| 1 | #include "llama.h" |
| 2 | #include <cstdio> |
| 3 | #include <cstring> |
| 4 | #include <string> |
| 5 | #include <vector> |
| 6 | |
| 7 | static void print_usage(int, char ** argv) { |
| 8 | printf(format: "\nexample usage:\n" ); |
| 9 | printf(format: "\n %s -m model.gguf [-n n_predict] [-ngl n_gpu_layers] [prompt]\n" , argv[0]); |
| 10 | printf(format: "\n" ); |
| 11 | } |
| 12 | |
| 13 | int main(int argc, char ** argv) { |
| 14 | // path to the model gguf file |
| 15 | std::string model_path; |
| 16 | // prompt to generate text from |
| 17 | std::string prompt = "Hello my name is" ; |
| 18 | // number of layers to offload to the GPU |
| 19 | int ngl = 99; |
| 20 | // number of tokens to predict |
| 21 | int n_predict = 32; |
| 22 | |
| 23 | // parse command line arguments |
| 24 | |
| 25 | { |
| 26 | int i = 1; |
| 27 | for (; i < argc; i++) { |
| 28 | if (strcmp(s1: argv[i], s2: "-m" ) == 0) { |
| 29 | if (i + 1 < argc) { |
| 30 | model_path = argv[++i]; |
| 31 | } else { |
| 32 | print_usage(argc, argv); |
| 33 | return 1; |
| 34 | } |
| 35 | } else if (strcmp(s1: argv[i], s2: "-n" ) == 0) { |
| 36 | if (i + 1 < argc) { |
| 37 | try { |
| 38 | n_predict = std::stoi(str: argv[++i]); |
| 39 | } catch (...) { |
| 40 | print_usage(argc, argv); |
| 41 | return 1; |
| 42 | } |
| 43 | } else { |
| 44 | print_usage(argc, argv); |
| 45 | return 1; |
| 46 | } |
| 47 | } else if (strcmp(s1: argv[i], s2: "-ngl" ) == 0) { |
| 48 | if (i + 1 < argc) { |
| 49 | try { |
| 50 | ngl = std::stoi(str: argv[++i]); |
| 51 | } catch (...) { |
| 52 | print_usage(argc, argv); |
| 53 | return 1; |
| 54 | } |
| 55 | } else { |
| 56 | print_usage(argc, argv); |
| 57 | return 1; |
| 58 | } |
| 59 | } else { |
| 60 | // prompt starts here |
| 61 | break; |
| 62 | } |
| 63 | } |
| 64 | if (model_path.empty()) { |
| 65 | print_usage(argc, argv); |
| 66 | return 1; |
| 67 | } |
| 68 | if (i < argc) { |
| 69 | prompt = argv[i++]; |
| 70 | for (; i < argc; i++) { |
| 71 | prompt += " " ; |
| 72 | prompt += argv[i]; |
| 73 | } |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | // load dynamic backends |
| 78 | |
| 79 | ggml_backend_load_all(); |
| 80 | |
| 81 | // initialize the model |
| 82 | |
| 83 | llama_model_params model_params = llama_model_default_params(); |
| 84 | model_params.n_gpu_layers = ngl; |
| 85 | |
| 86 | llama_model * model = llama_model_load_from_file(path_model: model_path.c_str(), params: model_params); |
| 87 | |
| 88 | if (model == NULL) { |
| 89 | fprintf(stderr , format: "%s: error: unable to load model\n" , __func__); |
| 90 | return 1; |
| 91 | } |
| 92 | |
| 93 | const llama_vocab * vocab = llama_model_get_vocab(model); |
| 94 | // tokenize the prompt |
| 95 | |
| 96 | // find the number of tokens in the prompt |
| 97 | const int n_prompt = -llama_tokenize(vocab, text: prompt.c_str(), text_len: prompt.size(), NULL, n_tokens_max: 0, add_special: true, parse_special: true); |
| 98 | |
| 99 | // allocate space for the tokens and tokenize the prompt |
| 100 | std::vector<llama_token> prompt_tokens(n_prompt); |
| 101 | if (llama_tokenize(vocab, text: prompt.c_str(), text_len: prompt.size(), tokens: prompt_tokens.data(), n_tokens_max: prompt_tokens.size(), add_special: true, parse_special: true) < 0) { |
| 102 | fprintf(stderr, format: "%s: error: failed to tokenize the prompt\n" , __func__); |
| 103 | return 1; |
| 104 | } |
| 105 | |
| 106 | // initialize the context |
| 107 | |
| 108 | llama_context_params ctx_params = llama_context_default_params(); |
| 109 | // n_ctx is the context size |
| 110 | ctx_params.n_ctx = n_prompt + n_predict - 1; |
| 111 | // n_batch is the maximum number of tokens that can be processed in a single call to llama_decode |
| 112 | ctx_params.n_batch = n_prompt; |
| 113 | // enable performance counters |
| 114 | ctx_params.no_perf = false; |
| 115 | |
| 116 | llama_context * ctx = llama_init_from_model(model, params: ctx_params); |
| 117 | |
| 118 | if (ctx == NULL) { |
| 119 | fprintf(stderr , format: "%s: error: failed to create the llama_context\n" , __func__); |
| 120 | return 1; |
| 121 | } |
| 122 | |
| 123 | // initialize the sampler |
| 124 | |
| 125 | auto sparams = llama_sampler_chain_default_params(); |
| 126 | sparams.no_perf = false; |
| 127 | llama_sampler * smpl = llama_sampler_chain_init(params: sparams); |
| 128 | |
| 129 | llama_sampler_chain_add(chain: smpl, smpl: llama_sampler_init_greedy()); |
| 130 | |
| 131 | // print the prompt token-by-token |
| 132 | |
| 133 | for (auto id : prompt_tokens) { |
| 134 | char buf[128]; |
| 135 | int n = llama_token_to_piece(vocab, token: id, buf, length: sizeof(buf), lstrip: 0, special: true); |
| 136 | if (n < 0) { |
| 137 | fprintf(stderr, format: "%s: error: failed to convert token to piece\n" , __func__); |
| 138 | return 1; |
| 139 | } |
| 140 | std::string s(buf, n); |
| 141 | printf(format: "%s" , s.c_str()); |
| 142 | } |
| 143 | |
| 144 | // prepare a batch for the prompt |
| 145 | |
| 146 | llama_batch batch = llama_batch_get_one(tokens: prompt_tokens.data(), n_tokens: prompt_tokens.size()); |
| 147 | |
| 148 | if (llama_model_has_encoder(model)) { |
| 149 | if (llama_encode(ctx, batch)) { |
| 150 | fprintf(stderr, format: "%s : failed to eval\n" , __func__); |
| 151 | return 1; |
| 152 | } |
| 153 | |
| 154 | llama_token decoder_start_token_id = llama_model_decoder_start_token(model); |
| 155 | if (decoder_start_token_id == LLAMA_TOKEN_NULL) { |
| 156 | decoder_start_token_id = llama_vocab_bos(vocab); |
| 157 | } |
| 158 | |
| 159 | batch = llama_batch_get_one(tokens: &decoder_start_token_id, n_tokens: 1); |
| 160 | } |
| 161 | |
| 162 | // main loop |
| 163 | |
| 164 | const auto t_main_start = ggml_time_us(); |
| 165 | int n_decode = 0; |
| 166 | llama_token new_token_id; |
| 167 | |
| 168 | for (int n_pos = 0; n_pos + batch.n_tokens < n_prompt + n_predict; ) { |
| 169 | // evaluate the current batch with the transformer model |
| 170 | if (llama_decode(ctx, batch)) { |
| 171 | fprintf(stderr, format: "%s : failed to eval, return code %d\n" , __func__, 1); |
| 172 | return 1; |
| 173 | } |
| 174 | |
| 175 | n_pos += batch.n_tokens; |
| 176 | |
| 177 | // sample the next token |
| 178 | { |
| 179 | new_token_id = llama_sampler_sample(smpl, ctx, idx: -1); |
| 180 | |
| 181 | // is it an end of generation? |
| 182 | if (llama_vocab_is_eog(vocab, token: new_token_id)) { |
| 183 | break; |
| 184 | } |
| 185 | |
| 186 | char buf[128]; |
| 187 | int n = llama_token_to_piece(vocab, token: new_token_id, buf, length: sizeof(buf), lstrip: 0, special: true); |
| 188 | if (n < 0) { |
| 189 | fprintf(stderr, format: "%s: error: failed to convert token to piece\n" , __func__); |
| 190 | return 1; |
| 191 | } |
| 192 | std::string s(buf, n); |
| 193 | printf(format: "%s" , s.c_str()); |
| 194 | fflush(stdout); |
| 195 | |
| 196 | // prepare the next batch with the sampled token |
| 197 | batch = llama_batch_get_one(tokens: &new_token_id, n_tokens: 1); |
| 198 | |
| 199 | n_decode += 1; |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | printf(format: "\n" ); |
| 204 | |
| 205 | const auto t_main_end = ggml_time_us(); |
| 206 | |
| 207 | fprintf(stderr, format: "%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n" , |
| 208 | __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); |
| 209 | |
| 210 | fprintf(stderr, format: "\n" ); |
| 211 | llama_perf_sampler_print(chain: smpl); |
| 212 | llama_perf_context_print(ctx); |
| 213 | fprintf(stderr, format: "\n" ); |
| 214 | |
| 215 | llama_sampler_free(smpl); |
| 216 | llama_free(ctx); |
| 217 | llama_model_free(model); |
| 218 | |
| 219 | return 0; |
| 220 | } |
| 221 | |