_ngram_cache_load(filename&: params.lookup_cache_static); |
| 52 | } catch (std::ifstream::failure const &) { |
| 53 | LOG_ERR("failed to open static lookup cache: %s" , params.lookup_cache_static.c_str()); |
| 54 | exit(status: 1); |
| 55 | } |
| 56 | } |
| 57 | |
| 58 | if (!params.lookup_cache_dynamic.empty()) { |
| 59 | try { |
| 60 | ngram_cache_dynamic = common_ngram_cache_load(filename&: params.lookup_cache_dynamic); |
| 61 | } catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program |
| 62 | } |
| 63 | |
| 64 | t_draft_flat_us += ggml_time_us() - t_start_draft_us; |
| 65 | } |
| 66 | |
| 67 | const int n_input = inp.size(); |
| 68 | const int n_ctx = llama_n_ctx(ctx: ctx.get()); |
| 69 | |
| 70 | int n_drafted = 0; |
| 71 | int n_accept = 0; |
| 72 | |
| 73 | const int64_t t_start_ms = ggml_time_ms(); |
| 74 | |
| 75 | // Iterate over input tokens in chunks of size n_ctx. |
| 76 | // Each chunk is treated as if a sequential generation but with pre-determined tokens to ensure reproducibility. |
| 77 | for (int i_start = 0; i_start + n_ctx < n_input; i_start += n_ctx) { |
| 78 | const std::vector<llama_token> inp_slice(inp.begin() + i_start, inp.begin() + i_start + n_ctx); |
| 79 | std::vector<llama_token> pseudo_output; |
| 80 | pseudo_output.push_back(x: inp_slice[0]); |
| 81 | |
| 82 | while ((int) pseudo_output.size() < n_ctx) { |
| 83 | // Simulate drafting and decoding from draft: |
| 84 | std::vector<llama_token> draft; |
| 85 | draft.push_back(x: pseudo_output.back()); |
| 86 | |
| 87 | { |
| 88 | const int64_t t_start_draft_us = ggml_time_us(); |
| 89 | common_ngram_cache_draft(inp&: pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, nc_context&: ngram_cache_context, nc_dynamic&: ngram_cache_dynamic, nc_static&: ngram_cache_static); |
| 90 | t_draft_us += ggml_time_us() - t_start_draft_us; |
| 91 | } |
| 92 | |
| 93 | n_drafted += draft.size() - 1; |
| 94 | |
| 95 | for (size_t j = 1; j < draft.size() && (int) pseudo_output.size() < n_ctx; ++j) { |
| 96 | const llama_token ground_truth = inp_slice[pseudo_output.size()]; |
| 97 | const llama_token drafted = draft[j]; |
| 98 | |
| 99 | if (ground_truth != drafted) { |
| 100 | break; |
| 101 | } |
| 102 | |
| 103 | ++n_accept; |
| 104 | pseudo_output.push_back(x: ground_truth); |
| 105 | |
| 106 | { |
| 107 | const int64_t t_start_draft_us = ggml_time_us(); |
| 108 | common_ngram_cache_update(ngram_cache&: ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp_data&: pseudo_output, nnew: 1, print_progress: false); |
| 109 | t_draft_us += ggml_time_us() - t_start_draft_us; |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | // After each simulated batch decoding simulate the sampling of a single token: |
| 114 | if ((int) pseudo_output.size() < n_ctx) { |
| 115 | pseudo_output.push_back(x: inp_slice[pseudo_output.size()]); |
| 116 | { |
| 117 | const int64_t t_start_draft_us = ggml_time_us(); |
| 118 | common_ngram_cache_update(ngram_cache&: ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp_data&: pseudo_output, nnew: 1, print_progress: false); |
| 119 | t_draft_us += ggml_time_us() - t_start_draft_us; |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | draft.erase(position: draft.begin()); |
| 124 | |
| 125 | } |
| 126 | if (i_start > 0 && i_start / 100000 != (i_start - n_ctx) / 100000) { |
| 127 | const int64_t t_now_ms = ggml_time_ms(); |
| 128 | const int64_t eta_ms = (n_input - i_start) * (t_now_ms - t_start_ms) / i_start; |
| 129 | const int64_t eta_min = eta_ms / (60*1000); |
| 130 | const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000; |
| 131 | |
| 132 | LOG_INF("lookup-stats: %d/%d done, ETA: %02" PRId64 ":%02" PRId64 "\n" , i_start, n_input, eta_min, eta_s); |
| 133 | } |
| 134 | |
| 135 | // After each chunk, update the dynamic ngram cache with the context ngram cache: |
| 136 | common_ngram_cache_merge(ngram_cache_target&: ngram_cache_dynamic, ngram_cache_add&: ngram_cache_context); |
| 137 | ngram_cache_context.clear(); |
| 138 | } |
| 139 | |
| 140 | LOG("\n" ); |
| 141 | |
| 142 | LOG_INF("\n" ); |
| 143 | LOG_INF("n_draft = %d\n" , n_draft); |
| 144 | LOG_INF("n_predict = %d\n" , n_input - n_input % n_ctx); |
| 145 | LOG_INF("n_drafted = %d\n" , n_drafted); |
| 146 | LOG_INF("t_draft_flat = %.2f ms\n" , t_draft_flat_us*1e-3); |
| 147 | LOG_INF("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n" , |
| 148 | t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us)); |
| 149 | LOG_INF("n_accept = %d\n" , n_accept); |
| 150 | LOG_INF("accept = %.3f%%\n" , 100.0f * n_accept / n_drafted); |
| 151 | |
| 152 | llama_backend_free(); |
| 153 | |
| 154 | LOG("\n\n" ); |
| 155 | |
| 156 | return 0; |
| 157 | } |
| 158 | |