1#include "arg.h"
2#include "common.h"
3#include "log.h"
4#include "llama.h"
5
6#include <algorithm>
7#include <fstream>
8#include <iostream> // TODO: remove me
9
10static void print_usage(int, char ** argv) {
11 LOG("\nexample usage:\n");
12 LOG("\n %s --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator .\n", argv[0]);
13 LOG("\n");
14}
15
16struct chunk {
17 // filename
18 std::string filename;
19 // original file position
20 size_t filepos;
21 // original text data
22 std::string textdata;
23 // tokenized text data
24 std::vector<llama_token> tokens;
25 // embedding
26 std::vector<float> embedding;
27};
28
29// chunk file data to chunks of size >= chunk_size
30// chunk_separator is the separator between chunks
31static std::vector<chunk> chunk_file(const std::string & filename, int chunk_size, const std::string & chunk_separator) {
32 std::vector<chunk> chunks;
33 std::ifstream f(filename.c_str());
34
35 if (!f.is_open()) {
36 LOG_ERR("could not open file %s\n", filename.c_str());
37 return chunks;
38 }
39
40 chunk current_chunk;
41 char buffer[1024];
42 int64_t filepos = 0;
43 std::string current;
44 while (f.read(s: buffer, n: 1024)) {
45 current += std::string(buffer, f.gcount());
46 size_t pos;
47 while ((pos = current.find(str: chunk_separator)) != std::string::npos) {
48 current_chunk.textdata += current.substr(pos: 0, n: pos + chunk_separator.size());
49 if ((int) current_chunk.textdata.size() > chunk_size) {
50 // save chunk
51 current_chunk.filepos = filepos;
52 current_chunk.filename = filename;
53 chunks.push_back(x: current_chunk);
54 // update filepos
55 filepos += (int) current_chunk.textdata.size();
56 // reset current_chunk
57 current_chunk = chunk();
58 }
59 current = current.substr(pos: pos + chunk_separator.size());
60 }
61
62 }
63 // add leftover data to last chunk
64 if (current_chunk.textdata.size() > 0) {
65 if (chunks.empty()) {
66 current_chunk.filepos = filepos;
67 current_chunk.filename = filename;
68 chunks.push_back(x: current_chunk);
69 } else {
70 chunks.back().textdata += current_chunk.textdata;
71 }
72 }
73 f.close();
74 return chunks;
75}
76
77static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
78 size_t n_tokens = tokens.size();
79 for (size_t i = 0; i < n_tokens; i++) {
80 common_batch_add(batch, id: tokens[i], pos: i, seq_ids: { seq_id }, logits: true);
81 }
82}
83
84static void batch_process(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
85 // clear previous kv_cache values (irrelevant for embeddings)
86 llama_memory_clear(mem: llama_get_memory(ctx), data: false);
87
88 // run model
89 LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
90 if (llama_decode(ctx, batch) < 0) {
91 LOG_ERR("%s : failed to process\n", __func__);
92 }
93
94 for (int i = 0; i < batch.n_tokens; i++) {
95 if (!batch.logits[i]) {
96 continue;
97 }
98
99 // try to get sequence embeddings - supported only when pooling_type is not NONE
100 const float * embd = llama_get_embeddings_seq(ctx, seq_id: batch.seq_id[i][0]);
101 if (embd == NULL) {
102 embd = llama_get_embeddings_ith(ctx, i);
103 if (embd == NULL) {
104 LOG_ERR("%s: failed to get embeddings for token %d\n", __func__, i);
105 continue;
106 }
107 }
108
109 float * out = output + batch.seq_id[i][0] * n_embd;
110 common_embd_normalize(inp: embd, out, n: n_embd, embd_norm: 2);
111 }
112}
113
114int main(int argc, char ** argv) {
115 common_params params;
116
117 if (!common_params_parse(argc, argv, params, ex: LLAMA_EXAMPLE_RETRIEVAL, print_usage)) {
118 return 1;
119 }
120
121 common_init();
122
123 // For BERT models, batch size must be equal to ubatch size
124 params.n_ubatch = params.n_batch;
125 params.embedding = true;
126
127 if (params.chunk_size <= 0) {
128 LOG_ERR("chunk_size must be positive\n");
129 return 1;
130 }
131 if (params.context_files.empty()) {
132 LOG_ERR("context_files must be specified\n");
133 return 1;
134 }
135
136 LOG_INF("processing files:\n");
137 for (auto & context_file : params.context_files) {
138 LOG_INF("%s\n", context_file.c_str());
139 }
140
141 std::vector<chunk> chunks;
142 for (auto & context_file : params.context_files) {
143 std::vector<chunk> file_chunk = chunk_file(filename: context_file, chunk_size: params.chunk_size, chunk_separator: params.chunk_separator);
144 chunks.insert(position: chunks.end(), first: file_chunk.begin(), last: file_chunk.end());
145 }
146 LOG_INF("Number of chunks: %zu\n", chunks.size());
147
148 llama_backend_init();
149 llama_numa_init(numa: params.numa);
150
151 // load the model
152 common_init_result llama_init = common_init_from_params(params);
153
154 llama_model * model = llama_init.model.get();
155 llama_context * ctx = llama_init.context.get();
156
157 if (model == NULL) {
158 LOG_ERR("%s: unable to load model\n", __func__);
159 return 1;
160 }
161
162 const llama_vocab * vocab = llama_model_get_vocab(model);
163
164 const int n_ctx_train = llama_model_n_ctx_train(model);
165 const int n_ctx = llama_n_ctx(ctx);
166
167 const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
168 if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
169 LOG_ERR("%s: pooling type NONE not supported\n", __func__);
170 return 1;
171 }
172
173 if (n_ctx > n_ctx_train) {
174 LOG_WRN("%s: warning: model was trained on only %d context tokens (%d specified)\n",
175 __func__, n_ctx_train, n_ctx);
176 }
177
178 // print system information
179 {
180 LOG_INF("\n");
181 LOG_INF("%s\n", common_params_get_system_info(params).c_str());
182 }
183
184 // max batch size
185 const uint64_t n_batch = params.n_batch;
186 GGML_ASSERT(params.n_batch >= params.n_ctx);
187
188 // tokenize the prompts and trim
189 for (auto & chunk : chunks) {
190 auto inp = common_tokenize(ctx, text: chunk.textdata, add_special: true, parse_special: false);
191 if (inp.size() > n_batch) {
192 LOG_ERR("%s: chunk size (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
193 __func__, (long long int) inp.size(), (long long int) n_batch);
194 return 1;
195 }
196 // add eos if not present
197 if (llama_vocab_eos(vocab) >= 0 && (inp.empty() || inp.back() != llama_vocab_eos(vocab))) {
198 inp.push_back(x: llama_vocab_eos(vocab));
199 }
200 chunk.tokens = inp;
201 }
202
203 // tokenization stats
204 if (params.verbose_prompt) {
205 for (int i = 0; i < (int) chunks.size(); i++) {
206 LOG_INF("%s: prompt %d: '%s'\n", __func__, i, chunks[i].textdata.c_str());
207 LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, chunks[i].tokens.size());
208 for (int j = 0; j < (int) chunks[i].tokens.size(); j++) {
209 LOG_INF("%6d -> '%s'\n", chunks[i].tokens[j], common_token_to_piece(ctx, chunks[i].tokens[j]).c_str());
210 }
211 LOG_INF("\n\n");
212 }
213 }
214
215 // initialize batch
216 const int n_chunks = chunks.size();
217 struct llama_batch batch = llama_batch_init(n_tokens: n_batch, embd: 0, n_seq_max: 1);
218
219 // allocate output
220 const int n_embd = llama_model_n_embd(model);
221 std::vector<float> embeddings(n_chunks * n_embd, 0);
222 float * emb = embeddings.data();
223
224 // break into batches
225 int p = 0; // number of prompts processed already
226 int s = 0; // number of prompts in current batch
227 for (int k = 0; k < n_chunks; k++) {
228 // clamp to n_batch tokens
229 auto & inp = chunks[k].tokens;
230
231 const uint64_t n_toks = inp.size();
232
233 // encode if at capacity
234 if (batch.n_tokens + n_toks > n_batch) {
235 float * out = emb + p * n_embd;
236 batch_process(ctx, batch, output: out, n_seq: s, n_embd);
237 common_batch_clear(batch);
238 p += s;
239 s = 0;
240 }
241
242 // add to batch
243 batch_add_seq(batch, tokens: inp, seq_id: s);
244 s += 1;
245 }
246
247 // final batch
248 float * out = emb + p * n_embd;
249 batch_process(ctx, batch, output: out, n_seq: s, n_embd);
250
251 // save embeddings to chunks
252 for (int i = 0; i < n_chunks; i++) {
253 chunks[i].embedding = std::vector<float>(emb + i * n_embd, emb + (i + 1) * n_embd);
254 // clear tokens as they are no longer needed
255 chunks[i].tokens.clear();
256 }
257
258 struct llama_batch query_batch = llama_batch_init(n_tokens: n_batch, embd: 0, n_seq_max: 1);
259
260 // start loop, receive query and return top k similar chunks based on cosine similarity
261 std::string query;
262 while (true) {
263 LOG("Enter query: ");
264 std::getline(is&: std::cin, str&: query);
265 std::vector<int32_t> query_tokens = common_tokenize(ctx, text: query, add_special: true);
266
267 batch_add_seq(batch&: query_batch, tokens: query_tokens, seq_id: 0);
268
269 std::vector<float> query_emb(n_embd, 0);
270 batch_process(ctx, batch&: query_batch, output: query_emb.data(), n_seq: 1, n_embd);
271
272 common_batch_clear(batch&: query_batch);
273
274 // compute cosine similarities
275 {
276 std::vector<std::pair<int, float>> similarities;
277 for (int i = 0; i < n_chunks; i++) {
278 float sim = common_embd_similarity_cos(embd1: chunks[i].embedding.data(), embd2: query_emb.data(), n: n_embd);
279 similarities.push_back(x: std::make_pair(x&: i, y&: sim));
280 }
281
282 // sort similarities
283 std::sort(first: similarities.begin(), last: similarities.end(), comp: [](const std::pair<int, float> & a, const std::pair<int, float> & b) {
284 return a.second > b.second;
285 });
286
287 LOG("Top %d similar chunks:\n", params.sampling.top_k);
288 for (int i = 0; i < std::min(a: params.sampling.top_k, b: (int) chunks.size()); i++) {
289 LOG("filename: %s\n", chunks[similarities[i].first].filename.c_str());
290 LOG("filepos: %lld\n", (long long int) chunks[similarities[i].first].filepos);
291 LOG("similarity: %f\n", similarities[i].second);
292 LOG("textdata:\n%s\n", chunks[similarities[i].first].textdata.c_str());
293 LOG("--------------------\n");
294 }
295 }
296 }
297
298 LOG("\n");
299 llama_perf_context_print(ctx);
300
301 // clean up
302 llama_batch_free(batch: query_batch);
303 llama_backend_free();
304}
305