1#include "arg.h"
2#include "ggml.h"
3#include "common.h"
4#include "ngram-cache.h"
5#include "sampling.h"
6#include "log.h"
7#include "llama.h"
8
9#include <cstdint>
10#include <cstdio>
11#include <fstream>
12#include <string>
13#include <vector>
14
15int main(int argc, char ** argv){
16 common_params params;
17
18 if (!common_params_parse(argc, argv, params, ex: LLAMA_EXAMPLE_LOOKUP)) {
19 return 1;
20 }
21
22 common_init();
23
24 // max. number of additional tokens to draft if match is found
25 const int n_draft = params.speculative.n_max;
26
27 // init llama.cpp
28 llama_backend_init();
29 llama_numa_init(numa: params.numa);
30
31 // load the model
32 common_init_result llama_init = common_init_from_params(params);
33
34 llama_model * model = llama_init.model.get();
35 llama_context * ctx = llama_init.context.get();
36
37 const llama_vocab * vocab = llama_model_get_vocab(model);
38
39 // tokenize the prompt
40 std::vector<llama_token> inp;
41 inp = common_tokenize(ctx, text: params.prompt, add_special: true, parse_special: true);
42
43 common_ngram_cache ngram_cache_context;
44 common_ngram_cache ngram_cache_dynamic;
45 common_ngram_cache ngram_cache_static;
46 int64_t t_draft_flat_us = 0;
47 int64_t t_draft_us = 0;
48
49 {
50 // Fill up context ngram cache with tokens from user input:
51 const int64_t t_start_draft_us = ggml_time_us();
52 common_ngram_cache_update(ngram_cache&: ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp_data&: inp, nnew: inp.size(), print_progress: false);
53
54 if (!params.lookup_cache_static.empty()) {
55 try {
56 ngram_cache_static = common_ngram_cache_load(filename&: params.lookup_cache_static);
57 } catch (std::ifstream::failure const &) {
58 LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
59 exit(status: 1);
60 }
61 }
62
63 if (!params.lookup_cache_dynamic.empty()) {
64 try {
65 ngram_cache_dynamic = common_ngram_cache_load(filename&: params.lookup_cache_dynamic);
66 } catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
67 }
68
69 t_draft_flat_us += ggml_time_us() - t_start_draft_us;
70 }
71
72 const int max_context_size = llama_n_ctx(ctx);
73 const int max_tokens_list_size = max_context_size - 4;
74
75 if ((int) inp.size() > max_tokens_list_size) {
76 LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
77 return 1;
78 }
79
80 LOG("\n\n");
81
82 for (auto id : inp) {
83 LOG("%s", common_token_to_piece(ctx, id).c_str());
84 }
85
86 fflush(stderr);
87
88 const int n_input = inp.size();
89
90 const auto t_enc_start = ggml_time_us();
91
92 llama_decode(ctx, batch: llama_batch_get_one( tokens: inp.data(), n_tokens: n_input - 1));
93 llama_decode(ctx, batch: llama_batch_get_one(tokens: &inp.back(), n_tokens: 1));
94
95 const auto t_enc_end = ggml_time_us();
96
97 int n_predict = 0;
98 int n_drafted = 0;
99 int n_accept = 0;
100
101 int n_past = inp.size();
102
103 bool has_eos = false;
104
105 struct common_sampler * smpl = common_sampler_init(model, params: params.sampling);
106
107 std::vector<llama_token> draft;
108
109 llama_batch batch_tgt = llama_batch_init(n_tokens: params.n_ctx, embd: 0, n_seq_max: 1);
110
111 const auto t_dec_start = ggml_time_us();
112
113 while (true) {
114 // print current draft sequence
115 LOG_DBG("drafted %s\n", string_from(ctx, draft).c_str());
116
117 int i_dft = 0;
118 while (true) {
119 // sample from the target model
120 llama_token id = common_sampler_sample(gsmpl: smpl, ctx, idx: i_dft);
121
122 common_sampler_accept(gsmpl: smpl, token: id, accept_grammar: true);
123
124 const std::string token_str = common_token_to_piece(ctx, token: id);
125
126 if (!params.use_color) {
127 LOG("%s", token_str.c_str());
128 }
129
130 if (llama_vocab_is_eog(vocab, token: id)) {
131 has_eos = true;
132 }
133
134 ++n_predict;
135
136 // check if the target token matches the draft
137 if (i_dft < (int) draft.size() && id == draft[i_dft]) {
138 LOG_DBG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
139 ++n_accept;
140 ++n_past;
141 ++i_dft;
142 inp.push_back(x: id);
143 {
144 // Update context ngram cache with the newly accepted token:
145 const int64_t t_start_draft_us = ggml_time_us();
146 common_ngram_cache_update(ngram_cache&: ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp_data&: inp, nnew: 1, print_progress: false);
147 t_draft_us += ggml_time_us() - t_start_draft_us;
148 }
149
150 if (params.use_color) {
151 // color accepted draft token
152 LOG("\033[34m%s\033[0m", token_str.c_str());
153 fflush(stdout);
154 }
155 continue;
156 }
157
158 if (params.use_color) {
159 LOG("%s", token_str.c_str());
160 }
161 fflush(stdout);
162
163
164 LOG_DBG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
165
166 draft.clear();
167 draft.push_back(x: id);
168 inp.push_back(x: id);
169 {
170 // Update context ngram cache with the newly accepted token:
171 const int64_t t_start_draft_us = ggml_time_us();
172 common_ngram_cache_update(ngram_cache&: ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp_data&: inp, nnew: 1, print_progress: false);
173 t_draft_us += ggml_time_us() - t_start_draft_us;
174 }
175 break;
176 }
177
178 if ((params.n_predict > 0 && n_predict > params.n_predict) || has_eos) {
179 break;
180 }
181
182 // KV cache management
183 // clean the cache of draft tokens that weren't accepted
184 llama_memory_seq_rm(mem: llama_get_memory(ctx), seq_id: 0, p0: n_past, p1: -1);
185
186 common_batch_clear(batch&: batch_tgt);
187 common_batch_add(batch&: batch_tgt, id: draft[0], pos: n_past, seq_ids: { 0 }, logits: true);
188
189 // Draft already contains a single token sampled from the model:
190 GGML_ASSERT(draft.size() == 1);
191 GGML_ASSERT(draft[0] == inp.back());
192 const int64_t t_start_draft_us = ggml_time_us();
193
194 common_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, nc_context&: ngram_cache_context, nc_dynamic&: ngram_cache_dynamic, nc_static&: ngram_cache_static);
195
196 for (size_t i = 1; i < draft.size(); ++i) {
197 common_batch_add(batch&: batch_tgt, id: draft[i], pos: n_past + i, seq_ids: { 0 }, logits: true);
198 }
199
200 t_draft_us += ggml_time_us() - t_start_draft_us;
201 n_drafted += draft.size() - 1;
202
203 llama_decode(ctx, batch: batch_tgt);
204 ++n_past;
205
206 draft.erase(position: draft.begin());
207 }
208
209 auto t_dec_end = ggml_time_us();
210
211 // Update dynamic ngram cache with context ngram cache and save it to disk:
212 common_ngram_cache_merge(ngram_cache_target&: ngram_cache_dynamic, ngram_cache_add&: ngram_cache_context);
213 common_ngram_cache_save(ngram_cache&: ngram_cache_dynamic, filename&: params.lookup_cache_dynamic);
214
215 LOG("\n\n");
216
217 LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
218 LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
219
220 LOG_INF("\n");
221 LOG_INF("n_draft = %d\n", n_draft);
222 LOG_INF("n_predict = %d\n", n_predict);
223 LOG_INF("n_drafted = %d\n", n_drafted);
224 LOG_INF("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
225 LOG_INF("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
226 t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
227 LOG_INF("n_accept = %d\n", n_accept);
228 LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
229
230 LOG_INF("\ntarget:\n\n");
231 common_perf_print(ctx, gsmpl: smpl);
232
233 common_sampler_free(gsmpl: smpl);
234
235 llama_batch_free(batch: batch_tgt);
236
237 llama_backend_free();
238
239 LOG("\n\n");
240
241 return 0;
242}
243