| 1 | #include "arg.h" |
| 2 | #include "ggml.h" |
| 3 | #include "common.h" |
| 4 | #include "ngram-cache.h" |
| 5 | #include "sampling.h" |
| 6 | #include "log.h" |
| 7 | #include "llama.h" |
| 8 | |
| 9 | #include <cstdint> |
| 10 | #include <cstdio> |
| 11 | #include <fstream> |
| 12 | #include <string> |
| 13 | #include <vector> |
| 14 | |
| 15 | int main(int argc, char ** argv){ |
| 16 | common_params params; |
| 17 | |
| 18 | if (!common_params_parse(argc, argv, params, ex: LLAMA_EXAMPLE_LOOKUP)) { |
| 19 | return 1; |
| 20 | } |
| 21 | |
| 22 | common_init(); |
| 23 | |
| 24 | // max. number of additional tokens to draft if match is found |
| 25 | const int n_draft = params.speculative.n_max; |
| 26 | |
| 27 | // init llama.cpp |
| 28 | llama_backend_init(); |
| 29 | llama_numa_init(numa: params.numa); |
| 30 | |
| 31 | // load the model |
| 32 | common_init_result llama_init = common_init_from_params(params); |
| 33 | |
| 34 | llama_model * model = llama_init.model.get(); |
| 35 | llama_context * ctx = llama_init.context.get(); |
| 36 | |
| 37 | const llama_vocab * vocab = llama_model_get_vocab(model); |
| 38 | |
| 39 | // tokenize the prompt |
| 40 | std::vector<llama_token> inp; |
| 41 | inp = common_tokenize(ctx, text: params.prompt, add_special: true, parse_special: true); |
| 42 | |
| 43 | common_ngram_cache ngram_cache_context; |
| 44 | common_ngram_cache ngram_cache_dynamic; |
| 45 | common_ngram_cache ngram_cache_static; |
| 46 | int64_t t_draft_flat_us = 0; |
| 47 | int64_t t_draft_us = 0; |
| 48 | |
| 49 | { |
| 50 | // Fill up context ngram cache with tokens from user input: |
| 51 | const int64_t t_start_draft_us = ggml_time_us(); |
| 52 | common_ngram_cache_update(ngram_cache&: ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp_data&: inp, nnew: inp.size(), print_progress: false); |
| 53 | |
| 54 | if (!params.lookup_cache_static.empty()) { |
| 55 | try { |
| 56 | ngram_cache_static = common_ngram_cache_load(filename&: params.lookup_cache_static); |
| 57 | } catch (std::ifstream::failure const &) { |
| 58 | LOG_ERR("failed to open static lookup cache: %s" , params.lookup_cache_static.c_str()); |
| 59 | exit(status: 1); |
| 60 | } |
| 61 | } |
| 62 | |
| 63 | if (!params.lookup_cache_dynamic.empty()) { |
| 64 | try { |
| 65 | ngram_cache_dynamic = common_ngram_cache_load(filename&: params.lookup_cache_dynamic); |
| 66 | } catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program |
| 67 | } |
| 68 | |
| 69 | t_draft_flat_us += ggml_time_us() - t_start_draft_us; |
| 70 | } |
| 71 | |
| 72 | const int max_context_size = llama_n_ctx(ctx); |
| 73 | const int max_tokens_list_size = max_context_size - 4; |
| 74 | |
| 75 | if ((int) inp.size() > max_tokens_list_size) { |
| 76 | LOG_ERR("%s: prompt too long (%d tokens, max %d)\n" , __func__, (int) inp.size(), max_tokens_list_size); |
| 77 | return 1; |
| 78 | } |
| 79 | |
| 80 | LOG("\n\n" ); |
| 81 | |
| 82 | for (auto id : inp) { |
| 83 | LOG("%s" , common_token_to_piece(ctx, id).c_str()); |
| 84 | } |
| 85 | |
| 86 | fflush(stderr); |
| 87 | |
| 88 | const int n_input = inp.size(); |
| 89 | |
| 90 | const auto t_enc_start = ggml_time_us(); |
| 91 | |
| 92 | llama_decode(ctx, batch: llama_batch_get_one( tokens: inp.data(), n_tokens: n_input - 1)); |
| 93 | llama_decode(ctx, batch: llama_batch_get_one(tokens: &inp.back(), n_tokens: 1)); |
| 94 | |
| 95 | const auto t_enc_end = ggml_time_us(); |
| 96 | |
| 97 | int n_predict = 0; |
| 98 | int n_drafted = 0; |
| 99 | int n_accept = 0; |
| 100 | |
| 101 | int n_past = inp.size(); |
| 102 | |
| 103 | bool has_eos = false; |
| 104 | |
| 105 | struct common_sampler * smpl = common_sampler_init(model, params: params.sampling); |
| 106 | |
| 107 | std::vector<llama_token> draft; |
| 108 | |
| 109 | llama_batch batch_tgt = llama_batch_init(n_tokens: params.n_ctx, embd: 0, n_seq_max: 1); |
| 110 | |
| 111 | const auto t_dec_start = ggml_time_us(); |
| 112 | |
| 113 | while (true) { |
| 114 | // print current draft sequence |
| 115 | LOG_DBG("drafted %s\n" , string_from(ctx, draft).c_str()); |
| 116 | |
| 117 | int i_dft = 0; |
| 118 | while (true) { |
| 119 | // sample from the target model |
| 120 | llama_token id = common_sampler_sample(gsmpl: smpl, ctx, idx: i_dft); |
| 121 | |
| 122 | common_sampler_accept(gsmpl: smpl, token: id, accept_grammar: true); |
| 123 | |
| 124 | const std::string token_str = common_token_to_piece(ctx, token: id); |
| 125 | |
| 126 | if (!params.use_color) { |
| 127 | LOG("%s" , token_str.c_str()); |
| 128 | } |
| 129 | |
| 130 | if (llama_vocab_is_eog(vocab, token: id)) { |
| 131 | has_eos = true; |
| 132 | } |
| 133 | |
| 134 | ++n_predict; |
| 135 | |
| 136 | // check if the target token matches the draft |
| 137 | if (i_dft < (int) draft.size() && id == draft[i_dft]) { |
| 138 | LOG_DBG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n" , i_dft, id, token_str.c_str()); |
| 139 | ++n_accept; |
| 140 | ++n_past; |
| 141 | ++i_dft; |
| 142 | inp.push_back(x: id); |
| 143 | { |
| 144 | // Update context ngram cache with the newly accepted token: |
| 145 | const int64_t t_start_draft_us = ggml_time_us(); |
| 146 | common_ngram_cache_update(ngram_cache&: ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp_data&: inp, nnew: 1, print_progress: false); |
| 147 | t_draft_us += ggml_time_us() - t_start_draft_us; |
| 148 | } |
| 149 | |
| 150 | if (params.use_color) { |
| 151 | // color accepted draft token |
| 152 | LOG("\033[34m%s\033[0m" , token_str.c_str()); |
| 153 | fflush(stdout); |
| 154 | } |
| 155 | continue; |
| 156 | } |
| 157 | |
| 158 | if (params.use_color) { |
| 159 | LOG("%s" , token_str.c_str()); |
| 160 | } |
| 161 | fflush(stdout); |
| 162 | |
| 163 | |
| 164 | LOG_DBG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n" , id, token_str.c_str()); |
| 165 | |
| 166 | draft.clear(); |
| 167 | draft.push_back(x: id); |
| 168 | inp.push_back(x: id); |
| 169 | { |
| 170 | // Update context ngram cache with the newly accepted token: |
| 171 | const int64_t t_start_draft_us = ggml_time_us(); |
| 172 | common_ngram_cache_update(ngram_cache&: ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp_data&: inp, nnew: 1, print_progress: false); |
| 173 | t_draft_us += ggml_time_us() - t_start_draft_us; |
| 174 | } |
| 175 | break; |
| 176 | } |
| 177 | |
| 178 | if ((params.n_predict > 0 && n_predict > params.n_predict) || has_eos) { |
| 179 | break; |
| 180 | } |
| 181 | |
| 182 | // KV cache management |
| 183 | // clean the cache of draft tokens that weren't accepted |
| 184 | llama_memory_seq_rm(mem: llama_get_memory(ctx), seq_id: 0, p0: n_past, p1: -1); |
| 185 | |
| 186 | common_batch_clear(batch&: batch_tgt); |
| 187 | common_batch_add(batch&: batch_tgt, id: draft[0], pos: n_past, seq_ids: { 0 }, logits: true); |
| 188 | |
| 189 | // Draft already contains a single token sampled from the model: |
| 190 | GGML_ASSERT(draft.size() == 1); |
| 191 | GGML_ASSERT(draft[0] == inp.back()); |
| 192 | const int64_t t_start_draft_us = ggml_time_us(); |
| 193 | |
| 194 | common_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, nc_context&: ngram_cache_context, nc_dynamic&: ngram_cache_dynamic, nc_static&: ngram_cache_static); |
| 195 | |
| 196 | for (size_t i = 1; i < draft.size(); ++i) { |
| 197 | common_batch_add(batch&: batch_tgt, id: draft[i], pos: n_past + i, seq_ids: { 0 }, logits: true); |
| 198 | } |
| 199 | |
| 200 | t_draft_us += ggml_time_us() - t_start_draft_us; |
| 201 | n_drafted += draft.size() - 1; |
| 202 | |
| 203 | llama_decode(ctx, batch: batch_tgt); |
| 204 | ++n_past; |
| 205 | |
| 206 | draft.erase(position: draft.begin()); |
| 207 | } |
| 208 | |
| 209 | auto t_dec_end = ggml_time_us(); |
| 210 | |
| 211 | // Update dynamic ngram cache with context ngram cache and save it to disk: |
| 212 | common_ngram_cache_merge(ngram_cache_target&: ngram_cache_dynamic, ngram_cache_add&: ngram_cache_context); |
| 213 | common_ngram_cache_save(ngram_cache&: ngram_cache_dynamic, filename&: params.lookup_cache_dynamic); |
| 214 | |
| 215 | LOG("\n\n" ); |
| 216 | |
| 217 | LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n" , n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); |
| 218 | LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n" , n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); |
| 219 | |
| 220 | LOG_INF("\n" ); |
| 221 | LOG_INF("n_draft = %d\n" , n_draft); |
| 222 | LOG_INF("n_predict = %d\n" , n_predict); |
| 223 | LOG_INF("n_drafted = %d\n" , n_drafted); |
| 224 | LOG_INF("t_draft_flat = %.2f ms\n" , t_draft_flat_us*1e-3); |
| 225 | LOG_INF("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n" , |
| 226 | t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us)); |
| 227 | LOG_INF("n_accept = %d\n" , n_accept); |
| 228 | LOG_INF("accept = %.3f%%\n" , 100.0f * n_accept / n_drafted); |
| 229 | |
| 230 | LOG_INF("\ntarget:\n\n" ); |
| 231 | common_perf_print(ctx, gsmpl: smpl); |
| 232 | |
| 233 | common_sampler_free(gsmpl: smpl); |
| 234 | |
| 235 | llama_batch_free(batch: batch_tgt); |
| 236 | |
| 237 | llama_backend_free(); |
| 238 | |
| 239 | LOG("\n\n" ); |
| 240 | |
| 241 | return 0; |
| 242 | } |
| 243 | |