| 1 | // Note: porting this file to C++ is a work in progress |
| 2 | |
| 3 | #ifdef _WIN32 |
| 4 | #define WIN32_LEAN_AND_MEAN |
| 5 | #ifndef NOMINMAX |
| 6 | # define NOMINMAX |
| 7 | #endif |
| 8 | #include <windows.h> |
| 9 | #endif |
| 10 | |
| 11 | #include "ggml-backend.h" |
| 12 | #include "ggml-backend-impl.h" |
| 13 | #include "ggml-alloc.h" |
| 14 | #include "ggml-impl.h" |
| 15 | |
| 16 | #include <assert.h> |
| 17 | #include <limits.h> |
| 18 | #include <stdarg.h> |
| 19 | #include <stdio.h> |
| 20 | #include <stdlib.h> |
| 21 | #include <string.h> |
| 22 | #include <algorithm> |
| 23 | #include <vector> |
| 24 | |
| 25 | #ifdef __APPLE__ |
| 26 | #include <sys/types.h> |
| 27 | #include <sys/sysctl.h> |
| 28 | #endif |
| 29 | |
| 30 | |
| 31 | // backend buffer type |
| 32 | |
| 33 | const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) { |
| 34 | GGML_ASSERT(buft); |
| 35 | return buft->iface.get_name(buft); |
| 36 | } |
| 37 | |
| 38 | ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { |
| 39 | if (size == 0) { |
| 40 | // return a dummy buffer for zero-sized allocations |
| 41 | return ggml_backend_buffer_init(buft, iface: {}, NULL, size: 0); |
| 42 | } |
| 43 | |
| 44 | GGML_ASSERT(buft); |
| 45 | return buft->iface.alloc_buffer(buft, size); |
| 46 | } |
| 47 | |
| 48 | size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) { |
| 49 | GGML_ASSERT(buft); |
| 50 | return buft->iface.get_alignment(buft); |
| 51 | } |
| 52 | |
| 53 | size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) { |
| 54 | GGML_ASSERT(buft); |
| 55 | // get_max_size is optional, defaults to SIZE_MAX |
| 56 | if (buft->iface.get_max_size) { |
| 57 | return buft->iface.get_max_size(buft); |
| 58 | } |
| 59 | return SIZE_MAX; |
| 60 | } |
| 61 | |
| 62 | size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) { |
| 63 | GGML_ASSERT(buft); |
| 64 | // get_alloc_size is optional, defaults to ggml_nbytes |
| 65 | if (buft->iface.get_alloc_size) { |
| 66 | size_t size = buft->iface.get_alloc_size(buft, tensor); |
| 67 | assert(size >= ggml_nbytes(tensor)); |
| 68 | return size; |
| 69 | } |
| 70 | return ggml_nbytes(tensor); |
| 71 | } |
| 72 | |
| 73 | bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) { |
| 74 | GGML_ASSERT(buft); |
| 75 | if (buft->iface.is_host) { |
| 76 | return buft->iface.is_host(buft); |
| 77 | } |
| 78 | return false; |
| 79 | } |
| 80 | |
| 81 | ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) { |
| 82 | GGML_ASSERT(buft); |
| 83 | return buft->device; |
| 84 | } |
| 85 | |
| 86 | // backend buffer |
| 87 | |
| 88 | ggml_backend_buffer_t ggml_backend_buffer_init( |
| 89 | ggml_backend_buffer_type_t buft, |
| 90 | struct ggml_backend_buffer_i iface, |
| 91 | void * context, |
| 92 | size_t size) { |
| 93 | ggml_backend_buffer_t buffer = new ggml_backend_buffer { |
| 94 | /* .interface = */ .iface: iface, |
| 95 | /* .buft = */ buft, |
| 96 | /* .context = */ context, |
| 97 | /* .size = */ size, |
| 98 | /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY |
| 99 | }; |
| 100 | |
| 101 | return buffer; |
| 102 | } |
| 103 | |
| 104 | const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) { |
| 105 | return ggml_backend_buft_name(buft: ggml_backend_buffer_get_type(buffer)); |
| 106 | } |
| 107 | |
| 108 | void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) { |
| 109 | if (buffer == NULL) { |
| 110 | return; |
| 111 | } |
| 112 | |
| 113 | if (buffer->iface.free_buffer != NULL) { |
| 114 | buffer->iface.free_buffer(buffer); |
| 115 | } |
| 116 | delete buffer; |
| 117 | } |
| 118 | |
| 119 | size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) { |
| 120 | GGML_ASSERT(buffer); |
| 121 | return buffer->size; |
| 122 | } |
| 123 | |
| 124 | void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) { |
| 125 | GGML_ASSERT(buffer); |
| 126 | // get_base is optional if the buffer is zero-sized |
| 127 | if (buffer->size == 0) { |
| 128 | return NULL; |
| 129 | } |
| 130 | |
| 131 | void * base = buffer->iface.get_base(buffer); |
| 132 | |
| 133 | GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL" ); |
| 134 | |
| 135 | return base; |
| 136 | } |
| 137 | |
| 138 | enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { |
| 139 | GGML_ASSERT(buffer); |
| 140 | // init_tensor is optional |
| 141 | if (buffer->iface.init_tensor) { |
| 142 | return buffer->iface.init_tensor(buffer, tensor); |
| 143 | } |
| 144 | return GGML_STATUS_SUCCESS; |
| 145 | } |
| 146 | |
| 147 | void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { |
| 148 | GGML_ASSERT(buffer); |
| 149 | // clear is optional if the buffer is zero-sized |
| 150 | if (buffer->size == 0) { |
| 151 | return; |
| 152 | } |
| 153 | |
| 154 | buffer->iface.clear(buffer, value); |
| 155 | } |
| 156 | |
| 157 | size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) { |
| 158 | return ggml_backend_buft_get_alignment(buft: ggml_backend_buffer_get_type(buffer)); |
| 159 | } |
| 160 | |
| 161 | size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) { |
| 162 | return ggml_backend_buft_get_max_size(buft: ggml_backend_buffer_get_type(buffer)); |
| 163 | } |
| 164 | |
| 165 | size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor) { |
| 166 | return ggml_backend_buft_get_alloc_size(buft: ggml_backend_buffer_get_type(buffer), tensor); |
| 167 | } |
| 168 | |
| 169 | bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) { |
| 170 | return ggml_backend_buft_is_host(buft: ggml_backend_buffer_get_type(buffer)); |
| 171 | } |
| 172 | |
| 173 | void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) { |
| 174 | GGML_ASSERT(buffer); |
| 175 | buffer->usage = usage; |
| 176 | |
| 177 | // FIXME: add a generic callback to the buffer interface |
| 178 | if (ggml_backend_buffer_is_multi_buffer(buffer)) { |
| 179 | ggml_backend_multi_buffer_set_usage(buffer, usage); |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) { |
| 184 | GGML_ASSERT(buffer); |
| 185 | return buffer->usage; |
| 186 | } |
| 187 | |
| 188 | ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) { |
| 189 | GGML_ASSERT(buffer); |
| 190 | return buffer->buft; |
| 191 | } |
| 192 | |
| 193 | void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) { |
| 194 | GGML_ASSERT(buffer); |
| 195 | if (buffer->iface.reset) { |
| 196 | buffer->iface.reset(buffer); |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) { |
| 201 | ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer; |
| 202 | if (dst_buf->iface.cpy_tensor) { |
| 203 | return dst_buf->iface.cpy_tensor(dst_buf, src, dst); |
| 204 | } |
| 205 | return false; |
| 206 | } |
| 207 | |
| 208 | // backend |
| 209 | |
| 210 | ggml_guid_t ggml_backend_guid(ggml_backend_t backend) { |
| 211 | if (backend == NULL) { |
| 212 | return NULL; |
| 213 | } |
| 214 | return backend->guid; |
| 215 | } |
| 216 | |
| 217 | const char * ggml_backend_name(ggml_backend_t backend) { |
| 218 | if (backend == NULL) { |
| 219 | return "NULL" ; |
| 220 | } |
| 221 | return backend->iface.get_name(backend); |
| 222 | } |
| 223 | |
| 224 | void ggml_backend_free(ggml_backend_t backend) { |
| 225 | if (backend == NULL) { |
| 226 | return; |
| 227 | } |
| 228 | |
| 229 | backend->iface.free(backend); |
| 230 | } |
| 231 | |
| 232 | ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) { |
| 233 | GGML_ASSERT(backend); |
| 234 | return ggml_backend_dev_buffer_type(device: backend->device); |
| 235 | } |
| 236 | |
| 237 | ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) { |
| 238 | return ggml_backend_buft_alloc_buffer(buft: ggml_backend_get_default_buffer_type(backend), size); |
| 239 | } |
| 240 | |
| 241 | size_t ggml_backend_get_alignment(ggml_backend_t backend) { |
| 242 | return ggml_backend_buft_get_alignment(buft: ggml_backend_get_default_buffer_type(backend)); |
| 243 | } |
| 244 | |
| 245 | size_t ggml_backend_get_max_size(ggml_backend_t backend) { |
| 246 | return ggml_backend_buft_get_max_size(buft: ggml_backend_get_default_buffer_type(backend)); |
| 247 | } |
| 248 | |
| 249 | void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { |
| 250 | GGML_ASSERT(backend); |
| 251 | GGML_ASSERT(tensor); |
| 252 | GGML_ASSERT(tensor->data != NULL && "tensor not allocated" ); |
| 253 | GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds" ); |
| 254 | |
| 255 | if (backend->iface.set_tensor_async == NULL) { |
| 256 | ggml_backend_tensor_set(tensor, data, offset, size); |
| 257 | } else { |
| 258 | backend->iface.set_tensor_async(backend, tensor, data, offset, size); |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { |
| 263 | GGML_ASSERT(backend); |
| 264 | GGML_ASSERT(tensor); |
| 265 | GGML_ASSERT(tensor->data != NULL && "tensor not allocated" ); |
| 266 | GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds" ); |
| 267 | |
| 268 | if (backend->iface.get_tensor_async == NULL) { |
| 269 | ggml_backend_tensor_get(tensor, data, offset, size); |
| 270 | } else { |
| 271 | backend->iface.get_tensor_async(backend, tensor, data, offset, size); |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { |
| 276 | GGML_ASSERT(tensor); |
| 277 | ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; |
| 278 | |
| 279 | if (size == 0) { |
| 280 | return; |
| 281 | } |
| 282 | |
| 283 | GGML_ASSERT(buf != NULL && "tensor buffer not set" ); |
| 284 | GGML_ASSERT(tensor->data != NULL && "tensor not allocated" ); |
| 285 | GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds" ); |
| 286 | |
| 287 | buf->iface.set_tensor(buf, tensor, data, offset, size); |
| 288 | } |
| 289 | |
| 290 | void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { |
| 291 | GGML_ASSERT(tensor); |
| 292 | ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; |
| 293 | |
| 294 | if (size == 0) { |
| 295 | return; |
| 296 | } |
| 297 | |
| 298 | GGML_ASSERT(buf != NULL && "tensor buffer not set" ); |
| 299 | GGML_ASSERT(tensor->data != NULL && "tensor not allocated" ); |
| 300 | GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds" ); |
| 301 | |
| 302 | buf->iface.get_tensor(buf, tensor, data, offset, size); |
| 303 | } |
| 304 | |
| 305 | void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { |
| 306 | GGML_ASSERT(tensor); |
| 307 | ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; |
| 308 | |
| 309 | if (size == 0) { |
| 310 | return; |
| 311 | } |
| 312 | |
| 313 | GGML_ASSERT(buf != NULL && "tensor buffer not set" ); |
| 314 | GGML_ASSERT(tensor->data != NULL && "tensor not allocated" ); |
| 315 | GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds" ); |
| 316 | GGML_ASSERT(buf->iface.memset_tensor != NULL && "memset not implemented by backend buffer" ); |
| 317 | |
| 318 | buf->iface.memset_tensor(buf, tensor, value, offset, size); |
| 319 | } |
| 320 | |
| 321 | void ggml_backend_synchronize(ggml_backend_t backend) { |
| 322 | GGML_ASSERT(backend); |
| 323 | if (backend->iface.synchronize == NULL) { |
| 324 | return; |
| 325 | } |
| 326 | |
| 327 | backend->iface.synchronize(backend); |
| 328 | } |
| 329 | |
| 330 | ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) { |
| 331 | GGML_ASSERT(backend); |
| 332 | GGML_ASSERT(backend->iface.graph_plan_create != NULL); |
| 333 | |
| 334 | return backend->iface.graph_plan_create(backend, cgraph); |
| 335 | } |
| 336 | |
| 337 | void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { |
| 338 | GGML_ASSERT(backend); |
| 339 | GGML_ASSERT(backend->iface.graph_plan_free != NULL); |
| 340 | |
| 341 | backend->iface.graph_plan_free(backend, plan); |
| 342 | } |
| 343 | |
| 344 | enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { |
| 345 | GGML_ASSERT(backend); |
| 346 | GGML_ASSERT(backend->iface.graph_plan_compute != NULL); |
| 347 | |
| 348 | return backend->iface.graph_plan_compute(backend, plan); |
| 349 | } |
| 350 | |
| 351 | enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { |
| 352 | enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph); |
| 353 | ggml_backend_synchronize(backend); |
| 354 | return err; |
| 355 | } |
| 356 | |
| 357 | enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) { |
| 358 | GGML_ASSERT(backend); |
| 359 | return backend->iface.graph_compute(backend, cgraph); |
| 360 | } |
| 361 | |
| 362 | bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { |
| 363 | GGML_ASSERT(backend); |
| 364 | return ggml_backend_dev_supports_op(device: backend->device, op); |
| 365 | } |
| 366 | |
| 367 | bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { |
| 368 | GGML_ASSERT(backend); |
| 369 | return ggml_backend_dev_supports_buft(device: backend->device, buft); |
| 370 | } |
| 371 | |
| 372 | bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) { |
| 373 | GGML_ASSERT(backend); |
| 374 | return ggml_backend_dev_offload_op(device: backend->device, op); |
| 375 | } |
| 376 | |
| 377 | ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) { |
| 378 | GGML_ASSERT(backend); |
| 379 | return backend->device; |
| 380 | } |
| 381 | |
| 382 | // backend copy |
| 383 | |
| 384 | void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) { |
| 385 | GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts" ); |
| 386 | |
| 387 | if (src == dst) { |
| 388 | return; |
| 389 | } |
| 390 | |
| 391 | if (ggml_backend_buffer_is_host(buffer: src->buffer)) { |
| 392 | ggml_backend_tensor_set(tensor: dst, data: src->data, offset: 0, size: ggml_nbytes(tensor: src)); |
| 393 | } else if (ggml_backend_buffer_is_host(buffer: dst->buffer)) { |
| 394 | ggml_backend_tensor_get(tensor: src, data: dst->data, offset: 0, size: ggml_nbytes(tensor: src)); |
| 395 | } else if (!ggml_backend_buffer_copy_tensor(src, dst)) { |
| 396 | #ifndef NDEBUG |
| 397 | GGML_LOG_DEBUG("%s: warning: slow copy from %s to %s\n" , __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer)); |
| 398 | #endif |
| 399 | size_t nbytes = ggml_nbytes(tensor: src); |
| 400 | void * data = malloc(size: nbytes); |
| 401 | ggml_backend_tensor_get(tensor: src, data, offset: 0, size: nbytes); |
| 402 | ggml_backend_tensor_set(tensor: dst, data, offset: 0, size: nbytes); |
| 403 | free(ptr: data); |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) { |
| 408 | GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts" ); |
| 409 | |
| 410 | if (src == dst) { |
| 411 | return; |
| 412 | } |
| 413 | |
| 414 | GGML_ASSERT(backend_dst); |
| 415 | if (backend_dst->iface.cpy_tensor_async != NULL) { |
| 416 | if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) { |
| 417 | return; |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | // an async copy would normally happen after all the queued operations on both backends are completed |
| 422 | // to simulate the same behavior, we need to synchronize both backends first, and do a blocking copy |
| 423 | ggml_backend_synchronize(backend: backend_src); |
| 424 | ggml_backend_synchronize(backend: backend_dst); |
| 425 | ggml_backend_tensor_copy(src, dst); |
| 426 | } |
| 427 | |
| 428 | // events |
| 429 | |
| 430 | ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device) { |
| 431 | // null device is allowed for the transition period to the device interface |
| 432 | if (device == NULL || device->iface.event_new == NULL) { |
| 433 | return NULL; |
| 434 | } |
| 435 | return device->iface.event_new(device); |
| 436 | } |
| 437 | |
| 438 | void ggml_backend_event_free(ggml_backend_event_t event) { |
| 439 | if (event == NULL) { |
| 440 | return; |
| 441 | } |
| 442 | event->device->iface.event_free(event->device, event); |
| 443 | } |
| 444 | |
| 445 | void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) { |
| 446 | GGML_ASSERT(backend); |
| 447 | GGML_ASSERT(backend->iface.event_record != NULL); |
| 448 | |
| 449 | backend->iface.event_record(backend, event); |
| 450 | } |
| 451 | |
| 452 | void ggml_backend_event_synchronize(ggml_backend_event_t event) { |
| 453 | GGML_ASSERT(event); |
| 454 | GGML_ASSERT(event->device->iface.event_synchronize); |
| 455 | |
| 456 | event->device->iface.event_synchronize(event->device, event); |
| 457 | } |
| 458 | |
| 459 | void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) { |
| 460 | GGML_ASSERT(backend); |
| 461 | GGML_ASSERT(backend->iface.event_wait != NULL); |
| 462 | |
| 463 | backend->iface.event_wait(backend, event); |
| 464 | } |
| 465 | |
| 466 | static void ggml_backend_graph_optimize(ggml_backend_t backend, struct ggml_cgraph * cgraph) { |
| 467 | GGML_ASSERT(backend); |
| 468 | if (backend->iface.graph_optimize != NULL) { |
| 469 | backend->iface.graph_optimize(backend, cgraph); |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | // Backend device |
| 474 | |
| 475 | const char * ggml_backend_dev_name(ggml_backend_dev_t device) { |
| 476 | GGML_ASSERT(device); |
| 477 | return device->iface.get_name(device); |
| 478 | } |
| 479 | |
| 480 | const char * ggml_backend_dev_description(ggml_backend_dev_t device) { |
| 481 | GGML_ASSERT(device); |
| 482 | return device->iface.get_description(device); |
| 483 | } |
| 484 | |
| 485 | void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) { |
| 486 | GGML_ASSERT(device); |
| 487 | device->iface.get_memory(device, free, total); |
| 488 | } |
| 489 | |
| 490 | enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) { |
| 491 | GGML_ASSERT(device); |
| 492 | return device->iface.get_type(device); |
| 493 | } |
| 494 | |
| 495 | void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props) { |
| 496 | memset(s: props, c: 0, n: sizeof(*props)); |
| 497 | device->iface.get_props(device, props); |
| 498 | } |
| 499 | |
| 500 | ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) { |
| 501 | GGML_ASSERT(device); |
| 502 | return device->reg; |
| 503 | } |
| 504 | |
| 505 | ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) { |
| 506 | GGML_ASSERT(device); |
| 507 | return device->iface.init_backend(device, params); |
| 508 | } |
| 509 | |
| 510 | ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) { |
| 511 | GGML_ASSERT(device); |
| 512 | return device->iface.get_buffer_type(device); |
| 513 | } |
| 514 | |
| 515 | ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) { |
| 516 | GGML_ASSERT(device); |
| 517 | if (device->iface.get_host_buffer_type == NULL) { |
| 518 | return NULL; |
| 519 | } |
| 520 | |
| 521 | return device->iface.get_host_buffer_type(device); |
| 522 | } |
| 523 | |
| 524 | ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) { |
| 525 | GGML_ASSERT(device); |
| 526 | return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size); |
| 527 | } |
| 528 | |
| 529 | bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) { |
| 530 | GGML_ASSERT(device); |
| 531 | return device->iface.supports_op(device, op); |
| 532 | } |
| 533 | |
| 534 | bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) { |
| 535 | GGML_ASSERT(device); |
| 536 | return device->iface.supports_buft(device, buft); |
| 537 | } |
| 538 | |
| 539 | bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) { |
| 540 | GGML_ASSERT(device); |
| 541 | if (device->iface.offload_op != NULL) { |
| 542 | return device->iface.offload_op(device, op); |
| 543 | } |
| 544 | |
| 545 | return false; |
| 546 | } |
| 547 | |
| 548 | // Backend (reg) |
| 549 | |
| 550 | const char * ggml_backend_reg_name(ggml_backend_reg_t reg) { |
| 551 | GGML_ASSERT(reg); |
| 552 | return reg->iface.get_name(reg); |
| 553 | } |
| 554 | |
| 555 | size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) { |
| 556 | GGML_ASSERT(reg); |
| 557 | return reg->iface.get_device_count(reg); |
| 558 | } |
| 559 | |
| 560 | ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) { |
| 561 | GGML_ASSERT(reg); |
| 562 | return reg->iface.get_device(reg, index); |
| 563 | } |
| 564 | |
| 565 | void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) { |
| 566 | GGML_ASSERT(reg); |
| 567 | if (!reg->iface.get_proc_address) { |
| 568 | return NULL; |
| 569 | } |
| 570 | return reg->iface.get_proc_address(reg, name); |
| 571 | } |
| 572 | |
| 573 | // multi-buffer buffer |
| 574 | |
| 575 | struct ggml_backend_multi_buffer_context { |
| 576 | ggml_backend_buffer_t * buffers; |
| 577 | size_t n_buffers; |
| 578 | }; |
| 579 | |
| 580 | static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) { |
| 581 | GGML_ASSERT(buffer); |
| 582 | ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context; |
| 583 | for (size_t i = 0; i < ctx->n_buffers; i++) { |
| 584 | ggml_backend_buffer_free(buffer: ctx->buffers[i]); |
| 585 | } |
| 586 | |
| 587 | free(ptr: ctx->buffers); |
| 588 | free(ptr: ctx); |
| 589 | } |
| 590 | |
| 591 | static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { |
| 592 | GGML_ASSERT(buffer); |
| 593 | ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context; |
| 594 | for (size_t i = 0; i < ctx->n_buffers; i++) { |
| 595 | ggml_backend_buffer_clear(buffer: ctx->buffers[i], value); |
| 596 | } |
| 597 | } |
| 598 | |
| 599 | static const struct ggml_backend_buffer_i ggml_backend_multi_buffer_i = { |
| 600 | /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer, |
| 601 | /* .get_base = */ NULL, |
| 602 | /* .init_tensor = */ NULL, |
| 603 | /* .memset_tensor = */ NULL, |
| 604 | /* .set_tensor = */ NULL, |
| 605 | /* .get_tensor = */ NULL, |
| 606 | /* .cpy_tensor = */ NULL, |
| 607 | /* .clear = */ ggml_backend_multi_buffer_clear, |
| 608 | /* .reset = */ NULL, |
| 609 | }; |
| 610 | |
| 611 | ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) { |
| 612 | ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) malloc(size: sizeof(struct ggml_backend_multi_buffer_context)); |
| 613 | ctx->n_buffers = n_buffers; |
| 614 | ctx->buffers = (ggml_backend_buffer_t *) malloc(size: n_buffers * sizeof(ggml_backend_buffer_t)); |
| 615 | |
| 616 | GGML_ASSERT(ctx->buffers != NULL); |
| 617 | |
| 618 | size_t total_size = 0; |
| 619 | for (size_t i = 0; i < n_buffers; i++) { |
| 620 | ctx->buffers[i] = buffers[i]; |
| 621 | total_size += ggml_backend_buffer_get_size(buffer: buffers[i]); |
| 622 | } |
| 623 | |
| 624 | return ggml_backend_buffer_init(buft: buffers[0]->buft, iface: ggml_backend_multi_buffer_i, context: ctx, size: total_size); |
| 625 | } |
| 626 | |
| 627 | bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) { |
| 628 | GGML_ASSERT(buffer); |
| 629 | return buffer->iface.free_buffer == ggml_backend_multi_buffer_free_buffer; |
| 630 | } |
| 631 | |
| 632 | void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) { |
| 633 | GGML_ASSERT(buffer); |
| 634 | GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer)); |
| 635 | ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context; |
| 636 | for (size_t i = 0; i < ctx->n_buffers; i++) { |
| 637 | ggml_backend_buffer_set_usage(buffer: ctx->buffers[i], usage); |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | // creates a copy of the tensor with the same memory layout |
| 642 | static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) { |
| 643 | struct ggml_tensor * dup = ggml_dup_tensor(ctx, src: tensor); |
| 644 | for (int i = 0; i < GGML_MAX_DIMS; i++) { |
| 645 | dup->nb[i] = tensor->nb[i]; |
| 646 | } |
| 647 | return dup; |
| 648 | } |
| 649 | |
| 650 | static bool ggml_is_view_op(enum ggml_op op) { |
| 651 | return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE; |
| 652 | } |
| 653 | |
| 654 | // scheduler |
| 655 | |
| 656 | #ifndef GGML_SCHED_MAX_BACKENDS |
| 657 | #define GGML_SCHED_MAX_BACKENDS 16 |
| 658 | #endif |
| 659 | |
| 660 | #ifndef GGML_SCHED_MAX_SPLIT_INPUTS |
| 661 | #define GGML_SCHED_MAX_SPLIT_INPUTS 30 |
| 662 | #endif |
| 663 | |
| 664 | #ifndef GGML_SCHED_MAX_COPIES |
| 665 | #define GGML_SCHED_MAX_COPIES 4 |
| 666 | #endif |
| 667 | |
| 668 | struct ggml_backend_sched_split { |
| 669 | int backend_id; |
| 670 | int i_start; |
| 671 | int i_end; |
| 672 | struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS]; |
| 673 | int n_inputs; |
| 674 | // graph view of this split |
| 675 | struct ggml_cgraph graph; |
| 676 | }; |
| 677 | |
| 678 | struct ggml_backend_sched { |
| 679 | bool is_reset; // true if the scheduler has been reset since the last graph split |
| 680 | bool is_alloc; |
| 681 | |
| 682 | int n_backends; |
| 683 | |
| 684 | ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS]; |
| 685 | ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS]; |
| 686 | ggml_gallocr_t galloc; |
| 687 | |
| 688 | // hash map of the nodes in the graph |
| 689 | struct ggml_hash_set hash_set; |
| 690 | int * hv_tensor_backend_ids; // [hash_set.size] |
| 691 | struct ggml_tensor ** hv_tensor_copies; // [hash_set.size][n_backends][n_copies] |
| 692 | |
| 693 | int * node_backend_ids; // [graph_size] |
| 694 | int * leaf_backend_ids; // [graph_size] |
| 695 | |
| 696 | int * prev_node_backend_ids; // [graph_size] |
| 697 | int * prev_leaf_backend_ids; // [graph_size] |
| 698 | |
| 699 | // copy of the graph with modified inputs |
| 700 | struct ggml_cgraph graph; |
| 701 | |
| 702 | // graph splits |
| 703 | struct ggml_backend_sched_split * splits; |
| 704 | int n_splits; |
| 705 | int splits_capacity; |
| 706 | |
| 707 | // pipeline parallelism support |
| 708 | int n_copies; |
| 709 | int cur_copy; |
| 710 | int next_copy; |
| 711 | ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES]; |
| 712 | struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS]; |
| 713 | int n_graph_inputs; |
| 714 | |
| 715 | struct ggml_context * ctx; |
| 716 | |
| 717 | ggml_backend_sched_eval_callback callback_eval; |
| 718 | void * callback_eval_user_data; |
| 719 | |
| 720 | char * context_buffer; |
| 721 | size_t context_buffer_size; |
| 722 | |
| 723 | bool op_offload; |
| 724 | |
| 725 | int debug; |
| 726 | }; |
| 727 | |
| 728 | #define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor) |
| 729 | #define tensor_backend_id(tensor) sched->hv_tensor_backend_ids[hash_id(tensor)] |
| 730 | #define tensor_id_copy(id, backend_id, copy_id) sched->hv_tensor_copies[(id) * sched->n_backends * sched->n_copies + (backend_id) * sched->n_copies + (copy_id)] |
| 731 | #define tensor_copy(tensor, backend_id, copy_id) tensor_id_copy(hash_id(tensor), backend_id, copy_id) |
| 732 | |
| 733 | // returns the priority of the backend, lower id is higher priority |
| 734 | static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) { |
| 735 | for (int i = 0; i < sched->n_backends; i++) { |
| 736 | if (sched->backends[i] == backend) { |
| 737 | return i; |
| 738 | } |
| 739 | } |
| 740 | return -1; |
| 741 | } |
| 742 | |
| 743 | static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) { |
| 744 | ggml_backend_buffer_t buffer = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; |
| 745 | if (buffer == NULL) { |
| 746 | return -1; |
| 747 | } |
| 748 | |
| 749 | // find highest prio backend that supports the buffer type and the op |
| 750 | for (int i = 0; i < sched->n_backends; i++) { |
| 751 | if (ggml_backend_supports_buft(backend: sched->backends[i], buft: buffer->buft) && |
| 752 | ggml_backend_supports_op(backend: sched->backends[i], op)) { |
| 753 | return i; |
| 754 | } |
| 755 | } |
| 756 | |
| 757 | #ifndef NDEBUG |
| 758 | GGML_LOG_DEBUG("%s: warning: no backend supports op %s with a weight with buffer type %s used in tensor %s, the weight will need to be copied\n" , |
| 759 | __func__, ggml_op_desc(tensor), ggml_backend_buffer_name(buffer), tensor->name); |
| 760 | #endif |
| 761 | |
| 762 | return -1; |
| 763 | } |
| 764 | |
| 765 | #if 0 |
| 766 | #define GGML_SCHED_MAX_SPLITS_DEBUG 4096 |
| 767 | static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS_DEBUG*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only |
| 768 | #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__) |
| 769 | #define GET_CAUSE(node) causes[hash_id(node)] |
| 770 | #else |
| 771 | #define SET_CAUSE(node, ...) |
| 772 | #define GET_CAUSE(node) "" |
| 773 | #endif |
| 774 | |
| 775 | // returns the backend that should be used for the node based on the current locations |
| 776 | static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) { |
| 777 | // assign pre-allocated nodes to their backend |
| 778 | int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, op: tensor); |
| 779 | if (cur_backend_id != -1) { |
| 780 | SET_CAUSE(tensor, "1.dst" ); |
| 781 | return cur_backend_id; |
| 782 | } |
| 783 | |
| 784 | // view_src |
| 785 | if (tensor->view_src != NULL) { |
| 786 | cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor: tensor->view_src, op: tensor); |
| 787 | if (cur_backend_id != -1) { |
| 788 | SET_CAUSE(tensor, "1.vsrc" ); |
| 789 | return cur_backend_id; |
| 790 | } |
| 791 | } |
| 792 | |
| 793 | if (tensor->buffer || (tensor->view_src && tensor->view_src->buffer)) { |
| 794 | // since the tensor is pre-allocated, it cannot be moved to another backend |
| 795 | ggml_backend_buffer_t buffer = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; |
| 796 | GGML_ABORT("pre-allocated tensor (%s) in a buffer (%s) that cannot run the operation (%s)" , tensor->name, ggml_backend_buffer_name(buffer), ggml_op_name(tensor->op)); |
| 797 | } |
| 798 | |
| 799 | // graph input |
| 800 | if (tensor->flags & GGML_TENSOR_FLAG_INPUT) { |
| 801 | cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU) |
| 802 | SET_CAUSE(tensor, "1.inp" ); |
| 803 | return cur_backend_id; |
| 804 | } |
| 805 | |
| 806 | // operations with weights are preferably run on the same backend as the weights |
| 807 | for (int i = 0; i < GGML_MAX_SRC; i++) { |
| 808 | const struct ggml_tensor * src = tensor->src[i]; |
| 809 | if (src == NULL) { |
| 810 | continue; |
| 811 | } |
| 812 | // skip ROPE since the rope freqs tensor is too small to choose a backend based on it |
| 813 | // not an ideal solution |
| 814 | if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) { |
| 815 | int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor: src, op: tensor); |
| 816 | // check if a backend with higher prio wants to offload the op |
| 817 | if (sched->op_offload && src_backend_id == sched->n_backends - 1 && ggml_backend_buffer_is_host(buffer: src->buffer)) { |
| 818 | for (int b = 0; b < src_backend_id; b++) { |
| 819 | if (ggml_backend_supports_op(backend: sched->backends[b], op: tensor) && ggml_backend_offload_op(backend: sched->backends[b], op: tensor)) { |
| 820 | SET_CAUSE(tensor, "1.off" ); |
| 821 | return b; |
| 822 | } |
| 823 | } |
| 824 | } |
| 825 | SET_CAUSE(tensor, "1.wgt%d" , i); |
| 826 | return src_backend_id; |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | return -1; |
| 831 | } |
| 832 | |
| 833 | static char * fmt_size(size_t size) { |
| 834 | static char buffer[128]; |
| 835 | if (size >= 1024*1024) { |
| 836 | snprintf(s: buffer, maxlen: sizeof(buffer), format: "%zuM" , size/1024/1024); |
| 837 | } else { |
| 838 | snprintf(s: buffer, maxlen: sizeof(buffer), format: "%zuK" , size/1024); |
| 839 | } |
| 840 | return buffer; |
| 841 | } |
| 842 | |
| 843 | static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { |
| 844 | int cur_split = 0; |
| 845 | for (int i = 0; i < graph->n_nodes; i++) { |
| 846 | if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) { |
| 847 | ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id]; |
| 848 | GGML_LOG_DEBUG("\n## SPLIT #%d: %s # %d inputs" , cur_split, ggml_backend_name(split_backend), |
| 849 | sched->splits[cur_split].n_inputs); |
| 850 | for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) { |
| 851 | if (j == 0) { |
| 852 | GGML_LOG_DEBUG(": " ); |
| 853 | } |
| 854 | GGML_LOG_DEBUG("[%s (%5.5s)] " , sched->splits[cur_split].inputs[j]->name, |
| 855 | fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j]))); |
| 856 | } |
| 857 | GGML_LOG_DEBUG("\n" ); |
| 858 | cur_split++; |
| 859 | } |
| 860 | struct ggml_tensor * node = graph->nodes[i]; |
| 861 | if (ggml_is_view_op(op: node->op)) { |
| 862 | continue; |
| 863 | } |
| 864 | if (sched->debug > 1) { |
| 865 | ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node); |
| 866 | GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s] use=%d:" , i, ggml_op_name(node->op), node->name, |
| 867 | fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL" , GET_CAUSE(node), |
| 868 | graph->use_counts[ggml_hash_find(&graph->visited_hash_set, node)]); |
| 869 | for (int j = 0; j < GGML_MAX_SRC; j++) { |
| 870 | struct ggml_tensor * src = node->src[j]; |
| 871 | if (src == NULL) { |
| 872 | continue; |
| 873 | } |
| 874 | ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, node: src); |
| 875 | GGML_LOG_DEBUG(" %20.20s (%5.5s) [%5.5s %8.8s]" , src->name, |
| 876 | fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL" , GET_CAUSE(src)); |
| 877 | } |
| 878 | GGML_LOG_DEBUG("\n" ); |
| 879 | } |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | static bool ggml_backend_sched_buffer_supported(ggml_backend_sched_t sched, struct ggml_tensor * t, int backend_id) { |
| 884 | ggml_backend_buffer_t buf = t->view_src ? t->view_src->buffer : t->buffer; |
| 885 | ggml_backend_buffer_type_t buft = NULL; |
| 886 | |
| 887 | if (buf) { |
| 888 | // the tensor is already allocated |
| 889 | buft = buf->buft; |
| 890 | } else { |
| 891 | // see if the tensor already has a backend assigned, and use the buffer type of that backend |
| 892 | int tensor_backend_id = tensor_backend_id(t); |
| 893 | if (tensor_backend_id == -1 && t->view_src) { |
| 894 | tensor_backend_id = tensor_backend_id(t->view_src); |
| 895 | } |
| 896 | if (tensor_backend_id != -1) { |
| 897 | buft = sched->bufts[tensor_backend_id]; |
| 898 | } |
| 899 | } |
| 900 | |
| 901 | return buft != NULL && ggml_backend_supports_buft(backend: sched->backends[backend_id], buft); |
| 902 | } |
| 903 | |
| 904 | static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, struct ggml_tensor * node, int cur_backend_id, int * node_backend_id) { |
| 905 | if (ggml_backend_supports_op(backend: sched->backends[cur_backend_id], op: node)) { |
| 906 | *node_backend_id = cur_backend_id; |
| 907 | SET_CAUSE(node, "2.sup" ); |
| 908 | } |
| 909 | } |
| 910 | |
| 911 | // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend |
| 912 | void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { |
| 913 | // reset splits |
| 914 | sched->n_splits = 0; |
| 915 | sched->n_graph_inputs = 0; |
| 916 | sched->is_reset = false; |
| 917 | |
| 918 | struct ggml_init_params params = { |
| 919 | /* .mem_size = */ sched->context_buffer_size, |
| 920 | /* .mem_buffer = */ sched->context_buffer, |
| 921 | /* .no_alloc = */ true |
| 922 | }; |
| 923 | |
| 924 | ggml_free(ctx: sched->ctx); |
| 925 | |
| 926 | sched->ctx = ggml_init(params); |
| 927 | if (sched->ctx == NULL) { |
| 928 | GGML_ABORT("%s: failed to initialize context\n" , __func__); |
| 929 | } |
| 930 | |
| 931 | // pass 1: assign backends to ops with pre-allocated inputs |
| 932 | for (int i = 0; i < graph->n_leafs; i++) { |
| 933 | struct ggml_tensor * leaf = graph->leafs[i]; |
| 934 | int * leaf_backend_id = &tensor_backend_id(leaf); |
| 935 | // do not overwrite user assignments |
| 936 | if (*leaf_backend_id == -1) { |
| 937 | *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, tensor: leaf); |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | for (int i = 0; i < graph->n_nodes; i++) { |
| 942 | struct ggml_tensor * node = graph->nodes[i]; |
| 943 | int * node_backend_id = &tensor_backend_id(node); |
| 944 | // do not overwrite user assignments |
| 945 | if (*node_backend_id == -1) { |
| 946 | *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, tensor: node); |
| 947 | |
| 948 | #if 0 |
| 949 | // src |
| 950 | if (node->op == GGML_OP_NONE) { |
| 951 | continue; |
| 952 | } |
| 953 | |
| 954 | for (int j = 0; j < GGML_MAX_SRC; j++) { |
| 955 | struct ggml_tensor * src = node->src[j]; |
| 956 | if (src == NULL) { |
| 957 | continue; |
| 958 | } |
| 959 | int * src_backend_id = &tensor_backend_id(src); |
| 960 | if (*src_backend_id == -1) { |
| 961 | *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src); |
| 962 | } |
| 963 | } |
| 964 | #endif |
| 965 | } |
| 966 | } |
| 967 | |
| 968 | // pass 2: expand current backend assignments |
| 969 | // assign the same backend to adjacent nodes |
| 970 | // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend) |
| 971 | // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops |
| 972 | // ops unsupported by the backend being expanded will be left unassigned so that they can be assigned later when the locations of its inputs are known |
| 973 | // expand gpu down |
| 974 | { |
| 975 | int cur_backend_id = -1; |
| 976 | for (int i = 0; i < graph->n_nodes; i++) { |
| 977 | struct ggml_tensor * node = graph->nodes[i]; |
| 978 | if (ggml_is_view_op(op: node->op)) { |
| 979 | continue; |
| 980 | } |
| 981 | int * node_backend_id = &tensor_backend_id(node); |
| 982 | if (*node_backend_id != -1) { |
| 983 | if (*node_backend_id == sched->n_backends - 1) { |
| 984 | // skip cpu (lowest prio backend) |
| 985 | cur_backend_id = -1; |
| 986 | } else { |
| 987 | cur_backend_id = *node_backend_id; |
| 988 | } |
| 989 | } else if (cur_backend_id != -1) { |
| 990 | ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id); |
| 991 | } |
| 992 | } |
| 993 | } |
| 994 | // expand gpu up |
| 995 | { |
| 996 | int cur_backend_id = -1; |
| 997 | for (int i = graph->n_nodes - 1; i >= 0; i--) { |
| 998 | struct ggml_tensor * node = graph->nodes[i]; |
| 999 | if (ggml_is_view_op(op: node->op)) { |
| 1000 | continue; |
| 1001 | } |
| 1002 | int * node_backend_id = &tensor_backend_id(node); |
| 1003 | if (*node_backend_id != -1) { |
| 1004 | if (*node_backend_id == sched->n_backends - 1) { |
| 1005 | // skip cpu (lowest prio backend) |
| 1006 | cur_backend_id = -1; |
| 1007 | } else { |
| 1008 | cur_backend_id = *node_backend_id; |
| 1009 | } |
| 1010 | } else if (cur_backend_id != -1) { |
| 1011 | ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id); |
| 1012 | } |
| 1013 | } |
| 1014 | } |
| 1015 | // expand rest down |
| 1016 | { |
| 1017 | int cur_backend_id = -1; |
| 1018 | for (int i = 0; i < graph->n_nodes; i++) { |
| 1019 | struct ggml_tensor * node = graph->nodes[i]; |
| 1020 | if (ggml_is_view_op(op: node->op)) { |
| 1021 | continue; |
| 1022 | } |
| 1023 | int * node_backend_id = &tensor_backend_id(node); |
| 1024 | if (*node_backend_id != -1) { |
| 1025 | cur_backend_id = *node_backend_id; |
| 1026 | } else if (cur_backend_id != -1) { |
| 1027 | ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id); |
| 1028 | } |
| 1029 | } |
| 1030 | } |
| 1031 | // expand rest up |
| 1032 | { |
| 1033 | int cur_backend_id = -1; |
| 1034 | for (int i = graph->n_nodes - 1; i >= 0; i--) { |
| 1035 | struct ggml_tensor * node = graph->nodes[i]; |
| 1036 | if (ggml_is_view_op(op: node->op)) { |
| 1037 | continue; |
| 1038 | } |
| 1039 | int * node_backend_id = &tensor_backend_id(node); |
| 1040 | if (*node_backend_id != -1) { |
| 1041 | cur_backend_id = *node_backend_id; |
| 1042 | } else if (cur_backend_id != -1) { |
| 1043 | ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id); |
| 1044 | } |
| 1045 | } |
| 1046 | } |
| 1047 | |
| 1048 | // pass 3: upgrade nodes to higher prio backends with compatible buffer types |
| 1049 | // if the tensor is already in the same buffer type (*) as another higher priority backend, we should move it there |
| 1050 | // however, we also need to verify that the sources are in compatible buffer types |
| 1051 | // (*) the actual requirement is more relaxed, the buffer type of the backend should be supported by all the users of this tensor further down the graph |
| 1052 | // however, this is slow to verify, so we have a more strict requirement that the buffer type is the same |
| 1053 | // this is not uncommon since multiple backends can use host memory, with the same buffer type (eg. BLAS and CPU) |
| 1054 | // additionally, set remaining unassigned nodes to the backend with the most supported inputs |
| 1055 | // only nodes that could not be assigned during expansion due to the backend not supporting the op should be unassigned at this point |
| 1056 | for (int i = 0; i < graph->n_nodes; i++) { |
| 1057 | struct ggml_tensor * node = graph->nodes[i]; |
| 1058 | if (ggml_is_view_op(op: node->op)) { |
| 1059 | continue; |
| 1060 | } |
| 1061 | int * node_backend_id = &tensor_backend_id(node); |
| 1062 | if (*node_backend_id == -1) { |
| 1063 | // unassigned node: find the backend with the most supported inputs |
| 1064 | int n_supported_best = -1; |
| 1065 | for (int b = 0; b < sched->n_backends; b++) { |
| 1066 | if (ggml_backend_supports_op(backend: sched->backends[b], op: node)) { |
| 1067 | int n_supported = 0; |
| 1068 | for (int j = 0; j < GGML_MAX_SRC; j++) { |
| 1069 | struct ggml_tensor * src = node->src[j]; |
| 1070 | if (src == NULL) { |
| 1071 | continue; |
| 1072 | } |
| 1073 | if ((tensor_backend_id(src) != -1 || tensor_backend_id(src->view_src) != -1) && ggml_backend_sched_buffer_supported(sched, t: src, backend_id: b)) { |
| 1074 | n_supported++; |
| 1075 | } |
| 1076 | } |
| 1077 | if (n_supported > n_supported_best) { |
| 1078 | n_supported_best = n_supported; |
| 1079 | *node_backend_id = b; |
| 1080 | SET_CAUSE(node, "3.best" ); |
| 1081 | } |
| 1082 | } |
| 1083 | } |
| 1084 | } else { |
| 1085 | // assigned node: upgrade to higher prio backend if possible |
| 1086 | for (int b = 0; b < *node_backend_id; b++) { |
| 1087 | if (sched->bufts[b] == sched->bufts[*node_backend_id] && ggml_backend_supports_op(backend: sched->backends[b], op: node)) { |
| 1088 | bool supported = true; |
| 1089 | for (int j = 0; j < GGML_MAX_SRC; j++) { |
| 1090 | struct ggml_tensor * src = node->src[j]; |
| 1091 | if (src == NULL) { |
| 1092 | continue; |
| 1093 | } |
| 1094 | if (!ggml_backend_sched_buffer_supported(sched, t: src, backend_id: b)) { |
| 1095 | supported = false; |
| 1096 | break; |
| 1097 | } |
| 1098 | } |
| 1099 | if (supported) { |
| 1100 | *node_backend_id = b; |
| 1101 | SET_CAUSE(node, "3.upg" ); |
| 1102 | break; |
| 1103 | } |
| 1104 | } |
| 1105 | } |
| 1106 | } |
| 1107 | } |
| 1108 | |
| 1109 | // pass 4: assign backends to remaining src from dst and view_src |
| 1110 | for (int i = 0; i < graph->n_nodes; i++) { |
| 1111 | struct ggml_tensor * node = graph->nodes[i]; |
| 1112 | int * cur_backend_id = &tensor_backend_id(node); |
| 1113 | if (node->view_src != NULL && *cur_backend_id == -1) { |
| 1114 | *cur_backend_id = tensor_backend_id(node->view_src); |
| 1115 | SET_CAUSE(node, "4.vsrc" ); |
| 1116 | } |
| 1117 | for (int j = 0; j < GGML_MAX_SRC; j++) { |
| 1118 | struct ggml_tensor * src = node->src[j]; |
| 1119 | if (src == NULL) { |
| 1120 | continue; |
| 1121 | } |
| 1122 | int * src_backend_id = &tensor_backend_id(src); |
| 1123 | if (*src_backend_id == -1) { |
| 1124 | if (src->view_src != NULL) { |
| 1125 | // views are always on the same backend as the source |
| 1126 | *src_backend_id = tensor_backend_id(src->view_src); |
| 1127 | SET_CAUSE(src, "4.vsrc" ); |
| 1128 | } else { |
| 1129 | *src_backend_id = *cur_backend_id; |
| 1130 | SET_CAUSE(src, "4.cur" ); |
| 1131 | } |
| 1132 | } |
| 1133 | } |
| 1134 | // if the node is still unassigned, assign it to the first backend that supports it |
| 1135 | for (int b = 0; b < sched->n_backends && *cur_backend_id == -1; b++) { |
| 1136 | ggml_backend_sched_set_if_supported(sched, node, cur_backend_id: b, node_backend_id: cur_backend_id); |
| 1137 | } |
| 1138 | GGML_ASSERT(*cur_backend_id != -1); |
| 1139 | } |
| 1140 | |
| 1141 | // pass 5: split graph, find tensors that need to be copied |
| 1142 | { |
| 1143 | int i_split = 0; |
| 1144 | struct ggml_backend_sched_split * split = &sched->splits[0]; |
| 1145 | // find the backend of the first split, skipping view ops |
| 1146 | int i = 0; |
| 1147 | for (; i < graph->n_nodes; i++) { |
| 1148 | struct ggml_tensor * node = graph->nodes[i]; |
| 1149 | if (!ggml_is_view_op(op: node->op)) { |
| 1150 | split->backend_id = tensor_backend_id(node); |
| 1151 | break; |
| 1152 | } |
| 1153 | } |
| 1154 | split->i_start = 0; |
| 1155 | split->n_inputs = 0; |
| 1156 | int cur_backend_id = split->backend_id; |
| 1157 | for (; i < graph->n_nodes; i++) { |
| 1158 | struct ggml_tensor * node = graph->nodes[i]; |
| 1159 | |
| 1160 | if (ggml_is_view_op(op: node->op)) { |
| 1161 | continue; |
| 1162 | } |
| 1163 | |
| 1164 | const int node_backend_id = tensor_backend_id(node); |
| 1165 | |
| 1166 | GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now, this can happen if there is no CPU fallback |
| 1167 | |
| 1168 | // check if we should start a new split based on the sources of the current node |
| 1169 | bool need_new_split = false; |
| 1170 | if (node_backend_id == cur_backend_id && split->n_inputs > 0) { |
| 1171 | for (int j = 0; j < GGML_MAX_SRC; j++) { |
| 1172 | struct ggml_tensor * src = node->src[j]; |
| 1173 | if (src == NULL) { |
| 1174 | continue; |
| 1175 | } |
| 1176 | // check if a weight is on a different and incompatible backend |
| 1177 | // by starting a new split, the memory of the previously offloaded weights can be reused |
| 1178 | if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) { |
| 1179 | int src_backend_id = tensor_backend_id(src); |
| 1180 | if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, t: src, backend_id: cur_backend_id)) { |
| 1181 | need_new_split = true; |
| 1182 | break; |
| 1183 | } |
| 1184 | } |
| 1185 | // check if the split has too many inputs |
| 1186 | // FIXME: count the number of inputs instead of only checking when full |
| 1187 | if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) { |
| 1188 | const size_t id = hash_id(src); |
| 1189 | int src_backend_id = sched->hv_tensor_backend_ids[id]; |
| 1190 | bool supported = ggml_backend_sched_buffer_supported(sched, t: src, backend_id: cur_backend_id); |
| 1191 | if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) { |
| 1192 | need_new_split = true; |
| 1193 | break; |
| 1194 | } |
| 1195 | } |
| 1196 | } |
| 1197 | } |
| 1198 | |
| 1199 | if (node_backend_id != cur_backend_id || need_new_split) { |
| 1200 | split->i_end = i; |
| 1201 | i_split++; |
| 1202 | if (i_split >= sched->splits_capacity) { |
| 1203 | sched->splits_capacity *= 2; |
| 1204 | sched->splits = (ggml_backend_sched_split *) |
| 1205 | realloc(ptr: sched->splits, size: sched->splits_capacity * sizeof(struct ggml_backend_sched_split)); |
| 1206 | GGML_ASSERT(sched->splits != NULL); |
| 1207 | } |
| 1208 | split = &sched->splits[i_split]; |
| 1209 | split->backend_id = node_backend_id; |
| 1210 | split->i_start = i; |
| 1211 | split->n_inputs = 0; |
| 1212 | cur_backend_id = node_backend_id; |
| 1213 | } |
| 1214 | |
| 1215 | // find inputs that are not on the same backend |
| 1216 | for (int j = 0; j < GGML_MAX_SRC; j++) { |
| 1217 | struct ggml_tensor * src = node->src[j]; |
| 1218 | if (src == NULL) { |
| 1219 | continue; |
| 1220 | } |
| 1221 | |
| 1222 | size_t src_id = hash_id(src); |
| 1223 | const int src_backend_id = sched->hv_tensor_backend_ids[src_id]; |
| 1224 | GGML_ASSERT(src_backend_id != -1); // all inputs should be assigned by now |
| 1225 | |
| 1226 | if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) { |
| 1227 | if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) { |
| 1228 | ggml_backend_t backend = sched->backends[src_backend_id]; |
| 1229 | for (int c = 0; c < sched->n_copies; c++) { |
| 1230 | struct ggml_tensor * tensor_copy; |
| 1231 | if (c == sched->cur_copy) { |
| 1232 | tensor_copy = src; // use the original tensor as the current copy |
| 1233 | } else { |
| 1234 | tensor_copy = ggml_dup_tensor_layout(ctx: sched->ctx, tensor: src); |
| 1235 | ggml_format_name(tensor: tensor_copy, fmt: "%s#%s#%d" , ggml_backend_name(backend), src->name, c); |
| 1236 | } |
| 1237 | if (sched->n_copies > 1) { |
| 1238 | ggml_set_input(tensor: tensor_copy); |
| 1239 | ggml_set_output(tensor: tensor_copy); // prevent ggml-alloc from overwriting the tensor |
| 1240 | } |
| 1241 | tensor_id_copy(src_id, src_backend_id, c) = tensor_copy; |
| 1242 | SET_CAUSE(tensor_copy, "4.cpy" ); |
| 1243 | } |
| 1244 | int n_graph_inputs = sched->n_graph_inputs++; |
| 1245 | GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS); |
| 1246 | sched->graph_inputs[n_graph_inputs] = src; |
| 1247 | } |
| 1248 | } |
| 1249 | |
| 1250 | if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, t: src, backend_id: cur_backend_id)) { |
| 1251 | // create a copy of the input in the split's backend |
| 1252 | if (tensor_id_copy(src_id, cur_backend_id, 0) == NULL) { |
| 1253 | ggml_backend_t backend = sched->backends[cur_backend_id]; |
| 1254 | for (int c = 0; c < sched->n_copies; c++) { |
| 1255 | struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(ctx: sched->ctx, tensor: src); |
| 1256 | ggml_format_name(tensor: tensor_copy, fmt: "%s#%s#%d" , ggml_backend_name(backend), src->name, c); |
| 1257 | if (sched->n_copies > 1) { |
| 1258 | ggml_set_input(tensor: tensor_copy); |
| 1259 | ggml_set_output(tensor: tensor_copy); // prevent ggml-alloc from overwriting the tensor |
| 1260 | } |
| 1261 | tensor_id_copy(src_id, cur_backend_id, c) = tensor_copy; |
| 1262 | SET_CAUSE(tensor_copy, "4.cpy" ); |
| 1263 | } |
| 1264 | int n_inputs = split->n_inputs++; |
| 1265 | GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS); |
| 1266 | split->inputs[n_inputs] = src; |
| 1267 | } |
| 1268 | node->src[j] = tensor_id_copy(src_id, cur_backend_id, sched->cur_copy); |
| 1269 | } |
| 1270 | } |
| 1271 | } |
| 1272 | split->i_end = graph->n_nodes; |
| 1273 | sched->n_splits = i_split + 1; |
| 1274 | } |
| 1275 | |
| 1276 | if (sched->debug) { |
| 1277 | ggml_backend_sched_print_assignments(sched, graph); |
| 1278 | } |
| 1279 | |
| 1280 | // swap node_backend_ids and leaf _backend_ids with prevs |
| 1281 | { |
| 1282 | int * tmp = sched->node_backend_ids; |
| 1283 | sched->node_backend_ids = sched->prev_node_backend_ids; |
| 1284 | sched->prev_node_backend_ids = tmp; |
| 1285 | |
| 1286 | tmp = sched->leaf_backend_ids; |
| 1287 | sched->leaf_backend_ids = sched->prev_leaf_backend_ids; |
| 1288 | sched->prev_leaf_backend_ids = tmp; |
| 1289 | } |
| 1290 | |
| 1291 | int graph_size = std::max(a: graph->n_nodes, b: graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies; |
| 1292 | if (sched->graph.size < graph_size) { |
| 1293 | sched->graph.size = graph_size; |
| 1294 | sched->graph.nodes = (ggml_tensor **) realloc(ptr: sched->graph.nodes, size: graph_size * sizeof(struct ggml_tensor *)); |
| 1295 | sched->graph.leafs = (ggml_tensor **) realloc(ptr: sched->graph.leafs, size: graph_size * sizeof(struct ggml_tensor *)); |
| 1296 | GGML_ASSERT(sched->graph.nodes != NULL); |
| 1297 | GGML_ASSERT(sched->graph.leafs != NULL); |
| 1298 | } |
| 1299 | sched->graph.n_nodes = 0; |
| 1300 | sched->graph.n_leafs = 0; |
| 1301 | |
| 1302 | struct ggml_cgraph * graph_copy = &sched->graph; |
| 1303 | |
| 1304 | for (int i = 0; i < sched->n_splits; i++) { |
| 1305 | struct ggml_backend_sched_split * split = &sched->splits[i]; |
| 1306 | split->graph = ggml_graph_view(cgraph: graph, i0: split->i_start, i1: split->i_end); |
| 1307 | |
| 1308 | // Optimize this split of the graph. This needs to happen before we make graph_copy, |
| 1309 | // so they are in sync. |
| 1310 | ggml_backend_graph_optimize(backend: sched->backends[split->backend_id], cgraph: &split->graph); |
| 1311 | |
| 1312 | // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split |
| 1313 | for (int j = 0; j < split->n_inputs; j++) { |
| 1314 | assert(graph_copy->size > (graph_copy->n_nodes + 1)); |
| 1315 | |
| 1316 | struct ggml_tensor * input = split->inputs[j]; |
| 1317 | const size_t input_id = hash_id(input); |
| 1318 | struct ggml_tensor * input_cpy = tensor_id_copy(input_id, split->backend_id, sched->cur_copy); |
| 1319 | |
| 1320 | // add a dependency to the input source so that it is not freed before the copy is done |
| 1321 | struct ggml_tensor * input_dep = ggml_view_tensor(ctx: sched->ctx, src: input); |
| 1322 | input_dep->src[0] = input; |
| 1323 | sched->node_backend_ids[graph_copy->n_nodes] = sched->hv_tensor_backend_ids[input_id]; |
| 1324 | graph_copy->nodes[graph_copy->n_nodes++] = input_dep; |
| 1325 | |
| 1326 | // add a dependency to the input copy so that it is allocated at the start of the split |
| 1327 | sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id; |
| 1328 | graph_copy->nodes[graph_copy->n_nodes++] = input_cpy; |
| 1329 | } |
| 1330 | |
| 1331 | for (int j = split->i_start; j < split->i_end; j++) { |
| 1332 | assert(graph_copy->size > graph_copy->n_nodes); |
| 1333 | sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]); |
| 1334 | graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j]; |
| 1335 | } |
| 1336 | } |
| 1337 | |
| 1338 | if (sched->n_copies > 1) { |
| 1339 | // add input copies as leafs so that they are allocated first |
| 1340 | for (int i = 0; i < sched->n_graph_inputs; i++) { |
| 1341 | struct ggml_tensor * input = sched->graph_inputs[i]; |
| 1342 | size_t id = hash_id(input); |
| 1343 | int backend_id = tensor_backend_id(input); |
| 1344 | for (int c = 0; c < sched->n_copies; c++) { |
| 1345 | struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c); |
| 1346 | sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id; |
| 1347 | assert(graph_copy->size > graph_copy->n_leafs); |
| 1348 | graph_copy->leafs[graph_copy->n_leafs++] = input_cpy; |
| 1349 | } |
| 1350 | } |
| 1351 | |
| 1352 | for (int i = 0; i < sched->n_splits; i++) { |
| 1353 | struct ggml_backend_sched_split * split = &sched->splits[i]; |
| 1354 | int backend_id = split->backend_id; |
| 1355 | for (int j = 0; j < split->n_inputs; j++) { |
| 1356 | struct ggml_tensor * input = split->inputs[j]; |
| 1357 | size_t id = hash_id(input); |
| 1358 | for (int c = 0; c < sched->n_copies; c++) { |
| 1359 | struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c); |
| 1360 | sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id; |
| 1361 | assert(graph_copy->size > graph_copy->n_leafs); |
| 1362 | graph_copy->leafs[graph_copy->n_leafs++] = input_cpy; |
| 1363 | } |
| 1364 | } |
| 1365 | } |
| 1366 | } |
| 1367 | |
| 1368 | // add leafs from the original graph |
| 1369 | for (int i = 0; i < graph->n_leafs; i++) { |
| 1370 | struct ggml_tensor * leaf = graph->leafs[i]; |
| 1371 | sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf); |
| 1372 | assert(graph_copy->size > graph_copy->n_leafs); |
| 1373 | graph_copy->leafs[graph_copy->n_leafs++] = leaf; |
| 1374 | } |
| 1375 | } |
| 1376 | |
| 1377 | static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) { |
| 1378 | bool backend_ids_changed = false; |
| 1379 | for (int i = 0; i < sched->graph.n_nodes; i++) { |
| 1380 | if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] && |
| 1381 | sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) { |
| 1382 | backend_ids_changed = true; |
| 1383 | break; |
| 1384 | } |
| 1385 | } |
| 1386 | if (!backend_ids_changed) { |
| 1387 | for (int i = 0; i < sched->graph.n_leafs; i++) { |
| 1388 | if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] && |
| 1389 | sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) { |
| 1390 | backend_ids_changed = true; |
| 1391 | break; |
| 1392 | } |
| 1393 | } |
| 1394 | } |
| 1395 | |
| 1396 | // allocate graph |
| 1397 | if (backend_ids_changed || !ggml_gallocr_alloc_graph(galloc: sched->galloc, graph: &sched->graph)) { |
| 1398 | // the re-allocation may cause the split inputs to be moved to a different address |
| 1399 | // synchronize without ggml_backend_sched_synchronize to avoid changing cur_copy |
| 1400 | for (int i = 0; i < sched->n_backends; i++) { |
| 1401 | ggml_backend_synchronize(backend: sched->backends[i]); |
| 1402 | } |
| 1403 | #ifndef NDEBUG |
| 1404 | GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n" , __func__, backend_ids_changed); |
| 1405 | #endif |
| 1406 | ggml_gallocr_reserve_n(galloc: sched->galloc, graph: &sched->graph, node_buffer_ids: sched->node_backend_ids, leaf_buffer_ids: sched->leaf_backend_ids); |
| 1407 | if (!ggml_gallocr_alloc_graph(galloc: sched->galloc, graph: &sched->graph)) { |
| 1408 | GGML_LOG_ERROR("%s: failed to allocate graph\n" , __func__); |
| 1409 | return false; |
| 1410 | } |
| 1411 | } |
| 1412 | |
| 1413 | return true; |
| 1414 | } |
| 1415 | |
| 1416 | static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) { |
| 1417 | GGML_ASSERT(sched); |
| 1418 | struct ggml_backend_sched_split * splits = sched->splits; |
| 1419 | |
| 1420 | ggml_tensor * prev_ids_tensor = nullptr; |
| 1421 | std::vector<int32_t> ids; |
| 1422 | std::vector<ggml_bitset_t> used_ids; |
| 1423 | |
| 1424 | for (int split_id = 0; split_id < sched->n_splits; split_id++) { |
| 1425 | struct ggml_backend_sched_split * split = &splits[split_id]; |
| 1426 | int split_backend_id = split->backend_id; |
| 1427 | ggml_backend_t split_backend = sched->backends[split_backend_id]; |
| 1428 | |
| 1429 | // copy the input tensors to the split backend |
| 1430 | for (int input_id = 0; input_id < split->n_inputs; input_id++) { |
| 1431 | ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, node: split->inputs[input_id]); |
| 1432 | struct ggml_tensor * input = split->inputs[input_id]; |
| 1433 | struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy); |
| 1434 | |
| 1435 | if (input->flags & GGML_TENSOR_FLAG_INPUT) { |
| 1436 | // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done |
| 1437 | if (sched->events[split_backend_id][sched->cur_copy] != NULL) { |
| 1438 | ggml_backend_event_synchronize(event: sched->events[split_backend_id][sched->cur_copy]); |
| 1439 | } else { |
| 1440 | ggml_backend_synchronize(backend: split_backend); |
| 1441 | } |
| 1442 | ggml_backend_tensor_copy(src: input, dst: input_cpy); |
| 1443 | } else { |
| 1444 | // wait for the split backend to finish using the input before overwriting it |
| 1445 | if (sched->events[split_backend_id][sched->cur_copy] != NULL) { |
| 1446 | ggml_backend_event_wait(backend: split_backend, event: sched->events[split_backend_id][sched->cur_copy]); |
| 1447 | } else { |
| 1448 | ggml_backend_synchronize(backend: split_backend); |
| 1449 | } |
| 1450 | |
| 1451 | // when offloading MoE weights, we can reduce the amount of data copied by copying only the experts that are used |
| 1452 | ggml_tensor * node = split->graph.nodes[0]; |
| 1453 | if (split->graph.n_nodes > 0 && |
| 1454 | ggml_backend_buffer_get_usage(buffer: input->buffer) == GGML_BACKEND_BUFFER_USAGE_WEIGHTS && |
| 1455 | ggml_backend_buffer_is_host(buffer: input->buffer) && ( |
| 1456 | (node->src[0] == input_cpy && node->op == GGML_OP_MUL_MAT_ID) |
| 1457 | //|| (node->src[1] == input_cpy && node->op == GGML_OP_ADD_ID) /* GGML_OP_ADD_ID weights are small and not worth splitting */ |
| 1458 | )) { |
| 1459 | |
| 1460 | const int64_t n_expert = node->op == GGML_OP_MUL_MAT_ID ? input->ne[2] : input->ne[1]; |
| 1461 | const size_t expert_size = node->op == GGML_OP_MUL_MAT_ID ? input->nb[2] : input->nb[1]; |
| 1462 | |
| 1463 | ggml_backend_synchronize(backend: input_backend); |
| 1464 | |
| 1465 | // get the ids |
| 1466 | ggml_tensor * ids_tensor = node->src[2]; |
| 1467 | ggml_backend_t ids_backend = split_backend; |
| 1468 | |
| 1469 | // if the ids tensor is also an input of the split, it may not have been copied yet to the split backend |
| 1470 | // in that case, we use the original ids tensor |
| 1471 | for (int i = input_id + 1; i < split->n_inputs; i++) { |
| 1472 | if (ids_tensor == tensor_copy(split->inputs[i], split_backend_id, sched->cur_copy)) { |
| 1473 | ids_tensor = split->inputs[i]; |
| 1474 | ids_backend = ggml_backend_sched_get_tensor_backend(sched, node: split->inputs[i]); |
| 1475 | break; |
| 1476 | } |
| 1477 | } |
| 1478 | |
| 1479 | if (ids_tensor != prev_ids_tensor) { |
| 1480 | ids.resize(new_size: ggml_nbytes(tensor: ids_tensor) / sizeof(int32_t)); |
| 1481 | ggml_backend_tensor_get_async(backend: ids_backend, tensor: ids_tensor, data: ids.data(), offset: 0, size: ggml_nbytes(tensor: ids_tensor)); |
| 1482 | ggml_backend_synchronize(backend: ids_backend); |
| 1483 | |
| 1484 | // find the used experts |
| 1485 | used_ids.clear(); |
| 1486 | used_ids.resize(new_size: ggml_bitset_size(n: n_expert)); |
| 1487 | for (int64_t i1 = 0; i1 < ids_tensor->ne[1]; i1++) { |
| 1488 | for (int64_t i0 = 0; i0 < ids_tensor->ne[0]; i0++) { |
| 1489 | int32_t id = ids[i1 * ids_tensor->nb[1]/sizeof(int32_t) + i0 * ids_tensor->nb[0]/sizeof(int32_t)]; |
| 1490 | GGML_ASSERT(id >= 0 && id < n_expert); |
| 1491 | ggml_bitset_set(bitset: used_ids.data(), i: id); |
| 1492 | } |
| 1493 | } |
| 1494 | |
| 1495 | prev_ids_tensor = ids_tensor; |
| 1496 | } |
| 1497 | |
| 1498 | // group consecutive experts and copy them together |
| 1499 | auto copy_experts = [&](int32_t first_id, int32_t last_id) { |
| 1500 | const size_t expert_offset = first_id * expert_size; |
| 1501 | const size_t expert_size_copy = (last_id - first_id + 1) * expert_size; |
| 1502 | const size_t padding = std::min<size_t>(a: expert_size, b: 512); |
| 1503 | const size_t padding_end = last_id < n_expert - 1 ? padding : 0; |
| 1504 | |
| 1505 | ggml_backend_tensor_set_async(backend: split_backend, |
| 1506 | tensor: input_cpy, |
| 1507 | data: (const uint8_t *)input->data + expert_offset, offset: expert_offset, |
| 1508 | // copy a bit extra at the to ensure there are no NaNs in the padding of the last expert |
| 1509 | // this is necessary for MMQ in the CUDA backend |
| 1510 | size: expert_size_copy + padding_end); |
| 1511 | }; |
| 1512 | |
| 1513 | int id = 0; |
| 1514 | while (!ggml_bitset_get(bitset: used_ids.data(), i: id)) { |
| 1515 | id++; |
| 1516 | } |
| 1517 | int32_t first_id = id; |
| 1518 | int32_t last_id = first_id; |
| 1519 | |
| 1520 | for (++id; id < n_expert; ++id) { |
| 1521 | if (!ggml_bitset_get(bitset: used_ids.data(), i: id)) { |
| 1522 | continue; |
| 1523 | } |
| 1524 | |
| 1525 | if (id == last_id + 1) { |
| 1526 | last_id = id; |
| 1527 | continue; |
| 1528 | } |
| 1529 | |
| 1530 | copy_experts(first_id, last_id); |
| 1531 | |
| 1532 | first_id = id; |
| 1533 | last_id = id; |
| 1534 | } |
| 1535 | copy_experts(first_id, last_id); |
| 1536 | } else { |
| 1537 | // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events |
| 1538 | // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface |
| 1539 | if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) { |
| 1540 | ggml_backend_synchronize(backend: input_backend); |
| 1541 | if (sched->events[split_backend_id][sched->cur_copy] != NULL) { |
| 1542 | ggml_backend_event_synchronize(event: sched->events[split_backend_id][sched->cur_copy]); |
| 1543 | } else { |
| 1544 | ggml_backend_synchronize(backend: split_backend); |
| 1545 | } |
| 1546 | ggml_backend_tensor_copy(src: input, dst: input_cpy); |
| 1547 | } |
| 1548 | } |
| 1549 | } |
| 1550 | } |
| 1551 | |
| 1552 | if (!sched->callback_eval) { |
| 1553 | enum ggml_status ec = ggml_backend_graph_compute_async(backend: split_backend, cgraph: &split->graph); |
| 1554 | if (ec != GGML_STATUS_SUCCESS) { |
| 1555 | return ec; |
| 1556 | } |
| 1557 | } else { |
| 1558 | // similar to ggml_backend_compare_graph_backend |
| 1559 | for (int j0 = 0; j0 < split->graph.n_nodes; j0++) { |
| 1560 | struct ggml_tensor * t = split->graph.nodes[j0]; |
| 1561 | |
| 1562 | // check if the user needs data from this node |
| 1563 | bool need = sched->callback_eval(t, true, sched->callback_eval_user_data); |
| 1564 | |
| 1565 | int j1 = j0; |
| 1566 | |
| 1567 | // determine the range [j0, j1] of nodes that can be computed together |
| 1568 | while (!need && j1 < split->graph.n_nodes - 1) { |
| 1569 | t = split->graph.nodes[++j1]; |
| 1570 | need = sched->callback_eval(t, true, sched->callback_eval_user_data); |
| 1571 | } |
| 1572 | |
| 1573 | struct ggml_cgraph gv = ggml_graph_view(cgraph: &split->graph, i0: j0, i1: j1 + 1); |
| 1574 | |
| 1575 | enum ggml_status ec = ggml_backend_graph_compute_async(backend: split_backend, cgraph: &gv); |
| 1576 | if (ec != GGML_STATUS_SUCCESS) { |
| 1577 | return ec; |
| 1578 | } |
| 1579 | |
| 1580 | // TODO: pass backend to the callback, then the user can decide if they want to synchronize |
| 1581 | ggml_backend_synchronize(backend: split_backend); |
| 1582 | |
| 1583 | if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) { |
| 1584 | break; |
| 1585 | } |
| 1586 | |
| 1587 | j0 = j1; |
| 1588 | } |
| 1589 | } |
| 1590 | |
| 1591 | // record the event of this copy |
| 1592 | if (split->n_inputs > 0) { |
| 1593 | if (sched->events[split_backend_id][sched->cur_copy] != NULL) { |
| 1594 | ggml_backend_event_record(event: sched->events[split_backend_id][sched->cur_copy], backend: split_backend); |
| 1595 | } |
| 1596 | } |
| 1597 | } |
| 1598 | |
| 1599 | return GGML_STATUS_SUCCESS; |
| 1600 | } |
| 1601 | |
| 1602 | ggml_backend_sched_t ggml_backend_sched_new( |
| 1603 | ggml_backend_t * backends, |
| 1604 | ggml_backend_buffer_type_t * bufts, |
| 1605 | int n_backends, |
| 1606 | size_t graph_size, |
| 1607 | bool parallel, |
| 1608 | bool op_offload) { |
| 1609 | GGML_ASSERT(n_backends > 0); |
| 1610 | GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS); |
| 1611 | GGML_ASSERT(ggml_backend_dev_type(ggml_backend_get_device(backends[n_backends - 1])) == GGML_BACKEND_DEVICE_TYPE_CPU); |
| 1612 | |
| 1613 | struct ggml_backend_sched * sched = (ggml_backend_sched *) calloc(nmemb: 1, size: sizeof(struct ggml_backend_sched)); |
| 1614 | |
| 1615 | const char * GGML_SCHED_DEBUG = getenv(name: "GGML_SCHED_DEBUG" ); |
| 1616 | sched->debug = GGML_SCHED_DEBUG ? atoi(nptr: GGML_SCHED_DEBUG) : 0; |
| 1617 | sched->n_backends = n_backends; |
| 1618 | sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1; |
| 1619 | |
| 1620 | // initialize hash table |
| 1621 | // FIXME: needs to be size*2 to account for leafs (do it in graph_split instead) |
| 1622 | sched->hash_set = ggml_hash_set_new(size: graph_size); |
| 1623 | sched->hv_tensor_backend_ids = (int *) malloc(size: sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0])); |
| 1624 | sched->hv_tensor_copies = (ggml_tensor **) malloc(size: sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *)); |
| 1625 | |
| 1626 | const size_t ggml_sched_max_splits = graph_size; // at most there is one split for each node in the graph |
| 1627 | const size_t nodes_size = graph_size + ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2; |
| 1628 | sched->node_backend_ids = (int *) calloc(nmemb: nodes_size, size: sizeof(sched->node_backend_ids[0])); |
| 1629 | sched->leaf_backend_ids = (int *) calloc(nmemb: nodes_size, size: sizeof(sched->leaf_backend_ids[0])); |
| 1630 | sched->prev_node_backend_ids = (int *) calloc(nmemb: nodes_size, size: sizeof(sched->prev_node_backend_ids[0])); |
| 1631 | sched->prev_leaf_backend_ids = (int *) calloc(nmemb: nodes_size, size: sizeof(sched->prev_leaf_backend_ids[0])); |
| 1632 | |
| 1633 | sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(size: graph_size, grads: false); |
| 1634 | sched->context_buffer = (char *) malloc(size: sched->context_buffer_size); |
| 1635 | |
| 1636 | const int initial_splits_capacity = 16; |
| 1637 | sched->splits = (ggml_backend_sched_split *) calloc(nmemb: initial_splits_capacity, size: sizeof(sched->splits[0])); |
| 1638 | sched->splits_capacity = initial_splits_capacity; |
| 1639 | |
| 1640 | for (int b = 0; b < n_backends; b++) { |
| 1641 | sched->backends[b] = backends[b]; |
| 1642 | sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backend: backends[b]); |
| 1643 | GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b])); |
| 1644 | |
| 1645 | if (sched->n_copies > 1) { |
| 1646 | for (int c = 0; c < sched->n_copies; c++) { |
| 1647 | sched->events[b][c] = ggml_backend_event_new(device: backends[b]->device); |
| 1648 | } |
| 1649 | } |
| 1650 | } |
| 1651 | |
| 1652 | sched->galloc = ggml_gallocr_new_n(bufts: sched->bufts, n_bufs: n_backends); |
| 1653 | sched->op_offload = op_offload; |
| 1654 | |
| 1655 | ggml_backend_sched_reset(sched); |
| 1656 | |
| 1657 | return sched; |
| 1658 | } |
| 1659 | |
| 1660 | void ggml_backend_sched_free(ggml_backend_sched_t sched) { |
| 1661 | if (sched == NULL) { |
| 1662 | return; |
| 1663 | } |
| 1664 | for (int b = 0; b < sched->n_backends; b++) { |
| 1665 | for (int c = 0; c < sched->n_copies; c++) { |
| 1666 | ggml_backend_event_free(event: sched->events[b][c]); |
| 1667 | } |
| 1668 | } |
| 1669 | ggml_gallocr_free(galloc: sched->galloc); |
| 1670 | ggml_free(ctx: sched->ctx); |
| 1671 | ggml_hash_set_free(hash_set: &sched->hash_set); |
| 1672 | free(ptr: sched->splits); |
| 1673 | free(ptr: sched->hv_tensor_backend_ids); |
| 1674 | free(ptr: sched->hv_tensor_copies); |
| 1675 | free(ptr: sched->node_backend_ids); |
| 1676 | free(ptr: sched->leaf_backend_ids); |
| 1677 | free(ptr: sched->prev_node_backend_ids); |
| 1678 | free(ptr: sched->prev_leaf_backend_ids); |
| 1679 | free(ptr: sched->context_buffer); |
| 1680 | free(ptr: sched->graph.nodes); |
| 1681 | free(ptr: sched->graph.leafs); |
| 1682 | free(ptr: sched); |
| 1683 | } |
| 1684 | |
| 1685 | void ggml_backend_sched_reset(ggml_backend_sched_t sched) { |
| 1686 | GGML_ASSERT(sched); |
| 1687 | // reset state for the next run |
| 1688 | if (!sched->is_reset) { |
| 1689 | ggml_hash_set_reset(hash_set: &sched->hash_set); |
| 1690 | memset(s: sched->hv_tensor_backend_ids, c: -1, n: sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0])); |
| 1691 | memset(s: sched->hv_tensor_copies, c: 0, n: sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *)); |
| 1692 | sched->is_reset = true; |
| 1693 | } |
| 1694 | sched->is_alloc = false; |
| 1695 | } |
| 1696 | |
| 1697 | bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) { |
| 1698 | GGML_ASSERT(sched); |
| 1699 | GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs); |
| 1700 | |
| 1701 | ggml_backend_sched_reset(sched); |
| 1702 | |
| 1703 | ggml_backend_sched_synchronize(sched); |
| 1704 | |
| 1705 | ggml_backend_sched_split_graph(sched, graph: measure_graph); |
| 1706 | |
| 1707 | if (!ggml_gallocr_reserve_n(galloc: sched->galloc, graph: &sched->graph, node_buffer_ids: sched->node_backend_ids, leaf_buffer_ids: sched->leaf_backend_ids)) { |
| 1708 | return false; |
| 1709 | } |
| 1710 | |
| 1711 | ggml_backend_sched_reset(sched); |
| 1712 | |
| 1713 | return true; |
| 1714 | } |
| 1715 | |
| 1716 | bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { |
| 1717 | GGML_ASSERT(sched); |
| 1718 | GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs); |
| 1719 | GGML_ASSERT(!sched->is_alloc); |
| 1720 | |
| 1721 | sched->cur_copy = sched->next_copy; |
| 1722 | sched->next_copy = (sched->next_copy + 1) % sched->n_copies; |
| 1723 | |
| 1724 | ggml_backend_sched_split_graph(sched, graph); |
| 1725 | |
| 1726 | if (!ggml_backend_sched_alloc_splits(sched)) { |
| 1727 | return false; |
| 1728 | } |
| 1729 | |
| 1730 | sched->is_alloc = true; |
| 1731 | |
| 1732 | return true; |
| 1733 | } |
| 1734 | |
| 1735 | enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { |
| 1736 | enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph); |
| 1737 | ggml_backend_sched_synchronize(sched); |
| 1738 | return err; |
| 1739 | } |
| 1740 | |
| 1741 | enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { |
| 1742 | GGML_ASSERT(sched); |
| 1743 | if (!sched->is_reset && !sched->is_alloc) { |
| 1744 | ggml_backend_sched_reset(sched); |
| 1745 | } |
| 1746 | |
| 1747 | if (!sched->is_alloc) { |
| 1748 | if (!ggml_backend_sched_alloc_graph(sched, graph)) { |
| 1749 | return GGML_STATUS_ALLOC_FAILED; |
| 1750 | } |
| 1751 | } |
| 1752 | |
| 1753 | return ggml_backend_sched_compute_splits(sched); |
| 1754 | } |
| 1755 | |
| 1756 | void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) { |
| 1757 | GGML_ASSERT(sched); |
| 1758 | for (int i = 0; i < sched->n_backends; i++) { |
| 1759 | ggml_backend_synchronize(backend: sched->backends[i]); |
| 1760 | } |
| 1761 | if (!sched->is_alloc) { |
| 1762 | // if the graph is not already allocated, always use copy 0 after a synchronization |
| 1763 | // this ensures that during generation the same copy is used every time, |
| 1764 | // which avoids changes in the graph that could cause CUDA or other graphs to be disabled |
| 1765 | sched->next_copy = 0; |
| 1766 | } |
| 1767 | } |
| 1768 | |
| 1769 | void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) { |
| 1770 | GGML_ASSERT(sched); |
| 1771 | sched->callback_eval = callback; |
| 1772 | sched->callback_eval_user_data = user_data; |
| 1773 | } |
| 1774 | |
| 1775 | int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) { |
| 1776 | GGML_ASSERT(sched); |
| 1777 | return sched->n_splits; |
| 1778 | } |
| 1779 | |
| 1780 | int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) { |
| 1781 | GGML_ASSERT(sched); |
| 1782 | return sched->n_copies; |
| 1783 | } |
| 1784 | |
| 1785 | int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) { |
| 1786 | GGML_ASSERT(sched); |
| 1787 | return sched->n_backends; |
| 1788 | } |
| 1789 | |
| 1790 | ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) { |
| 1791 | GGML_ASSERT(sched); |
| 1792 | GGML_ASSERT(i >= 0 && i < sched->n_backends); |
| 1793 | return sched->backends[i]; |
| 1794 | } |
| 1795 | |
| 1796 | ggml_backend_buffer_type_t ggml_backend_sched_get_buffer_type(ggml_backend_sched_t sched, ggml_backend_t backend) { |
| 1797 | GGML_ASSERT(sched); |
| 1798 | int backend_index = ggml_backend_sched_backend_id(sched, backend); |
| 1799 | GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends); |
| 1800 | |
| 1801 | return sched->bufts[backend_index]; |
| 1802 | } |
| 1803 | |
| 1804 | size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) { |
| 1805 | GGML_ASSERT(sched); |
| 1806 | int backend_index = ggml_backend_sched_backend_id(sched, backend); |
| 1807 | GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends); |
| 1808 | |
| 1809 | return ggml_gallocr_get_buffer_size(galloc: sched->galloc, buffer_id: backend_index); |
| 1810 | } |
| 1811 | |
| 1812 | void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) { |
| 1813 | GGML_ASSERT(sched); |
| 1814 | int backend_index = ggml_backend_sched_backend_id(sched, backend); |
| 1815 | GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends); |
| 1816 | tensor_backend_id(node) = backend_index; |
| 1817 | SET_CAUSE(node, "usr" ); |
| 1818 | sched->is_reset = false; |
| 1819 | } |
| 1820 | |
| 1821 | ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) { |
| 1822 | GGML_ASSERT(sched); |
| 1823 | int backend_index = tensor_backend_id(node); |
| 1824 | if (backend_index == -1) { |
| 1825 | return NULL; |
| 1826 | } |
| 1827 | return sched->backends[backend_index]; |
| 1828 | } |
| 1829 | |
| 1830 | // utils |
| 1831 | |
| 1832 | enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) { |
| 1833 | GGML_ASSERT(tensor); |
| 1834 | GGML_ASSERT(tensor->buffer == NULL); |
| 1835 | GGML_ASSERT(tensor->view_src != NULL); |
| 1836 | GGML_ASSERT(tensor->view_src->buffer != NULL); |
| 1837 | GGML_ASSERT(tensor->view_src->data != NULL); |
| 1838 | |
| 1839 | tensor->buffer = tensor->view_src->buffer; |
| 1840 | tensor->data = (char *)tensor->view_src->data + tensor->view_offs; |
| 1841 | return ggml_backend_buffer_init_tensor(buffer: tensor->buffer, tensor); |
| 1842 | } |
| 1843 | |
| 1844 | enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) { |
| 1845 | GGML_ASSERT(tensor); |
| 1846 | GGML_ASSERT(tensor->buffer == NULL); |
| 1847 | GGML_ASSERT(tensor->data == NULL); |
| 1848 | GGML_ASSERT(tensor->view_src == NULL); |
| 1849 | GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer)); |
| 1850 | GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <= |
| 1851 | (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer)); |
| 1852 | |
| 1853 | tensor->buffer = buffer; |
| 1854 | tensor->data = addr; |
| 1855 | return ggml_backend_buffer_init_tensor(buffer, tensor); |
| 1856 | } |
| 1857 | |
| 1858 | static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, |
| 1859 | struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) { |
| 1860 | |
| 1861 | GGML_ASSERT(src != NULL); |
| 1862 | GGML_ASSERT(src->data && "graph must be allocated" ); |
| 1863 | |
| 1864 | size_t id = ggml_hash_insert(hash_set: &hash_set, key: src); |
| 1865 | if (id == GGML_HASHSET_ALREADY_EXISTS) { |
| 1866 | return node_copies[ggml_hash_find(hash_set: &hash_set, key: src)]; |
| 1867 | } |
| 1868 | |
| 1869 | struct ggml_tensor * dst = ggml_dup_tensor_layout(ctx: src->data && !src->view_src ? ctx_allocated : ctx_unallocated, tensor: src); |
| 1870 | if (src->view_src != NULL) { |
| 1871 | dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src: src->view_src); |
| 1872 | dst->view_offs = src->view_offs; |
| 1873 | } |
| 1874 | dst->op = src->op; |
| 1875 | memcpy(dest: dst->op_params, src: src->op_params, n: sizeof(dst->op_params)); |
| 1876 | ggml_set_name(tensor: dst, name: src->name); |
| 1877 | |
| 1878 | // copy src |
| 1879 | for (int i = 0; i < GGML_MAX_SRC; i++) { |
| 1880 | struct ggml_tensor * s = src->src[i]; |
| 1881 | if (s == NULL) { |
| 1882 | continue; |
| 1883 | } |
| 1884 | dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src: s); |
| 1885 | } |
| 1886 | |
| 1887 | node_copies[id] = dst; |
| 1888 | return dst; |
| 1889 | } |
| 1890 | |
| 1891 | static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) { |
| 1892 | size_t id = ggml_hash_find(hash_set, key: src); |
| 1893 | if (node_init[id]) { |
| 1894 | return; |
| 1895 | } |
| 1896 | node_init[id] = true; |
| 1897 | |
| 1898 | struct ggml_tensor * dst = node_copies[id]; |
| 1899 | if (dst->view_src != NULL) { |
| 1900 | graph_copy_init_tensor(hash_set, node_copies, node_init, src: src->view_src); |
| 1901 | enum ggml_status status = ggml_backend_view_init(tensor: dst); |
| 1902 | GGML_ASSERT(status == GGML_STATUS_SUCCESS); |
| 1903 | } |
| 1904 | else { |
| 1905 | ggml_backend_tensor_copy(src, dst); |
| 1906 | } |
| 1907 | |
| 1908 | // init src |
| 1909 | for (int i = 0; i < GGML_MAX_SRC; i++) { |
| 1910 | struct ggml_tensor * s = src->src[i]; |
| 1911 | if (s == NULL) { |
| 1912 | continue; |
| 1913 | } |
| 1914 | graph_copy_init_tensor(hash_set, node_copies, node_init, src: s); |
| 1915 | } |
| 1916 | } |
| 1917 | |
| 1918 | struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) { |
| 1919 | GGML_ASSERT(graph); |
| 1920 | struct ggml_hash_set hash_set = ggml_hash_set_new(size: graph->visited_hash_set.size); |
| 1921 | struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(nmemb: hash_set.size, size: sizeof(node_copies[0])); // NOLINT |
| 1922 | bool * node_init = (bool *) calloc(nmemb: hash_set.size, size: sizeof(node_init[0])); |
| 1923 | |
| 1924 | struct ggml_init_params params = { |
| 1925 | /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(size: graph->size, grads: false), |
| 1926 | /* .mem_buffer = */ NULL, |
| 1927 | /* .no_alloc = */ true |
| 1928 | }; |
| 1929 | |
| 1930 | struct ggml_context * ctx_allocated = ggml_init(params); |
| 1931 | struct ggml_context * ctx_unallocated = ggml_init(params); |
| 1932 | |
| 1933 | if (ctx_allocated == NULL || ctx_unallocated == NULL) { |
| 1934 | GGML_LOG_ERROR("%s: failed to allocate context for graph copy\n" , __func__); |
| 1935 | ggml_hash_set_free(hash_set: &hash_set); |
| 1936 | free(ptr: node_copies); |
| 1937 | free(ptr: node_init); |
| 1938 | ggml_free(ctx: ctx_allocated); |
| 1939 | ggml_free(ctx: ctx_unallocated); |
| 1940 | return { |
| 1941 | /* .buffer = */ NULL, |
| 1942 | /* .ctx_allocated = */ NULL, |
| 1943 | /* .ctx_unallocated = */ NULL, |
| 1944 | /* .graph = */ NULL, |
| 1945 | }; |
| 1946 | } |
| 1947 | |
| 1948 | // dup nodes |
| 1949 | for (int i = 0; i < graph->n_nodes; i++) { |
| 1950 | struct ggml_tensor * node = graph->nodes[i]; |
| 1951 | graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src: node); |
| 1952 | } |
| 1953 | |
| 1954 | // allocate nodes |
| 1955 | ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx: ctx_allocated, backend); |
| 1956 | if (buffer == NULL) { |
| 1957 | GGML_LOG_ERROR("%s: failed to allocate buffer for graph copy\n" , __func__); |
| 1958 | ggml_hash_set_free(hash_set: &hash_set); |
| 1959 | free(ptr: node_copies); |
| 1960 | free(ptr: node_init); |
| 1961 | ggml_free(ctx: ctx_allocated); |
| 1962 | ggml_free(ctx: ctx_unallocated); |
| 1963 | return { |
| 1964 | /* .buffer = */ NULL, |
| 1965 | /* .ctx_allocated = */ NULL, |
| 1966 | /* .ctx_unallocated = */ NULL, |
| 1967 | /* .graph = */ NULL, |
| 1968 | }; |
| 1969 | } |
| 1970 | |
| 1971 | //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024); |
| 1972 | |
| 1973 | // copy data and init views |
| 1974 | for (int i = 0; i < graph->n_nodes; i++) { |
| 1975 | struct ggml_tensor * node = graph->nodes[i]; |
| 1976 | graph_copy_init_tensor(hash_set: &hash_set, node_copies, node_init, src: node); |
| 1977 | } |
| 1978 | |
| 1979 | // build graph copy |
| 1980 | struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx: ctx_allocated, size: graph->size, grads: false); |
| 1981 | for (int i = 0; i < graph->n_nodes; i++) { |
| 1982 | struct ggml_tensor * node = graph->nodes[i]; |
| 1983 | struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set: &hash_set, key: node)]; |
| 1984 | graph_copy->nodes[i] = node_copy; |
| 1985 | } |
| 1986 | graph_copy->n_nodes = graph->n_nodes; |
| 1987 | |
| 1988 | ggml_hash_set_free(hash_set: &hash_set); |
| 1989 | free(ptr: node_copies); |
| 1990 | free(ptr: node_init); |
| 1991 | |
| 1992 | return { |
| 1993 | /* .buffer = */ buffer, |
| 1994 | /* .ctx_allocated = */ ctx_allocated, |
| 1995 | /* .ctx_unallocated = */ ctx_unallocated, |
| 1996 | /* .graph = */ graph_copy, |
| 1997 | }; |
| 1998 | } |
| 1999 | |
| 2000 | void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) { |
| 2001 | ggml_backend_buffer_free(buffer: copy.buffer); |
| 2002 | ggml_free(ctx: copy.ctx_allocated); |
| 2003 | ggml_free(ctx: copy.ctx_unallocated); |
| 2004 | } |
| 2005 | |
| 2006 | bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor * test_node) { |
| 2007 | struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend: backend2, graph); |
| 2008 | if (copy.buffer == NULL) { |
| 2009 | return false; |
| 2010 | } |
| 2011 | |
| 2012 | struct ggml_cgraph * g1 = graph; |
| 2013 | struct ggml_cgraph * g2 = copy.graph; |
| 2014 | |
| 2015 | assert(g1->n_nodes == g2->n_nodes); |
| 2016 | |
| 2017 | if (test_node != nullptr) { |
| 2018 | // Compute the whole graph and only test the output for a specific tensor |
| 2019 | ggml_backend_graph_compute(backend: backend1, cgraph: g1); |
| 2020 | ggml_backend_graph_compute(backend: backend2, cgraph: g2); |
| 2021 | |
| 2022 | int test_node_idx = -1; |
| 2023 | for (int i = 0; i < g1->n_nodes; i++) { |
| 2024 | struct ggml_tensor * t1 = g1->nodes[i]; |
| 2025 | if (t1 == test_node) { |
| 2026 | test_node_idx = i; |
| 2027 | break; |
| 2028 | } |
| 2029 | } |
| 2030 | GGML_ASSERT(test_node_idx != -1); |
| 2031 | |
| 2032 | callback(test_node_idx, g1->nodes[test_node_idx], g2->nodes[test_node_idx], user_data); |
| 2033 | } else { |
| 2034 | for (int i = 0; i < g1->n_nodes; i++) { |
| 2035 | struct ggml_tensor * t1 = g1->nodes[i]; |
| 2036 | struct ggml_tensor * t2 = g2->nodes[i]; |
| 2037 | |
| 2038 | assert(t1->op == t2->op && ggml_are_same_layout(t1, t2)); |
| 2039 | |
| 2040 | struct ggml_cgraph g1v = ggml_graph_view(cgraph: g1, i0: i, i1: i + 1); |
| 2041 | struct ggml_cgraph g2v = ggml_graph_view(cgraph: g2, i0: i, i1: i + 1); |
| 2042 | |
| 2043 | ggml_backend_graph_compute(backend: backend1, cgraph: &g1v); |
| 2044 | ggml_backend_graph_compute(backend: backend2, cgraph: &g2v); |
| 2045 | |
| 2046 | if (ggml_is_view_op(op: t1->op)) { |
| 2047 | continue; |
| 2048 | } |
| 2049 | |
| 2050 | // compare results, calculate rms etc |
| 2051 | if (!callback(i, t1, t2, user_data)) { |
| 2052 | break; |
| 2053 | } |
| 2054 | } |
| 2055 | } |
| 2056 | ggml_backend_graph_copy_free(copy); |
| 2057 | |
| 2058 | return true; |
| 2059 | } |
| 2060 | |
| 2061 | // CPU backend - buffer |
| 2062 | |
| 2063 | static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) { |
| 2064 | GGML_ASSERT(buffer); |
| 2065 | uintptr_t data = (uintptr_t)buffer->context; |
| 2066 | |
| 2067 | // align the buffer |
| 2068 | if (data % TENSOR_ALIGNMENT != 0) { |
| 2069 | data = GGML_PAD(data, TENSOR_ALIGNMENT); |
| 2070 | } |
| 2071 | |
| 2072 | return (void *)data; |
| 2073 | } |
| 2074 | |
| 2075 | static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) { |
| 2076 | GGML_ASSERT(buffer); |
| 2077 | ggml_aligned_free(ptr: buffer->context, size: buffer->size); |
| 2078 | } |
| 2079 | |
| 2080 | static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { |
| 2081 | GGML_ASSERT(tensor); |
| 2082 | memset(s: (char *)tensor->data + offset, c: value, n: size); |
| 2083 | |
| 2084 | GGML_UNUSED(buffer); |
| 2085 | } |
| 2086 | |
| 2087 | static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { |
| 2088 | GGML_ASSERT(tensor); |
| 2089 | memcpy(dest: (char *)tensor->data + offset, src: data, n: size); |
| 2090 | |
| 2091 | GGML_UNUSED(buffer); |
| 2092 | } |
| 2093 | |
| 2094 | static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { |
| 2095 | GGML_ASSERT(tensor); |
| 2096 | memcpy(dest: data, src: (const char *)tensor->data + offset, n: size); |
| 2097 | |
| 2098 | GGML_UNUSED(buffer); |
| 2099 | } |
| 2100 | |
| 2101 | static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) { |
| 2102 | GGML_ASSERT(src); |
| 2103 | if (ggml_backend_buffer_is_host(buffer: src->buffer)) { |
| 2104 | memcpy(dest: dst->data, src: src->data, n: ggml_nbytes(tensor: src)); |
| 2105 | return true; |
| 2106 | } |
| 2107 | return false; |
| 2108 | |
| 2109 | GGML_UNUSED(buffer); |
| 2110 | } |
| 2111 | |
| 2112 | static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { |
| 2113 | GGML_ASSERT(buffer); |
| 2114 | memset(s: buffer->context, c: value, n: buffer->size); |
| 2115 | } |
| 2116 | |
| 2117 | static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_i = { |
| 2118 | /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer, |
| 2119 | /* .get_base = */ ggml_backend_cpu_buffer_get_base, |
| 2120 | /* .init_tensor = */ NULL, // no initialization required |
| 2121 | /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor, |
| 2122 | /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor, |
| 2123 | /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor, |
| 2124 | /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor, |
| 2125 | /* .clear = */ ggml_backend_cpu_buffer_clear, |
| 2126 | /* .reset = */ NULL, |
| 2127 | }; |
| 2128 | |
| 2129 | static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_from_ptr_i = { |
| 2130 | /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed |
| 2131 | /* .get_base = */ ggml_backend_cpu_buffer_get_base, |
| 2132 | /* .init_tensor = */ NULL, // no initialization required |
| 2133 | /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor, |
| 2134 | /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor, |
| 2135 | /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor, |
| 2136 | /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor, |
| 2137 | /* .clear = */ ggml_backend_cpu_buffer_clear, |
| 2138 | /* .reset = */ NULL, |
| 2139 | }; |
| 2140 | |
| 2141 | // CPU backend buffer type |
| 2142 | |
| 2143 | // this buffer type is defined here to make it available to all backends |
| 2144 | |
| 2145 | static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) { |
| 2146 | return "CPU" ; |
| 2147 | |
| 2148 | GGML_UNUSED(buft); |
| 2149 | } |
| 2150 | |
| 2151 | static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { |
| 2152 | void * data = ggml_aligned_malloc(size); |
| 2153 | |
| 2154 | if (data == NULL) { |
| 2155 | GGML_LOG_ERROR("%s: failed to allocate buffer of size %zu\n" , __func__, size); |
| 2156 | return NULL; |
| 2157 | } |
| 2158 | |
| 2159 | return ggml_backend_buffer_init(buft, iface: ggml_backend_cpu_buffer_i, context: data, size); |
| 2160 | } |
| 2161 | |
| 2162 | static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { |
| 2163 | return TENSOR_ALIGNMENT; |
| 2164 | |
| 2165 | GGML_UNUSED(buft); |
| 2166 | } |
| 2167 | |
| 2168 | static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) { |
| 2169 | return true; |
| 2170 | |
| 2171 | GGML_UNUSED(buft); |
| 2172 | } |
| 2173 | |
| 2174 | ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) { |
| 2175 | static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = { |
| 2176 | /* .iface = */ { |
| 2177 | /* .get_name = */ ggml_backend_cpu_buffer_type_get_name, |
| 2178 | /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer, |
| 2179 | /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment, |
| 2180 | /* .get_max_size = */ NULL, // defaults to SIZE_MAX |
| 2181 | /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes |
| 2182 | /* .is_host = */ ggml_backend_cpu_buffer_type_is_host, |
| 2183 | }, |
| 2184 | /* .device = */ NULL, // FIXME ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0), |
| 2185 | /* .context = */ NULL, |
| 2186 | }; |
| 2187 | |
| 2188 | return &ggml_backend_cpu_buffer_type; |
| 2189 | } |
| 2190 | |
| 2191 | static const char * ggml_backend_cpu_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) { |
| 2192 | return "CPU_Mapped" ; |
| 2193 | |
| 2194 | GGML_UNUSED(buft); |
| 2195 | } |
| 2196 | |
| 2197 | static ggml_backend_buffer_type_t ggml_backend_cpu_buffer_from_ptr_type(void) { |
| 2198 | static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = { |
| 2199 | /* .iface = */ { |
| 2200 | /* .get_name = */ ggml_backend_cpu_buffer_from_ptr_type_get_name, |
| 2201 | /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer, |
| 2202 | /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment, |
| 2203 | /* .get_max_size = */ NULL, // defaults to SIZE_MAX |
| 2204 | /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes |
| 2205 | /* .is_host = */ ggml_backend_cpu_buffer_type_is_host, |
| 2206 | }, |
| 2207 | /* .device = */ NULL, // FIXME ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0), |
| 2208 | /* .context = */ NULL, |
| 2209 | }; |
| 2210 | |
| 2211 | return &ggml_backend_cpu_buffer_type; |
| 2212 | } |
| 2213 | |
| 2214 | ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) { |
| 2215 | GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned" ); |
| 2216 | return ggml_backend_buffer_init(buft: ggml_backend_cpu_buffer_from_ptr_type(), iface: ggml_backend_cpu_buffer_from_ptr_i, context: ptr, size); |
| 2217 | } |
| 2218 | |