| 1 | #define GGML_COMMON_IMPL_C |
| 2 | #include "ggml-common.h" |
| 3 | #include "ggml-quants.h" |
| 4 | #include "ggml-impl.h" |
| 5 | #include "ggml-cpu.h" |
| 6 | #include "simd-mappings.h" |
| 7 | |
| 8 | #include "../../quants.h" |
| 9 | #include "../../ggml-cpu-impl.h" |
| 10 | |
| 11 | #include <math.h> |
| 12 | #include <string.h> |
| 13 | #include <assert.h> |
| 14 | #include <stdlib.h> // for qsort |
| 15 | #include <stdio.h> // for GGML_ASSERT |
| 16 | |
| 17 | #define GROUP_MAX_EPS 1e-15f |
| 18 | #define GROUP_MAX_EPS_IQ3_XXS 1e-8f |
| 19 | #define GROUP_MAX_EPS_IQ2_S 1e-8f |
| 20 | #define GROUP_MAX_EPS_IQ1_M 1e-7f |
| 21 | #define GROUP_MAX_EPS_IQ1_S 1e-12f |
| 22 | |
| 23 | #define UNUSED GGML_UNUSED |
| 24 | |
| 25 | // some compilers don't provide _mm256_set_m128i, e.g. gcc 7 |
| 26 | #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1) |
| 27 | |
| 28 | #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) |
| 29 | // multiply int8_t, add results pairwise twice |
| 30 | static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) { |
| 31 | // Get absolute values of x vectors |
| 32 | const __m128i ax = _mm_sign_epi8(a: x, b: x); |
| 33 | // Sign the values of the y vectors |
| 34 | const __m128i sy = _mm_sign_epi8(a: y, b: x); |
| 35 | // Perform multiplication and create 16-bit values |
| 36 | const __m128i dot = _mm_maddubs_epi16(a: ax, b: sy); |
| 37 | const __m128i ones = _mm_set1_epi16(w: 1); |
| 38 | return _mm_madd_epi16(a: ones, b: dot); |
| 39 | } |
| 40 | |
| 41 | #if __AVX__ || __AVX2__ || __AVX512F__ |
| 42 | // horizontally add 8 floats |
| 43 | static inline float hsum_float_8(const __m256 x) { |
| 44 | __m128 res = _mm256_extractf128_ps(x, 1); |
| 45 | res = _mm_add_ps(a: res, b: _mm256_castps256_ps128(a: x)); |
| 46 | res = _mm_add_ps(a: res, b: _mm_movehl_ps(a: res, b: res)); |
| 47 | res = _mm_add_ss(a: res, b: _mm_movehdup_ps(a: res)); |
| 48 | return _mm_cvtss_f32(a: res); |
| 49 | } |
| 50 | |
| 51 | // horizontally add 8 int32_t |
| 52 | static inline int hsum_i32_8(const __m256i a) { |
| 53 | const __m128i sum128 = _mm_add_epi32(a: _mm256_castsi256_si128(a: a), _mm256_extractf128_si256(a, 1)); |
| 54 | const __m128i hi64 = _mm_unpackhi_epi64(a: sum128, b: sum128); |
| 55 | const __m128i sum64 = _mm_add_epi32(a: hi64, b: sum128); |
| 56 | const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1)); |
| 57 | return _mm_cvtsi128_si32(a: _mm_add_epi32(a: sum64, b: hi32)); |
| 58 | } |
| 59 | |
| 60 | // horizontally add 4 int32_t |
| 61 | static inline int hsum_i32_4(const __m128i a) { |
| 62 | const __m128i hi64 = _mm_unpackhi_epi64(a: a, b: a); |
| 63 | const __m128i sum64 = _mm_add_epi32(a: hi64, b: a); |
| 64 | const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1)); |
| 65 | return _mm_cvtsi128_si32(a: _mm_add_epi32(a: sum64, b: hi32)); |
| 66 | } |
| 67 | |
| 68 | #if defined(__AVX2__) || defined(__AVX512F__) |
| 69 | static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) { |
| 70 | const __m256i ax = _mm256_sign_epi8(a: x, b: x); |
| 71 | const __m256i sy = _mm256_sign_epi8(a: y, b: x); |
| 72 | return _mm256_maddubs_epi16(a: ax, b: sy); |
| 73 | } |
| 74 | |
| 75 | // spread 32 bits to 32 bytes { 0x00, 0xFF } |
| 76 | static inline __m256i bytes_from_bits_32(const uint8_t * x) { |
| 77 | uint32_t x32; |
| 78 | memcpy(dest: &x32, src: x, n: sizeof(uint32_t)); |
| 79 | const __m256i shuf_mask = _mm256_set_epi64x( |
| 80 | a: 0x0303030303030303, b: 0x0202020202020202, |
| 81 | c: 0x0101010101010101, d: 0x0000000000000000); |
| 82 | __m256i bytes = _mm256_shuffle_epi8(a: _mm256_set1_epi32(i: x32), b: shuf_mask); |
| 83 | const __m256i bit_mask = _mm256_set1_epi64x(q: 0x7fbfdfeff7fbfdfe); |
| 84 | bytes = _mm256_or_si256(a: bytes, b: bit_mask); |
| 85 | return _mm256_cmpeq_epi8(a: bytes, b: _mm256_set1_epi64x(q: -1)); |
| 86 | } |
| 87 | |
| 88 | // Unpack 32 4-bit fields into 32 bytes |
| 89 | // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval |
| 90 | static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) |
| 91 | { |
| 92 | const __m128i tmp = _mm_loadu_si128(p: (const __m128i *)rsi); |
| 93 | const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp); |
| 94 | const __m256i lowMask = _mm256_set1_epi8( b: 0xF ); |
| 95 | return _mm256_and_si256(a: lowMask, b: bytes); |
| 96 | } |
| 97 | |
| 98 | // add int16_t pairwise and return as float vector |
| 99 | static inline __m256 sum_i16_pairs_float(const __m256i x) { |
| 100 | const __m256i ones = _mm256_set1_epi16(w: 1); |
| 101 | const __m256i summed_pairs = _mm256_madd_epi16(a: ones, b: x); |
| 102 | return _mm256_cvtepi32_ps(a: summed_pairs); |
| 103 | } |
| 104 | |
| 105 | static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) { |
| 106 | #if defined(__AVX512VNNI__) && defined(__AVX512VL__) |
| 107 | const __m256i zero = _mm256_setzero_si256(); |
| 108 | const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy); |
| 109 | return _mm256_cvtepi32_ps(summed_pairs); |
| 110 | #elif defined(__AVXVNNI__) |
| 111 | const __m256i zero = _mm256_setzero_si256(); |
| 112 | const __m256i summed_pairs = _mm256_dpbusd_avx_epi32(S: zero, A: ax, B: sy); |
| 113 | return _mm256_cvtepi32_ps(a: summed_pairs); |
| 114 | #else |
| 115 | // Perform multiplication and create 16-bit values |
| 116 | const __m256i dot = _mm256_maddubs_epi16(ax, sy); |
| 117 | return sum_i16_pairs_float(dot); |
| 118 | #endif |
| 119 | } |
| 120 | |
| 121 | // multiply int8_t, add results pairwise twice and return as float vector |
| 122 | static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) { |
| 123 | #if __AVXVNNIINT8__ |
| 124 | const __m256i zero = _mm256_setzero_si256(); |
| 125 | const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y); |
| 126 | return _mm256_cvtepi32_ps(summed_pairs); |
| 127 | #else |
| 128 | // Get absolute values of x vectors |
| 129 | const __m256i ax = _mm256_sign_epi8(a: x, b: x); |
| 130 | // Sign the values of the y vectors |
| 131 | const __m256i sy = _mm256_sign_epi8(a: y, b: x); |
| 132 | return mul_sum_us8_pairs_float(ax, sy); |
| 133 | #endif |
| 134 | } |
| 135 | |
| 136 | static inline __m128i packNibbles( __m256i bytes ) |
| 137 | { |
| 138 | // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh |
| 139 | #if __AVX512F__ |
| 140 | const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000 |
| 141 | bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh |
| 142 | return _mm256_cvtepi16_epi8(bytes); // abcd_efgh |
| 143 | #else |
| 144 | const __m256i lowByte = _mm256_set1_epi16( w: 0xFF ); |
| 145 | __m256i high = _mm256_andnot_si256( a: lowByte, b: bytes ); |
| 146 | __m256i low = _mm256_and_si256( a: lowByte, b: bytes ); |
| 147 | high = _mm256_srli_epi16( a: high, count: 4 ); |
| 148 | bytes = _mm256_or_si256( a: low, b: high ); |
| 149 | |
| 150 | // Compress uint16_t lanes into bytes |
| 151 | __m128i r0 = _mm256_castsi256_si128( a: bytes ); |
| 152 | __m128i r1 = _mm256_extracti128_si256( bytes, 1 ); |
| 153 | return _mm_packus_epi16( a: r0, b: r1 ); |
| 154 | #endif |
| 155 | } |
| 156 | #elif defined(__AVX__) |
| 157 | static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 ) |
| 158 | { |
| 159 | // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh |
| 160 | const __m128i lowByte = _mm_set1_epi16( 0xFF ); |
| 161 | __m128i high = _mm_andnot_si128( lowByte, bytes1 ); |
| 162 | __m128i low = _mm_and_si128( lowByte, bytes1 ); |
| 163 | high = _mm_srli_epi16( high, 4 ); |
| 164 | bytes1 = _mm_or_si128( low, high ); |
| 165 | high = _mm_andnot_si128( lowByte, bytes2 ); |
| 166 | low = _mm_and_si128( lowByte, bytes2 ); |
| 167 | high = _mm_srli_epi16( high, 4 ); |
| 168 | bytes2 = _mm_or_si128( low, high ); |
| 169 | |
| 170 | return _mm_packus_epi16( bytes1, bytes2); |
| 171 | } |
| 172 | |
| 173 | static inline __m128i mul_add_epi8_sse(const __m128i x, const __m128i y) { |
| 174 | const __m128i ax = _mm_sign_epi8(x, x); |
| 175 | const __m128i sy = _mm_sign_epi8(y, x); |
| 176 | return _mm_maddubs_epi16(ax, sy); |
| 177 | } |
| 178 | |
| 179 | // spread 32 bits to 32 bytes { 0x00, 0xFF } |
| 180 | static inline __m256i bytes_from_bits_32(const uint8_t * x) { |
| 181 | uint32_t x32; |
| 182 | memcpy(&x32, x, sizeof(uint32_t)); |
| 183 | const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000); |
| 184 | const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202); |
| 185 | __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl); |
| 186 | __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh); |
| 187 | const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe); |
| 188 | bytesl = _mm_or_si128(bytesl, bit_mask); |
| 189 | bytesh = _mm_or_si128(bytesh, bit_mask); |
| 190 | bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1)); |
| 191 | bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1)); |
| 192 | return MM256_SET_M128I(bytesh, bytesl); |
| 193 | } |
| 194 | |
| 195 | // Unpack 32 4-bit fields into 32 bytes |
| 196 | // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval |
| 197 | static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) |
| 198 | { |
| 199 | // Load 16 bytes from memory |
| 200 | __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi); |
| 201 | __m128i tmph = _mm_srli_epi16(tmpl, 4); |
| 202 | const __m128i lowMask = _mm_set1_epi8(0xF); |
| 203 | tmpl = _mm_and_si128(lowMask, tmpl); |
| 204 | tmph = _mm_and_si128(lowMask, tmph); |
| 205 | return MM256_SET_M128I(tmph, tmpl); |
| 206 | } |
| 207 | |
| 208 | // add int16_t pairwise and return as float vector |
| 209 | static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) { |
| 210 | const __m128i ones = _mm_set1_epi16(1); |
| 211 | const __m128i summed_pairsl = _mm_madd_epi16(ones, xl); |
| 212 | const __m128i summed_pairsh = _mm_madd_epi16(ones, xh); |
| 213 | const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl); |
| 214 | return _mm256_cvtepi32_ps(summed_pairs); |
| 215 | } |
| 216 | |
| 217 | static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) { |
| 218 | const __m128i axl = _mm256_castsi256_si128(ax); |
| 219 | const __m128i axh = _mm256_extractf128_si256(ax, 1); |
| 220 | const __m128i syl = _mm256_castsi256_si128(sy); |
| 221 | const __m128i syh = _mm256_extractf128_si256(sy, 1); |
| 222 | // Perform multiplication and create 16-bit values |
| 223 | const __m128i dotl = _mm_maddubs_epi16(axl, syl); |
| 224 | const __m128i doth = _mm_maddubs_epi16(axh, syh); |
| 225 | return sum_i16_pairs_float(doth, dotl); |
| 226 | } |
| 227 | |
| 228 | // multiply int8_t, add results pairwise twice and return as float vector |
| 229 | static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) { |
| 230 | const __m128i xl = _mm256_castsi256_si128(x); |
| 231 | const __m128i xh = _mm256_extractf128_si256(x, 1); |
| 232 | const __m128i yl = _mm256_castsi256_si128(y); |
| 233 | const __m128i yh = _mm256_extractf128_si256(y, 1); |
| 234 | // Get absolute values of x vectors |
| 235 | const __m128i axl = _mm_sign_epi8(xl, xl); |
| 236 | const __m128i axh = _mm_sign_epi8(xh, xh); |
| 237 | // Sign the values of the y vectors |
| 238 | const __m128i syl = _mm_sign_epi8(yl, xl); |
| 239 | const __m128i syh = _mm_sign_epi8(yh, xh); |
| 240 | // Perform multiplication and create 16-bit values |
| 241 | const __m128i dotl = _mm_maddubs_epi16(axl, syl); |
| 242 | const __m128i doth = _mm_maddubs_epi16(axh, syh); |
| 243 | return sum_i16_pairs_float(doth, dotl); |
| 244 | } |
| 245 | |
| 246 | // larger version of mul_sum_i8_pairs_float where x and y are each represented by four 128-bit vectors |
| 247 | static inline __m256 mul_sum_i8_quad_float(const __m128i x_1_0, const __m128i x_1_1, const __m128i x_2_0, const __m128i x_2_1, |
| 248 | const __m128i y_1_0, const __m128i y_1_1, const __m128i y_2_0, const __m128i y_2_1) { |
| 249 | const __m128i mone = _mm_set1_epi16(1); |
| 250 | |
| 251 | const __m128i p16_1_0 = mul_add_epi8_sse(x_1_0, y_1_0); |
| 252 | const __m128i p16_1_1 = mul_add_epi8_sse(x_1_1, y_1_1); |
| 253 | const __m128i p16_2_0 = mul_add_epi8_sse(x_2_0, y_2_0); |
| 254 | const __m128i p16_2_1 = mul_add_epi8_sse(x_2_1, y_2_1); |
| 255 | const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, mone); |
| 256 | const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, mone); |
| 257 | const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, mone); |
| 258 | const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, mone); |
| 259 | const __m128i p_1 = _mm_add_epi32(p_1_0, p_1_1); |
| 260 | const __m128i p_2 = _mm_add_epi32(p_2_0, p_2_1); |
| 261 | return _mm256_cvtepi32_ps(MM256_SET_M128I(p_2, p_1)); |
| 262 | } |
| 263 | |
| 264 | // quad fp16 delta calculation |
| 265 | static inline __m256 quad_fp16_delta_float(const float x0, const float y0, const float x1, const float y1) { |
| 266 | // GGML_CPU_FP16_TO_FP32 is faster than Intel F16C |
| 267 | return _mm256_set_m128(_mm_set1_ps(GGML_CPU_FP16_TO_FP32(x1) * GGML_CPU_FP16_TO_FP32(y1)), |
| 268 | _mm_set1_ps(GGML_CPU_FP16_TO_FP32(x0) * GGML_CPU_FP16_TO_FP32(y0))); |
| 269 | } |
| 270 | |
| 271 | static inline __m256 quad_mx_delta_float(const int8_t x0, const float y0, const int8_t x1, const float y1) { |
| 272 | return _mm256_set_m128(_mm_set1_ps(GGML_E8M0_TO_FP32_HALF(x1) * GGML_CPU_FP16_TO_FP32(y1)), |
| 273 | _mm_set1_ps(GGML_E8M0_TO_FP32_HALF(x0) * GGML_CPU_FP16_TO_FP32(y0))); |
| 274 | } |
| 275 | #endif |
| 276 | #elif defined(__SSSE3__) |
| 277 | // horizontally add 4x4 floats |
| 278 | static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) { |
| 279 | __m128 res_0 =_mm_hadd_ps(a, b); |
| 280 | __m128 res_1 =_mm_hadd_ps(c, d); |
| 281 | __m128 res =_mm_hadd_ps(res_0, res_1); |
| 282 | res =_mm_hadd_ps(res, res); |
| 283 | res =_mm_hadd_ps(res, res); |
| 284 | |
| 285 | return _mm_cvtss_f32(res); |
| 286 | } |
| 287 | #endif // __AVX__ || __AVX2__ || __AVX512F__ |
| 288 | #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) |
| 289 | |
| 290 | void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) { |
| 291 | assert(QK8_0 == 32); |
| 292 | assert(k % QK8_0 == 0); |
| 293 | const int nb = k / QK8_0; |
| 294 | |
| 295 | block_q8_0 * GGML_RESTRICT y = vy; |
| 296 | |
| 297 | #if defined(__AVX2__) || defined(__AVX__) |
| 298 | for (int i = 0; i < nb; i++) { |
| 299 | // Load elements into 4 AVX vectors |
| 300 | __m256 v0 = _mm256_loadu_ps( p: x ); |
| 301 | __m256 v1 = _mm256_loadu_ps( p: x + 8 ); |
| 302 | __m256 v2 = _mm256_loadu_ps( p: x + 16 ); |
| 303 | __m256 v3 = _mm256_loadu_ps( p: x + 24 ); |
| 304 | x += 32; |
| 305 | |
| 306 | // Compute max(abs(e)) for the block |
| 307 | const __m256 signBit = _mm256_set1_ps( w: -0.0f ); |
| 308 | __m256 maxAbs = _mm256_andnot_ps( a: signBit, b: v0 ); |
| 309 | maxAbs = _mm256_max_ps( a: maxAbs, b: _mm256_andnot_ps( a: signBit, b: v1 ) ); |
| 310 | maxAbs = _mm256_max_ps( a: maxAbs, b: _mm256_andnot_ps( a: signBit, b: v2 ) ); |
| 311 | maxAbs = _mm256_max_ps( a: maxAbs, b: _mm256_andnot_ps( a: signBit, b: v3 ) ); |
| 312 | |
| 313 | __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), b: _mm256_castps256_ps128( a: maxAbs ) ); |
| 314 | max4 = _mm_max_ps( a: max4, b: _mm_movehl_ps( a: max4, b: max4 ) ); |
| 315 | max4 = _mm_max_ss( a: max4, b: _mm_movehdup_ps( a: max4 ) ); |
| 316 | const float maxScalar = _mm_cvtss_f32( a: max4 ); |
| 317 | |
| 318 | // Quantize these floats |
| 319 | const float d = maxScalar / 127.f; |
| 320 | y[i].d = GGML_CPU_FP32_TO_FP16(d); |
| 321 | const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f; |
| 322 | const __m256 mul = _mm256_set1_ps( w: id ); |
| 323 | |
| 324 | // Apply the multiplier |
| 325 | v0 = _mm256_mul_ps( a: v0, b: mul ); |
| 326 | v1 = _mm256_mul_ps( a: v1, b: mul ); |
| 327 | v2 = _mm256_mul_ps( a: v2, b: mul ); |
| 328 | v3 = _mm256_mul_ps( a: v3, b: mul ); |
| 329 | |
| 330 | // Round to nearest integer |
| 331 | v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); |
| 332 | v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); |
| 333 | v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); |
| 334 | v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); |
| 335 | |
| 336 | // Convert floats to integers |
| 337 | __m256i i0 = _mm256_cvtps_epi32( a: v0 ); |
| 338 | __m256i i1 = _mm256_cvtps_epi32( a: v1 ); |
| 339 | __m256i i2 = _mm256_cvtps_epi32( a: v2 ); |
| 340 | __m256i i3 = _mm256_cvtps_epi32( a: v3 ); |
| 341 | |
| 342 | #if defined(__AVX2__) |
| 343 | // Convert int32 to int16 |
| 344 | i0 = _mm256_packs_epi32( a: i0, b: i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 |
| 345 | i2 = _mm256_packs_epi32( a: i2, b: i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 |
| 346 | // Convert int16 to int8 |
| 347 | i0 = _mm256_packs_epi16( a: i0, b: i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 |
| 348 | |
| 349 | // We got our precious signed bytes, but the order is now wrong |
| 350 | // These AVX2 pack instructions process 16-byte pieces independently |
| 351 | // The following instruction is fixing the order |
| 352 | const __m256i perm = _mm256_setr_epi32( i0: 0, i1: 4, i2: 1, i3: 5, i4: 2, i5: 6, i6: 3, i7: 7 ); |
| 353 | i0 = _mm256_permutevar8x32_epi32( a: i0, b: perm ); |
| 354 | |
| 355 | _mm256_storeu_si256(p: (__m256i *)y[i].qs, a: i0); |
| 356 | #else |
| 357 | // Since we don't have in AVX some necessary functions, |
| 358 | // we split the registers in half and call AVX2 analogs from SSE |
| 359 | __m128i ni0 = _mm256_castsi256_si128( i0 ); |
| 360 | __m128i ni1 = _mm256_extractf128_si256( i0, 1); |
| 361 | __m128i ni2 = _mm256_castsi256_si128( i1 ); |
| 362 | __m128i ni3 = _mm256_extractf128_si256( i1, 1); |
| 363 | __m128i ni4 = _mm256_castsi256_si128( i2 ); |
| 364 | __m128i ni5 = _mm256_extractf128_si256( i2, 1); |
| 365 | __m128i ni6 = _mm256_castsi256_si128( i3 ); |
| 366 | __m128i ni7 = _mm256_extractf128_si256( i3, 1); |
| 367 | |
| 368 | // Convert int32 to int16 |
| 369 | ni0 = _mm_packs_epi32( ni0, ni1 ); |
| 370 | ni2 = _mm_packs_epi32( ni2, ni3 ); |
| 371 | ni4 = _mm_packs_epi32( ni4, ni5 ); |
| 372 | ni6 = _mm_packs_epi32( ni6, ni7 ); |
| 373 | // Convert int16 to int8 |
| 374 | ni0 = _mm_packs_epi16( ni0, ni2 ); |
| 375 | ni4 = _mm_packs_epi16( ni4, ni6 ); |
| 376 | |
| 377 | _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0); |
| 378 | _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4); |
| 379 | #endif |
| 380 | } |
| 381 | #else |
| 382 | GGML_UNUSED(nb); |
| 383 | // scalar |
| 384 | quantize_row_q8_0_ref(x, y, k); |
| 385 | #endif |
| 386 | } |
| 387 | |
| 388 | void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) { |
| 389 | assert(k % QK8_1 == 0); |
| 390 | const int nb = k / QK8_1; |
| 391 | |
| 392 | block_q8_1 * GGML_RESTRICT y = vy; |
| 393 | #if defined(__AVX2__) || defined(__AVX__) |
| 394 | for (int i = 0; i < nb; i++) { |
| 395 | // Load elements into 4 AVX vectors |
| 396 | __m256 v0 = _mm256_loadu_ps( p: x ); |
| 397 | __m256 v1 = _mm256_loadu_ps( p: x + 8 ); |
| 398 | __m256 v2 = _mm256_loadu_ps( p: x + 16 ); |
| 399 | __m256 v3 = _mm256_loadu_ps( p: x + 24 ); |
| 400 | x += 32; |
| 401 | |
| 402 | // Compute max(abs(e)) for the block |
| 403 | const __m256 signBit = _mm256_set1_ps( w: -0.0f ); |
| 404 | __m256 maxAbs = _mm256_andnot_ps( a: signBit, b: v0 ); |
| 405 | maxAbs = _mm256_max_ps( a: maxAbs, b: _mm256_andnot_ps( a: signBit, b: v1 ) ); |
| 406 | maxAbs = _mm256_max_ps( a: maxAbs, b: _mm256_andnot_ps( a: signBit, b: v2 ) ); |
| 407 | maxAbs = _mm256_max_ps( a: maxAbs, b: _mm256_andnot_ps( a: signBit, b: v3 ) ); |
| 408 | |
| 409 | __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), b: _mm256_castps256_ps128( a: maxAbs ) ); |
| 410 | max4 = _mm_max_ps( a: max4, b: _mm_movehl_ps( a: max4, b: max4 ) ); |
| 411 | max4 = _mm_max_ss( a: max4, b: _mm_movehdup_ps( a: max4 ) ); |
| 412 | const float max_scalar = _mm_cvtss_f32( a: max4 ); |
| 413 | |
| 414 | // Quantize these floats |
| 415 | const float d = max_scalar / 127.f; |
| 416 | y[i].d = GGML_CPU_FP32_TO_FP16(d); |
| 417 | const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f; |
| 418 | const __m256 mul = _mm256_set1_ps( w: id ); |
| 419 | |
| 420 | // Apply the multiplier |
| 421 | v0 = _mm256_mul_ps( a: v0, b: mul ); |
| 422 | v1 = _mm256_mul_ps( a: v1, b: mul ); |
| 423 | v2 = _mm256_mul_ps( a: v2, b: mul ); |
| 424 | v3 = _mm256_mul_ps( a: v3, b: mul ); |
| 425 | |
| 426 | // Round to nearest integer |
| 427 | v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); |
| 428 | v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); |
| 429 | v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); |
| 430 | v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); |
| 431 | |
| 432 | // Convert floats to integers |
| 433 | __m256i i0 = _mm256_cvtps_epi32( a: v0 ); |
| 434 | __m256i i1 = _mm256_cvtps_epi32( a: v1 ); |
| 435 | __m256i i2 = _mm256_cvtps_epi32( a: v2 ); |
| 436 | __m256i i3 = _mm256_cvtps_epi32( a: v3 ); |
| 437 | |
| 438 | #if defined(__AVX2__) |
| 439 | // Compute the sum of the quants and set y[i].s |
| 440 | y[i].s = GGML_CPU_FP32_TO_FP16(d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)))); |
| 441 | |
| 442 | // Convert int32 to int16 |
| 443 | i0 = _mm256_packs_epi32( a: i0, b: i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 |
| 444 | i2 = _mm256_packs_epi32( a: i2, b: i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 |
| 445 | // Convert int16 to int8 |
| 446 | i0 = _mm256_packs_epi16( a: i0, b: i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 |
| 447 | |
| 448 | // We got our precious signed bytes, but the order is now wrong |
| 449 | // These AVX2 pack instructions process 16-byte pieces independently |
| 450 | // The following instruction is fixing the order |
| 451 | const __m256i perm = _mm256_setr_epi32( i0: 0, i1: 4, i2: 1, i3: 5, i4: 2, i5: 6, i6: 3, i7: 7 ); |
| 452 | i0 = _mm256_permutevar8x32_epi32( a: i0, b: perm ); |
| 453 | |
| 454 | _mm256_storeu_si256(p: (__m256i *)y[i].qs, a: i0); |
| 455 | #else |
| 456 | // Since we don't have in AVX some necessary functions, |
| 457 | // we split the registers in half and call AVX2 analogs from SSE |
| 458 | __m128i ni0 = _mm256_castsi256_si128( i0 ); |
| 459 | __m128i ni1 = _mm256_extractf128_si256( i0, 1); |
| 460 | __m128i ni2 = _mm256_castsi256_si128( i1 ); |
| 461 | __m128i ni3 = _mm256_extractf128_si256( i1, 1); |
| 462 | __m128i ni4 = _mm256_castsi256_si128( i2 ); |
| 463 | __m128i ni5 = _mm256_extractf128_si256( i2, 1); |
| 464 | __m128i ni6 = _mm256_castsi256_si128( i3 ); |
| 465 | __m128i ni7 = _mm256_extractf128_si256( i3, 1); |
| 466 | |
| 467 | // Compute the sum of the quants and set y[i].s |
| 468 | const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3)); |
| 469 | const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7)); |
| 470 | y[i].s = GGML_CPU_FP32_TO_FP16(d * hsum_i32_4(_mm_add_epi32(s0, s1))); |
| 471 | |
| 472 | // Convert int32 to int16 |
| 473 | ni0 = _mm_packs_epi32( ni0, ni1 ); |
| 474 | ni2 = _mm_packs_epi32( ni2, ni3 ); |
| 475 | ni4 = _mm_packs_epi32( ni4, ni5 ); |
| 476 | ni6 = _mm_packs_epi32( ni6, ni7 ); |
| 477 | // Convert int16 to int8 |
| 478 | ni0 = _mm_packs_epi16( ni0, ni2 ); |
| 479 | ni4 = _mm_packs_epi16( ni4, ni6 ); |
| 480 | |
| 481 | _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0); |
| 482 | _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4); |
| 483 | #endif |
| 484 | } |
| 485 | #else |
| 486 | GGML_UNUSED(nb); |
| 487 | // scalar |
| 488 | quantize_row_q8_1_ref(x, y, k); |
| 489 | #endif |
| 490 | } |
| 491 | |
| 492 | // placeholder implementation for Apple targets |
| 493 | void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k) { |
| 494 | quantize_row_q8_K_ref(x, y, k); |
| 495 | } |
| 496 | |
| 497 | //===================================== Dot products ================================= |
| 498 | |
| 499 | // |
| 500 | // Helper functions |
| 501 | // |
| 502 | |
| 503 | #if __AVX__ || __AVX2__ || __AVX512F__ |
| 504 | |
| 505 | // shuffles to pick the required scales in dot products |
| 506 | static inline __m256i get_scale_shuffle_q3k(int i) { |
| 507 | static const uint8_t k_shuffle[128] = { |
| 508 | 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, |
| 509 | 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, |
| 510 | 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11, |
| 511 | 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15, |
| 512 | }; |
| 513 | return _mm256_loadu_si256(p: (const __m256i*)k_shuffle + i); |
| 514 | } |
| 515 | static inline __m256i get_scale_shuffle_k4(int i) { |
| 516 | static const uint8_t k_shuffle[256] = { |
| 517 | 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
| 518 | 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, |
| 519 | 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, |
| 520 | 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, |
| 521 | 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, |
| 522 | 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11, |
| 523 | 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, |
| 524 | 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15 |
| 525 | }; |
| 526 | return _mm256_loadu_si256(p: (const __m256i*)k_shuffle + i); |
| 527 | } |
| 528 | static inline __m128i get_scale_shuffle(int i) { |
| 529 | static const uint8_t k_shuffle[128] = { |
| 530 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, |
| 531 | 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, |
| 532 | 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, |
| 533 | 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, |
| 534 | 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, |
| 535 | 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11, |
| 536 | 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13, |
| 537 | 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15 |
| 538 | }; |
| 539 | return _mm_loadu_si128(p: (const __m128i*)k_shuffle + i); |
| 540 | } |
| 541 | #endif |
| 542 | |
| 543 | void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 544 | const int qk = QK8_0; |
| 545 | const int nb = n / qk; |
| 546 | |
| 547 | assert(n % qk == 0); |
| 548 | assert(nrc == 1); |
| 549 | UNUSED(nrc); |
| 550 | UNUSED(bx); |
| 551 | UNUSED(by); |
| 552 | UNUSED(bs); |
| 553 | |
| 554 | const block_q4_0 * GGML_RESTRICT x = vx; |
| 555 | const block_q8_0 * GGML_RESTRICT y = vy; |
| 556 | |
| 557 | int ib = 0; |
| 558 | float sumf = 0; |
| 559 | |
| 560 | #if defined(__AVX2__) |
| 561 | // Initialize accumulator with zeros |
| 562 | __m256 acc = _mm256_setzero_ps(); |
| 563 | |
| 564 | // Main loop |
| 565 | for (; ib < nb; ++ib) { |
| 566 | /* Compute combined scale for the block */ |
| 567 | const __m256 d = _mm256_set1_ps( GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d) ); |
| 568 | |
| 569 | __m256i qx = bytes_from_nibbles_32(rsi: x[ib].qs); |
| 570 | |
| 571 | // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. |
| 572 | const __m256i off = _mm256_set1_epi8( b: 8 ); |
| 573 | qx = _mm256_sub_epi8( a: qx, b: off ); |
| 574 | |
| 575 | __m256i qy = _mm256_loadu_si256(p: (const __m256i *)y[ib].qs); |
| 576 | |
| 577 | const __m256 q = mul_sum_i8_pairs_float(x: qx, y: qy); |
| 578 | |
| 579 | /* Multiply q with scale and accumulate */ |
| 580 | acc = _mm256_fmadd_ps( A: d, B: q, C: acc ); |
| 581 | } |
| 582 | |
| 583 | sumf = hsum_float_8(x: acc); |
| 584 | #elif defined(__AVX__) |
| 585 | __m256 accum = _mm256_setzero_ps(); |
| 586 | for (; ib + 1 < nb; ib += 2) { |
| 587 | const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs); |
| 588 | const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs); |
| 589 | const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs); |
| 590 | const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs + 1); |
| 591 | const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs); |
| 592 | const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1); |
| 593 | |
| 594 | const __m128i q4b_1_0 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), q4bits_1), _mm_set1_epi8(8)); |
| 595 | const __m128i q4b_1_1 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(q4bits_1, 4)), _mm_set1_epi8(8)); |
| 596 | const __m128i q4b_2_0 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), q4bits_2), _mm_set1_epi8(8)); |
| 597 | const __m128i q4b_2_1 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(q4bits_2, 4)), _mm_set1_epi8(8)); |
| 598 | |
| 599 | const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0); |
| 600 | const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1); |
| 601 | const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0); |
| 602 | const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1); |
| 603 | const __m128i p_1 = _mm_add_epi16(p16_1_0, p16_1_1); |
| 604 | const __m128i p_2 = _mm_add_epi16(p16_2_0, p16_2_1); |
| 605 | const __m256 p = sum_i16_pairs_float(p_2, p_1); |
| 606 | |
| 607 | const __m256 deltas = quad_fp16_delta_float(x[ib].d, y[ib].d, x[ib + 1].d, y[ib + 1].d); |
| 608 | accum = _mm256_add_ps(_mm256_mul_ps(deltas, p), accum); |
| 609 | } |
| 610 | |
| 611 | sumf = hsum_float_8(accum); |
| 612 | #elif defined(__SSSE3__) |
| 613 | // set constants |
| 614 | const __m128i lowMask = _mm_set1_epi8(0xF); |
| 615 | const __m128i off = _mm_set1_epi8(8); |
| 616 | |
| 617 | // Initialize accumulator with zeros |
| 618 | __m128 acc_0 = _mm_setzero_ps(); |
| 619 | __m128 acc_1 = _mm_setzero_ps(); |
| 620 | __m128 acc_2 = _mm_setzero_ps(); |
| 621 | __m128 acc_3 = _mm_setzero_ps(); |
| 622 | |
| 623 | for (; ib + 1 < nb; ib += 2) { |
| 624 | _mm_prefetch(&x[ib] + sizeof(block_q4_0), _MM_HINT_T0); |
| 625 | _mm_prefetch(&y[ib] + sizeof(block_q8_0), _MM_HINT_T0); |
| 626 | |
| 627 | // Compute combined scale for the block 0 and 1 |
| 628 | const __m128 d_0_1 = _mm_set1_ps( GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d) ); |
| 629 | |
| 630 | const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[ib].qs); |
| 631 | |
| 632 | __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1); |
| 633 | __m128i by_0 = _mm_loadu_si128((const __m128i *)y[ib].qs); |
| 634 | bx_0 = _mm_sub_epi8(bx_0, off); |
| 635 | const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0); |
| 636 | |
| 637 | __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4)); |
| 638 | __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[ib].qs + 16)); |
| 639 | bx_1 = _mm_sub_epi8(bx_1, off); |
| 640 | const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1); |
| 641 | |
| 642 | _mm_prefetch(&x[ib] + 2 * sizeof(block_q4_0), _MM_HINT_T0); |
| 643 | _mm_prefetch(&y[ib] + 2 * sizeof(block_q8_0), _MM_HINT_T0); |
| 644 | |
| 645 | // Compute combined scale for the block 2 and 3 |
| 646 | const __m128 d_2_3 = _mm_set1_ps( GGML_CPU_FP16_TO_FP32(x[ib + 1].d) * GGML_CPU_FP16_TO_FP32(y[ib + 1].d) ); |
| 647 | |
| 648 | const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs); |
| 649 | |
| 650 | __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3); |
| 651 | __m128i by_2 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs); |
| 652 | bx_2 = _mm_sub_epi8(bx_2, off); |
| 653 | const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2); |
| 654 | |
| 655 | __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4)); |
| 656 | __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[ib + 1].qs + 16)); |
| 657 | bx_3 = _mm_sub_epi8(bx_3, off); |
| 658 | const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3); |
| 659 | |
| 660 | // Convert int32_t to float |
| 661 | __m128 p0 = _mm_cvtepi32_ps(i32_0); |
| 662 | __m128 p1 = _mm_cvtepi32_ps(i32_1); |
| 663 | __m128 p2 = _mm_cvtepi32_ps(i32_2); |
| 664 | __m128 p3 = _mm_cvtepi32_ps(i32_3); |
| 665 | |
| 666 | // Apply the scale |
| 667 | __m128 p0_d = _mm_mul_ps( d_0_1, p0 ); |
| 668 | __m128 p1_d = _mm_mul_ps( d_0_1, p1 ); |
| 669 | __m128 p2_d = _mm_mul_ps( d_2_3, p2 ); |
| 670 | __m128 p3_d = _mm_mul_ps( d_2_3, p3 ); |
| 671 | |
| 672 | // Acummulate |
| 673 | acc_0 = _mm_add_ps(p0_d, acc_0); |
| 674 | acc_1 = _mm_add_ps(p1_d, acc_1); |
| 675 | acc_2 = _mm_add_ps(p2_d, acc_2); |
| 676 | acc_3 = _mm_add_ps(p3_d, acc_3); |
| 677 | } |
| 678 | |
| 679 | sumf = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3); |
| 680 | |
| 681 | #endif |
| 682 | for (; ib < nb; ++ib) { |
| 683 | int sumi0 = 0; |
| 684 | int sumi1 = 0; |
| 685 | |
| 686 | for (int j = 0; j < qk/2; ++j) { |
| 687 | const int v0 = (x[ib].qs[j] & 0x0F) - 8; |
| 688 | const int v1 = (x[ib].qs[j] >> 4) - 8; |
| 689 | |
| 690 | sumi0 += (v0 * y[ib].qs[j]); |
| 691 | sumi1 += (v1 * y[ib].qs[j + qk/2]); |
| 692 | } |
| 693 | |
| 694 | int sumi = sumi0 + sumi1; |
| 695 | sumf += sumi*GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d); |
| 696 | } |
| 697 | |
| 698 | *s = sumf; |
| 699 | } |
| 700 | |
| 701 | void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 702 | const int qk = QK8_1; |
| 703 | const int nb = n / qk; |
| 704 | |
| 705 | assert(n % qk == 0); |
| 706 | assert(nrc == 1); |
| 707 | UNUSED(nrc); |
| 708 | UNUSED(bx); |
| 709 | UNUSED(by); |
| 710 | UNUSED(bs); |
| 711 | |
| 712 | const block_q4_1 * GGML_RESTRICT x = vx; |
| 713 | const block_q8_1 * GGML_RESTRICT y = vy; |
| 714 | |
| 715 | int ib = 0; |
| 716 | |
| 717 | #if defined(__AVX2__) || defined(__AVX__) |
| 718 | // Initialize accumulator with zeros |
| 719 | __m256 acc = _mm256_setzero_ps(); |
| 720 | |
| 721 | float summs = 0; |
| 722 | |
| 723 | // Main loop |
| 724 | for (; ib < nb; ++ib) { |
| 725 | const float d0 = GGML_CPU_FP16_TO_FP32(x[ib].d); |
| 726 | const float d1 = GGML_CPU_FP16_TO_FP32(y[ib].d); |
| 727 | |
| 728 | summs += GGML_CPU_FP16_TO_FP32(x[ib].m) * GGML_CPU_FP16_TO_FP32(y[ib].s); |
| 729 | |
| 730 | const __m256 d0v = _mm256_set1_ps( w: d0 ); |
| 731 | const __m256 d1v = _mm256_set1_ps( w: d1 ); |
| 732 | |
| 733 | // Compute combined scales |
| 734 | const __m256 d0d1 = _mm256_mul_ps( a: d0v, b: d1v ); |
| 735 | |
| 736 | // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes |
| 737 | const __m256i qx = bytes_from_nibbles_32(rsi: x[ib].qs); |
| 738 | const __m256i qy = _mm256_loadu_si256( p: (const __m256i *)y[ib].qs ); |
| 739 | |
| 740 | const __m256 xy = mul_sum_us8_pairs_float(ax: qx, sy: qy); |
| 741 | |
| 742 | // Accumulate d0*d1*x*y |
| 743 | #if defined(__AVX2__) |
| 744 | acc = _mm256_fmadd_ps( A: d0d1, B: xy, C: acc ); |
| 745 | #else |
| 746 | acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc ); |
| 747 | #endif |
| 748 | } |
| 749 | |
| 750 | *s = hsum_float_8(x: acc) + summs; |
| 751 | #else |
| 752 | UNUSED(nb); |
| 753 | UNUSED(x); |
| 754 | UNUSED(y); |
| 755 | UNUSED(ib); |
| 756 | ggml_vec_dot_q4_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc); |
| 757 | #endif |
| 758 | } |
| 759 | |
| 760 | void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 761 | assert(nrc == 1); |
| 762 | UNUSED(nrc); |
| 763 | UNUSED(bx); |
| 764 | UNUSED(by); |
| 765 | UNUSED(bs); |
| 766 | assert(n % QK_MXFP4 == 0); |
| 767 | static_assert(QK_MXFP4 == QK8_0, "QK_MXFP4 and QK8_0 must be the same" ); |
| 768 | |
| 769 | const block_mxfp4 * GGML_RESTRICT x = vx; |
| 770 | const block_q8_0 * GGML_RESTRICT y = vy; |
| 771 | |
| 772 | const int nb = n / QK_MXFP4; |
| 773 | |
| 774 | int ib = 0; |
| 775 | float sumf = 0; |
| 776 | |
| 777 | #if defined __AVX2__ |
| 778 | |
| 779 | const __m128i values128 = _mm_loadu_si128(p: (const __m128i*)kvalues_mxfp4); |
| 780 | const __m128i m4b = _mm_set1_epi8(b: 0x0f); |
| 781 | const __m256i mone = _mm256_set1_epi16(w: 1); |
| 782 | |
| 783 | __m256 accum1 = _mm256_setzero_ps(); |
| 784 | __m256 accum2 = _mm256_setzero_ps(); |
| 785 | for (; ib + 1 < nb; ib += 2) { |
| 786 | const __m128i q4bits_1 = _mm_loadu_si128(p: (const __m128i*)x[ib + 0].qs); |
| 787 | const __m128i q4bits_2 = _mm_loadu_si128(p: (const __m128i*)x[ib + 1].qs); |
| 788 | const __m256i q8b_1 = _mm256_loadu_si256(p: (const __m256i *)y[ib + 0].qs); |
| 789 | const __m256i q8b_2 = _mm256_loadu_si256(p: (const __m256i *)y[ib + 1].qs); |
| 790 | const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)), |
| 791 | _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b))); |
| 792 | const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)), |
| 793 | _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b))); |
| 794 | const __m256i p16_1 = mul_add_epi8(x: q4b_1, y: q8b_1); |
| 795 | const __m256i p16_2 = mul_add_epi8(x: q4b_2, y: q8b_2); |
| 796 | const __m256i p_1 = _mm256_madd_epi16(a: p16_1, b: mone); |
| 797 | const __m256i p_2 = _mm256_madd_epi16(a: p16_2, b: mone); |
| 798 | accum1 = _mm256_fmadd_ps(A: _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 0].d)*GGML_E8M0_TO_FP32_HALF(x[ib + 0].e)), |
| 799 | B: _mm256_cvtepi32_ps(a: p_1), C: accum1); |
| 800 | accum2 = _mm256_fmadd_ps(A: _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 1].d)*GGML_E8M0_TO_FP32_HALF(x[ib + 1].e)), |
| 801 | B: _mm256_cvtepi32_ps(a: p_2), C: accum2); |
| 802 | } |
| 803 | |
| 804 | sumf = hsum_float_8(x: _mm256_add_ps(a: accum1, b: accum2)); |
| 805 | |
| 806 | #elif defined __AVX__ |
| 807 | const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_mxfp4); |
| 808 | const __m128i m4b = _mm_set1_epi8(0x0f); |
| 809 | |
| 810 | __m256 accum = _mm256_setzero_ps(); |
| 811 | for (; ib + 1 < nb; ib += 2) { |
| 812 | const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs); |
| 813 | const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs); |
| 814 | const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs); |
| 815 | const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs + 1); |
| 816 | const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs); |
| 817 | const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1); |
| 818 | |
| 819 | const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)); |
| 820 | const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)); |
| 821 | const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)); |
| 822 | const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)); |
| 823 | |
| 824 | const __m256 p = mul_sum_i8_quad_float(q4b_1_0, q4b_1_1, q4b_2_0, q4b_2_1, q8b_1_0, q8b_1_1, q8b_2_0, q8b_2_1); |
| 825 | const __m256 deltas = quad_mx_delta_float(x[ib].e, y[ib].d, x[ib + 1].e, y[ib + 1].d); |
| 826 | accum = _mm256_add_ps(_mm256_mul_ps(deltas, p), accum); |
| 827 | } |
| 828 | |
| 829 | sumf = hsum_float_8(accum); |
| 830 | |
| 831 | #endif |
| 832 | for (; ib < nb; ++ib) { |
| 833 | const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_E8M0_TO_FP32_HALF(x[ib].e); |
| 834 | int sumi1 = 0; |
| 835 | int sumi2 = 0; |
| 836 | for (int j = 0; j < QK_MXFP4/2; ++j) { |
| 837 | sumi1 += y[ib].qs[j + 0] * kvalues_mxfp4[x[ib].qs[j] & 0xf]; |
| 838 | sumi2 += y[ib].qs[j + QK_MXFP4/2] * kvalues_mxfp4[x[ib].qs[j] >> 4]; |
| 839 | } |
| 840 | sumf += d * (sumi1 + sumi2); |
| 841 | } |
| 842 | *s = sumf; |
| 843 | } |
| 844 | |
| 845 | void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 846 | const int qk = QK8_0; |
| 847 | const int nb = n / qk; |
| 848 | |
| 849 | int ib = 0; |
| 850 | |
| 851 | assert(n % qk == 0); |
| 852 | assert(qk == QK5_0); |
| 853 | assert(nrc == 1); |
| 854 | UNUSED(nrc); |
| 855 | UNUSED(bx); |
| 856 | UNUSED(by); |
| 857 | UNUSED(bs); |
| 858 | |
| 859 | const block_q5_0 * GGML_RESTRICT x = vx; |
| 860 | const block_q8_0 * GGML_RESTRICT y = vy; |
| 861 | |
| 862 | #if defined(__AVX2__) |
| 863 | // Initialize accumulator with zeros |
| 864 | __m256 acc = _mm256_setzero_ps(); |
| 865 | |
| 866 | // Main loop |
| 867 | for (; ib < nb; ++ib) { |
| 868 | /* Compute combined scale for the block */ |
| 869 | const __m256 d = _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d)); |
| 870 | |
| 871 | __m256i qx = bytes_from_nibbles_32(rsi: x[ib].qs); |
| 872 | __m256i bxhi = bytes_from_bits_32(x: x[ib].qh); |
| 873 | bxhi = _mm256_andnot_si256(a: bxhi, b: _mm256_set1_epi8(b: (char)0xF0)); |
| 874 | qx = _mm256_or_si256(a: qx, b: bxhi); |
| 875 | |
| 876 | __m256i qy = _mm256_loadu_si256(p: (const __m256i *)y[ib].qs); |
| 877 | |
| 878 | const __m256 q = mul_sum_i8_pairs_float(x: qx, y: qy); |
| 879 | |
| 880 | /* Multiply q with scale and accumulate */ |
| 881 | acc = _mm256_fmadd_ps(A: d, B: q, C: acc); |
| 882 | } |
| 883 | |
| 884 | *s = hsum_float_8(x: acc); |
| 885 | #elif defined(__AVX__) |
| 886 | // Initialize accumulator with zeros |
| 887 | __m256 acc = _mm256_setzero_ps(); |
| 888 | __m128i mask = _mm_set1_epi8((char)0xF0); |
| 889 | |
| 890 | // Main loop |
| 891 | for (; ib < nb; ++ib) { |
| 892 | /* Compute combined scale for the block */ |
| 893 | const __m256 d = _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d)); |
| 894 | |
| 895 | __m256i bx_0 = bytes_from_nibbles_32(x[ib].qs); |
| 896 | const __m256i bxhi = bytes_from_bits_32(x[ib].qh); |
| 897 | __m128i bxhil = _mm256_castsi256_si128(bxhi); |
| 898 | __m128i bxhih = _mm256_extractf128_si256(bxhi, 1); |
| 899 | bxhil = _mm_andnot_si128(bxhil, mask); |
| 900 | bxhih = _mm_andnot_si128(bxhih, mask); |
| 901 | __m128i bxl = _mm256_castsi256_si128(bx_0); |
| 902 | __m128i bxh = _mm256_extractf128_si256(bx_0, 1); |
| 903 | bxl = _mm_or_si128(bxl, bxhil); |
| 904 | bxh = _mm_or_si128(bxh, bxhih); |
| 905 | bx_0 = MM256_SET_M128I(bxh, bxl); |
| 906 | |
| 907 | const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[ib].qs); |
| 908 | |
| 909 | const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0); |
| 910 | |
| 911 | /* Multiply q with scale and accumulate */ |
| 912 | acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc); |
| 913 | } |
| 914 | |
| 915 | *s = hsum_float_8(acc); |
| 916 | #else |
| 917 | UNUSED(nb); |
| 918 | UNUSED(ib); |
| 919 | UNUSED(x); |
| 920 | UNUSED(y); |
| 921 | ggml_vec_dot_q5_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc); |
| 922 | #endif |
| 923 | } |
| 924 | |
| 925 | void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 926 | const int qk = QK8_1; |
| 927 | const int nb = n / qk; |
| 928 | |
| 929 | int ib = 0; |
| 930 | |
| 931 | assert(n % qk == 0); |
| 932 | assert(qk == QK5_1); |
| 933 | assert(nrc == 1); |
| 934 | UNUSED(nrc); |
| 935 | UNUSED(bx); |
| 936 | UNUSED(by); |
| 937 | UNUSED(bs); |
| 938 | |
| 939 | const block_q5_1 * GGML_RESTRICT x = vx; |
| 940 | const block_q8_1 * GGML_RESTRICT y = vy; |
| 941 | |
| 942 | #if defined(__AVX2__) |
| 943 | // Initialize accumulator with zeros |
| 944 | __m256 acc = _mm256_setzero_ps(); |
| 945 | |
| 946 | float summs = 0.0f; |
| 947 | |
| 948 | // Main loop |
| 949 | for (; ib < nb; ++ib) { |
| 950 | const __m256 dx = _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(x[ib].d)); |
| 951 | |
| 952 | summs += GGML_CPU_FP16_TO_FP32(x[ib].m) * GGML_CPU_FP16_TO_FP32(y[ib].s); |
| 953 | |
| 954 | __m256i qx = bytes_from_nibbles_32(rsi: x[ib].qs); |
| 955 | __m256i bxhi = bytes_from_bits_32(x: x[ib].qh); |
| 956 | bxhi = _mm256_and_si256(a: bxhi, b: _mm256_set1_epi8(b: 0x10)); |
| 957 | qx = _mm256_or_si256(a: qx, b: bxhi); |
| 958 | |
| 959 | const __m256 dy = _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib].d)); |
| 960 | const __m256i qy = _mm256_loadu_si256(p: (const __m256i *)y[ib].qs); |
| 961 | |
| 962 | const __m256 q = mul_sum_us8_pairs_float(ax: qx, sy: qy); |
| 963 | |
| 964 | acc = _mm256_fmadd_ps(A: q, B: _mm256_mul_ps(a: dx, b: dy), C: acc); |
| 965 | } |
| 966 | |
| 967 | *s = hsum_float_8(x: acc) + summs; |
| 968 | #elif defined(__AVX__) |
| 969 | // Initialize accumulator with zeros |
| 970 | __m256 acc = _mm256_setzero_ps(); |
| 971 | __m128i mask = _mm_set1_epi8(0x10); |
| 972 | |
| 973 | float summs = 0.0f; |
| 974 | |
| 975 | // Main loop |
| 976 | for (; ib < nb; ++ib) { |
| 977 | const __m256 dx = _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(x[ib].d)); |
| 978 | |
| 979 | summs += GGML_CPU_FP16_TO_FP32(x[ib].m) * GGML_CPU_FP16_TO_FP32(y[ib].s); |
| 980 | |
| 981 | __m256i bx_0 = bytes_from_nibbles_32(x[ib].qs); |
| 982 | const __m256i bxhi = bytes_from_bits_32(x[ib].qh); |
| 983 | __m128i bxhil = _mm256_castsi256_si128(bxhi); |
| 984 | __m128i bxhih = _mm256_extractf128_si256(bxhi, 1); |
| 985 | bxhil = _mm_and_si128(bxhil, mask); |
| 986 | bxhih = _mm_and_si128(bxhih, mask); |
| 987 | __m128i bxl = _mm256_castsi256_si128(bx_0); |
| 988 | __m128i bxh = _mm256_extractf128_si256(bx_0, 1); |
| 989 | bxl = _mm_or_si128(bxl, bxhil); |
| 990 | bxh = _mm_or_si128(bxh, bxhih); |
| 991 | bx_0 = MM256_SET_M128I(bxh, bxl); |
| 992 | |
| 993 | const __m256 dy = _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib].d)); |
| 994 | const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[ib].qs); |
| 995 | |
| 996 | const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0); |
| 997 | |
| 998 | acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc); |
| 999 | } |
| 1000 | |
| 1001 | *s = hsum_float_8(acc) + summs; |
| 1002 | #else |
| 1003 | UNUSED(nb); |
| 1004 | UNUSED(ib); |
| 1005 | UNUSED(x); |
| 1006 | UNUSED(y); |
| 1007 | ggml_vec_dot_q5_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc); |
| 1008 | #endif |
| 1009 | } |
| 1010 | |
| 1011 | void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 1012 | const int qk = QK8_0; |
| 1013 | const int nb = n / qk; |
| 1014 | |
| 1015 | assert(n % qk == 0); |
| 1016 | assert(nrc == 1); |
| 1017 | UNUSED(nrc); |
| 1018 | UNUSED(bx); |
| 1019 | UNUSED(by); |
| 1020 | UNUSED(bs); |
| 1021 | |
| 1022 | const block_q8_0 * GGML_RESTRICT x = vx; |
| 1023 | const block_q8_0 * GGML_RESTRICT y = vy; |
| 1024 | |
| 1025 | int ib = 0; |
| 1026 | float sumf = 0; |
| 1027 | |
| 1028 | #if defined(__AVX2__) |
| 1029 | // Initialize accumulator with zeros |
| 1030 | __m256 acc = _mm256_setzero_ps(); |
| 1031 | |
| 1032 | // Main loop |
| 1033 | for (; ib < nb; ++ib) { |
| 1034 | // Compute combined scale for the block |
| 1035 | const __m256 d = _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d)); |
| 1036 | __m256i qx = _mm256_loadu_si256(p: (const __m256i *)x[ib].qs); |
| 1037 | __m256i qy = _mm256_loadu_si256(p: (const __m256i *)y[ib].qs); |
| 1038 | |
| 1039 | const __m256 q = mul_sum_i8_pairs_float(x: qx, y: qy); |
| 1040 | |
| 1041 | // Multiply q with scale and accumulate |
| 1042 | acc = _mm256_fmadd_ps( A: d, B: q, C: acc ); |
| 1043 | } |
| 1044 | |
| 1045 | sumf = hsum_float_8(x: acc); |
| 1046 | #elif defined(__AVX__) |
| 1047 | __m256 accum = _mm256_setzero_ps(); |
| 1048 | |
| 1049 | for (; ib + 1 < nb; ib += 2) { |
| 1050 | const __m128i qx_1_0 = _mm_loadu_si128((const __m128i *)x[ib].qs); |
| 1051 | const __m128i qx_1_1 = _mm_loadu_si128((const __m128i *)x[ib].qs + 1); |
| 1052 | const __m128i qx_2_0 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs); |
| 1053 | const __m128i qx_2_1 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs + 1); |
| 1054 | const __m128i qy_1_0 = _mm_loadu_si128((const __m128i *)y[ib].qs); |
| 1055 | const __m128i qy_1_1 = _mm_loadu_si128((const __m128i *)y[ib].qs + 1); |
| 1056 | const __m128i qy_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs); |
| 1057 | const __m128i qy_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1); |
| 1058 | |
| 1059 | const __m256 p = mul_sum_i8_quad_float(qx_1_0, qx_1_1, qx_2_0, qx_2_1, qy_1_0, qy_1_1, qy_2_0, qy_2_1); |
| 1060 | const __m256 deltas = quad_fp16_delta_float(x[ib].d, y[ib].d, x[ib + 1].d, y[ib + 1].d); |
| 1061 | accum = _mm256_add_ps(_mm256_mul_ps(deltas, p), accum); |
| 1062 | } |
| 1063 | |
| 1064 | sumf = hsum_float_8(accum); |
| 1065 | #endif |
| 1066 | for (; ib < nb; ++ib) { |
| 1067 | int sumi = 0; |
| 1068 | |
| 1069 | for (int j = 0; j < qk; j++) { |
| 1070 | sumi += x[ib].qs[j]*y[ib].qs[j]; |
| 1071 | } |
| 1072 | |
| 1073 | sumf += sumi*(GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d)); |
| 1074 | } |
| 1075 | |
| 1076 | *s = sumf; |
| 1077 | } |
| 1078 | |
| 1079 | void ggml_vec_dot_tq1_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 1080 | assert(nrc == 1); |
| 1081 | UNUSED(nrc); |
| 1082 | UNUSED(bx); |
| 1083 | UNUSED(by); |
| 1084 | UNUSED(bs); |
| 1085 | |
| 1086 | const block_tq1_0 * GGML_RESTRICT x = vx; |
| 1087 | const block_q8_K * GGML_RESTRICT y = vy; |
| 1088 | |
| 1089 | const int nb = n / QK_K; |
| 1090 | |
| 1091 | #if defined(__AVX2__) |
| 1092 | __m256 sumf = _mm256_setzero_ps(); |
| 1093 | |
| 1094 | for (int i = 0; i < nb; ++i) { |
| 1095 | // 16-bit sums |
| 1096 | __m256i sumi0 = _mm256_setzero_si256(); |
| 1097 | __m256i sumi1 = _mm256_setzero_si256(); |
| 1098 | __m256i sumi2 = _mm256_setzero_si256(); |
| 1099 | |
| 1100 | // first 32 bytes of 5 elements |
| 1101 | { |
| 1102 | __m256i qx0 = _mm256_loadu_si256(p: (const __m256i *) (x[i].qs)); |
| 1103 | // 8-bit multiplies with shifts, masks and adds |
| 1104 | __m256i qx1 = _mm256_add_epi8(a: qx0, b: _mm256_add_epi8(a: qx0, b: qx0)); // 1 * 3 |
| 1105 | __m256i qx2 = _mm256_add_epi8(a: _mm256_and_si256(a: _mm256_slli_epi16(a: qx0, count: 3), b: _mm256_set1_epi8(b: -8)), b: qx0); // 1 * 9 |
| 1106 | __m256i qx3 = _mm256_add_epi8(a: _mm256_and_si256(a: _mm256_slli_epi16(a: qx1, count: 3), b: _mm256_set1_epi8(b: -8)), b: qx1); // 3 * 9 |
| 1107 | __m256i qx4 = _mm256_add_epi8(a: _mm256_and_si256(a: _mm256_slli_epi16(a: qx2, count: 3), b: _mm256_set1_epi8(b: -8)), b: qx2); // 9 * 9 |
| 1108 | |
| 1109 | // TODO: can _mm256_mulhi_epu16 be faster even if 16-bits? |
| 1110 | |
| 1111 | // Cancel the +1 from avg so that it behaves like a halving add |
| 1112 | qx0 = _mm256_subs_epu8(a: qx0, b: _mm256_set1_epi8(b: 1)); |
| 1113 | qx1 = _mm256_subs_epu8(a: qx1, b: _mm256_set1_epi8(b: 1)); |
| 1114 | qx2 = _mm256_subs_epu8(a: qx2, b: _mm256_set1_epi8(b: 1)); |
| 1115 | qx3 = _mm256_subs_epu8(a: qx3, b: _mm256_set1_epi8(b: 1)); |
| 1116 | qx4 = _mm256_subs_epu8(a: qx4, b: _mm256_set1_epi8(b: 1)); |
| 1117 | // Multiply by 3 and get the top 2 bits |
| 1118 | qx0 = _mm256_avg_epu8(a: qx0, b: _mm256_avg_epu8(a: qx0, b: _mm256_setzero_si256())); |
| 1119 | qx1 = _mm256_avg_epu8(a: qx1, b: _mm256_avg_epu8(a: qx1, b: _mm256_setzero_si256())); |
| 1120 | qx2 = _mm256_avg_epu8(a: qx2, b: _mm256_avg_epu8(a: qx2, b: _mm256_setzero_si256())); |
| 1121 | qx3 = _mm256_avg_epu8(a: qx3, b: _mm256_avg_epu8(a: qx3, b: _mm256_setzero_si256())); |
| 1122 | qx4 = _mm256_avg_epu8(a: qx4, b: _mm256_avg_epu8(a: qx4, b: _mm256_setzero_si256())); |
| 1123 | qx0 = _mm256_and_si256(a: _mm256_srli_epi16(a: qx0, count: 6), b: _mm256_set1_epi8(b: 3)); |
| 1124 | qx1 = _mm256_and_si256(a: _mm256_srli_epi16(a: qx1, count: 6), b: _mm256_set1_epi8(b: 3)); |
| 1125 | qx2 = _mm256_and_si256(a: _mm256_srli_epi16(a: qx2, count: 6), b: _mm256_set1_epi8(b: 3)); |
| 1126 | qx3 = _mm256_and_si256(a: _mm256_srli_epi16(a: qx3, count: 6), b: _mm256_set1_epi8(b: 3)); |
| 1127 | qx4 = _mm256_and_si256(a: _mm256_srli_epi16(a: qx4, count: 6), b: _mm256_set1_epi8(b: 3)); |
| 1128 | |
| 1129 | const __m256i qy0 = _mm256_loadu_si256(p: (const __m256i *) (y[i].qs + 0)); |
| 1130 | const __m256i qy1 = _mm256_loadu_si256(p: (const __m256i *) (y[i].qs + 32)); |
| 1131 | const __m256i qy2 = _mm256_loadu_si256(p: (const __m256i *) (y[i].qs + 64)); |
| 1132 | const __m256i qy3 = _mm256_loadu_si256(p: (const __m256i *) (y[i].qs + 96)); |
| 1133 | const __m256i qy4 = _mm256_loadu_si256(p: (const __m256i *) (y[i].qs + 128)); |
| 1134 | |
| 1135 | qx0 = _mm256_maddubs_epi16(a: qx0, b: qy0); |
| 1136 | qx1 = _mm256_maddubs_epi16(a: qx1, b: qy1); |
| 1137 | qx2 = _mm256_maddubs_epi16(a: qx2, b: qy2); |
| 1138 | qx3 = _mm256_maddubs_epi16(a: qx3, b: qy3); |
| 1139 | qx4 = _mm256_maddubs_epi16(a: qx4, b: qy4); |
| 1140 | |
| 1141 | sumi0 = _mm256_add_epi16(a: sumi0, b: _mm256_add_epi16(a: qx0, b: qx1)); |
| 1142 | sumi1 = _mm256_add_epi16(a: sumi1, b: _mm256_add_epi16(a: qx2, b: qx3)); |
| 1143 | sumi2 = _mm256_add_epi16(a: sumi2, b: qx4); |
| 1144 | } |
| 1145 | |
| 1146 | // last 16 bytes of 5-element, along with the 4 bytes of 4 elements |
| 1147 | { |
| 1148 | __m128i qx0 = _mm_loadu_si128(p: (const __m128i *) (x[i].qs + 32)); |
| 1149 | uint32_t qh; |
| 1150 | memcpy(dest: &qh, src: x[i].qh, n: sizeof(qh)); // potentially unaligned |
| 1151 | __m256i qx5_l = _mm256_cvtepu8_epi16(V: _mm_set1_epi32(i: qh)); |
| 1152 | __m128i qx1 = _mm_add_epi8(a: qx0, b: _mm_add_epi8(a: qx0, b: qx0)); // 1 * 3 |
| 1153 | __m128i qx2 = _mm_add_epi8(a: _mm_and_si128(a: _mm_slli_epi16(a: qx0, count: 3), b: _mm_set1_epi8(b: -8)), b: qx0); // 1 * 9 |
| 1154 | __m128i qx3 = _mm_add_epi8(a: _mm_and_si128(a: _mm_slli_epi16(a: qx1, count: 3), b: _mm_set1_epi8(b: -8)), b: qx1); // 3 * 9 |
| 1155 | __m128i qx4 = _mm_add_epi8(a: _mm_and_si128(a: _mm_slli_epi16(a: qx2, count: 3), b: _mm_set1_epi8(b: -8)), b: qx2); // 9 * 9 |
| 1156 | __m256i qx01 = MM256_SET_M128I(qx1, qx0); |
| 1157 | __m256i qx23 = MM256_SET_M128I(qx3, qx2); |
| 1158 | |
| 1159 | // avx2 does not have 8-bit multiplies, so 16-bit it is. |
| 1160 | qx5_l = _mm256_mullo_epi16(a: qx5_l, b: _mm256_set_epi16(w15: 27, w14: 27, w13: 27, w12: 27, w11: 9, w10: 9, w09: 9, w08: 9, w07: 3, w06: 3, w05: 3, w04: 3, w03: 1, w02: 1, w01: 1, w00: 1)); |
| 1161 | qx5_l = _mm256_and_si256(a: qx5_l, b: _mm256_set1_epi16(w: 0xFF)); |
| 1162 | __m128i qx5 = _mm_packus_epi16(a: _mm256_castsi256_si128(a: qx5_l), _mm256_extracti128_si256(qx5_l, 1)); |
| 1163 | |
| 1164 | __m256i qx45 = MM256_SET_M128I(qx5, qx4); |
| 1165 | |
| 1166 | // Cancel the +1 from avg so that it behaves like a halving add |
| 1167 | qx01 = _mm256_subs_epu8(a: qx01, b: _mm256_set1_epi8(b: 1)); |
| 1168 | qx23 = _mm256_subs_epu8(a: qx23, b: _mm256_set1_epi8(b: 1)); |
| 1169 | qx45 = _mm256_subs_epu8(a: qx45, b: _mm256_set1_epi8(b: 1)); |
| 1170 | // Multiply by 3 and get the top 2 bits |
| 1171 | qx01 = _mm256_avg_epu8(a: qx01, b: _mm256_avg_epu8(a: qx01, b: _mm256_setzero_si256())); |
| 1172 | qx23 = _mm256_avg_epu8(a: qx23, b: _mm256_avg_epu8(a: qx23, b: _mm256_setzero_si256())); |
| 1173 | qx45 = _mm256_avg_epu8(a: qx45, b: _mm256_avg_epu8(a: qx45, b: _mm256_setzero_si256())); |
| 1174 | qx01 = _mm256_and_si256(a: _mm256_srli_epi16(a: qx01, count: 6), b: _mm256_set1_epi8(b: 3)); |
| 1175 | qx23 = _mm256_and_si256(a: _mm256_srli_epi16(a: qx23, count: 6), b: _mm256_set1_epi8(b: 3)); |
| 1176 | qx45 = _mm256_and_si256(a: _mm256_srli_epi16(a: qx45, count: 6), b: _mm256_set1_epi8(b: 3)); |
| 1177 | |
| 1178 | const __m256i qy01 = _mm256_loadu_si256(p: (const __m256i *) (y[i].qs + 160)); |
| 1179 | const __m256i qy23 = _mm256_loadu_si256(p: (const __m256i *) (y[i].qs + 192)); |
| 1180 | const __m256i qy45 = _mm256_loadu_si256(p: (const __m256i *) (y[i].qs + 224)); |
| 1181 | |
| 1182 | qx01 = _mm256_maddubs_epi16(a: qx01, b: qy01); |
| 1183 | qx23 = _mm256_maddubs_epi16(a: qx23, b: qy23); |
| 1184 | qx45 = _mm256_maddubs_epi16(a: qx45, b: qy45); |
| 1185 | |
| 1186 | sumi0 = _mm256_add_epi16(a: sumi0, b: qx01); |
| 1187 | sumi1 = _mm256_add_epi16(a: sumi1, b: qx23); |
| 1188 | sumi2 = _mm256_add_epi16(a: sumi2, b: qx45); |
| 1189 | } |
| 1190 | |
| 1191 | const __m256i ysum = _mm256_loadu_si256(p: (const __m256i *) y[i].bsums); |
| 1192 | const __m256 d = _mm256_set1_ps(w: y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d)); |
| 1193 | |
| 1194 | sumi0 = _mm256_sub_epi16(a: sumi0, b: ysum); |
| 1195 | sumi0 = _mm256_add_epi16(a: sumi0, b: _mm256_add_epi16(a: sumi1, b: sumi2)); |
| 1196 | sumi0 = _mm256_madd_epi16(a: sumi0, b: _mm256_set1_epi16(w: 1)); |
| 1197 | |
| 1198 | sumf = _mm256_add_ps(a: _mm256_mul_ps(a: _mm256_cvtepi32_ps(a: sumi0), b: d), b: sumf); |
| 1199 | } |
| 1200 | |
| 1201 | *s = hsum_float_8(x: sumf); |
| 1202 | |
| 1203 | #else |
| 1204 | UNUSED(x); |
| 1205 | UNUSED(y); |
| 1206 | UNUSED(nb); |
| 1207 | ggml_vec_dot_tq1_0_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc); |
| 1208 | #endif |
| 1209 | } |
| 1210 | |
| 1211 | void ggml_vec_dot_tq2_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 1212 | assert(nrc == 1); |
| 1213 | UNUSED(nrc); |
| 1214 | UNUSED(bx); |
| 1215 | UNUSED(by); |
| 1216 | UNUSED(bs); |
| 1217 | |
| 1218 | const block_tq2_0 * GGML_RESTRICT x = vx; |
| 1219 | const block_q8_K * GGML_RESTRICT y = vy; |
| 1220 | |
| 1221 | const int nb = n / QK_K; |
| 1222 | |
| 1223 | #if defined(__AVX2__) |
| 1224 | __m256 sumf = _mm256_setzero_ps(); |
| 1225 | |
| 1226 | for (int i = 0; i < nb; ++i) { |
| 1227 | // 16-bit sums, because 256*127 still fits |
| 1228 | __m256i sumi0 = _mm256_setzero_si256(); |
| 1229 | __m256i sumi1 = _mm256_setzero_si256(); |
| 1230 | |
| 1231 | for (size_t j = 0; j < sizeof(x->qs); j += 32) { |
| 1232 | __m256i qx0 = _mm256_loadu_si256(p: (const __m256i *) (x[i].qs + j)); |
| 1233 | __m256i qx1 = _mm256_srli_epi16(a: qx0, count: 2); |
| 1234 | __m256i qx2 = _mm256_srli_epi16(a: qx0, count: 4); |
| 1235 | __m256i qx3 = _mm256_srli_epi16(a: qx0, count: 6); |
| 1236 | |
| 1237 | // 0, 1, 2 (should not be 3) |
| 1238 | qx0 = _mm256_and_si256(a: qx0, b: _mm256_set1_epi8(b: 3)); |
| 1239 | qx1 = _mm256_and_si256(a: qx1, b: _mm256_set1_epi8(b: 3)); |
| 1240 | qx2 = _mm256_and_si256(a: qx2, b: _mm256_set1_epi8(b: 3)); |
| 1241 | qx3 = _mm256_and_si256(a: qx3, b: _mm256_set1_epi8(b: 3)); |
| 1242 | |
| 1243 | const __m256i qy0 = _mm256_loadu_si256(p: (const __m256i *) (y[i].qs + j*4 + 0)); |
| 1244 | const __m256i qy1 = _mm256_loadu_si256(p: (const __m256i *) (y[i].qs + j*4 + 32)); |
| 1245 | const __m256i qy2 = _mm256_loadu_si256(p: (const __m256i *) (y[i].qs + j*4 + 64)); |
| 1246 | const __m256i qy3 = _mm256_loadu_si256(p: (const __m256i *) (y[i].qs + j*4 + 96)); |
| 1247 | |
| 1248 | qx0 = _mm256_maddubs_epi16(a: qx0, b: qy0); |
| 1249 | qx1 = _mm256_maddubs_epi16(a: qx1, b: qy1); |
| 1250 | qx2 = _mm256_maddubs_epi16(a: qx2, b: qy2); |
| 1251 | qx3 = _mm256_maddubs_epi16(a: qx3, b: qy3); |
| 1252 | |
| 1253 | sumi0 = _mm256_add_epi16(a: sumi0, b: _mm256_add_epi16(a: qx0, b: qx1)); |
| 1254 | sumi1 = _mm256_add_epi16(a: sumi1, b: _mm256_add_epi16(a: qx2, b: qx3)); |
| 1255 | } |
| 1256 | |
| 1257 | const __m256i ysum = _mm256_loadu_si256(p: (const __m256i *) y[i].bsums); |
| 1258 | const __m256 d = _mm256_set1_ps(w: y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d)); |
| 1259 | |
| 1260 | sumi0 = _mm256_add_epi16(a: sumi0, b: sumi1); |
| 1261 | sumi0 = _mm256_sub_epi16(a: sumi0, b: ysum); |
| 1262 | sumi0 = _mm256_madd_epi16(a: sumi0, b: _mm256_set1_epi16(w: 1)); |
| 1263 | |
| 1264 | sumf = _mm256_add_ps(a: _mm256_mul_ps(a: _mm256_cvtepi32_ps(a: sumi0), b: d), b: sumf); |
| 1265 | } |
| 1266 | |
| 1267 | *s = hsum_float_8(x: sumf); |
| 1268 | |
| 1269 | #else |
| 1270 | UNUSED(x); |
| 1271 | UNUSED(y); |
| 1272 | UNUSED(nb); |
| 1273 | ggml_vec_dot_tq2_0_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc); |
| 1274 | #endif |
| 1275 | } |
| 1276 | |
| 1277 | void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 1278 | assert(nrc == 1); |
| 1279 | UNUSED(nrc); |
| 1280 | UNUSED(bx); |
| 1281 | UNUSED(by); |
| 1282 | UNUSED(bs); |
| 1283 | |
| 1284 | const block_q2_K * GGML_RESTRICT x = vx; |
| 1285 | const block_q8_K * GGML_RESTRICT y = vy; |
| 1286 | |
| 1287 | const int nb = n / QK_K; |
| 1288 | |
| 1289 | #if defined __AVX2__ |
| 1290 | |
| 1291 | const __m256i m3 = _mm256_set1_epi8(b: 3); |
| 1292 | const __m128i m4 = _mm_set1_epi8(b: 0xF); |
| 1293 | |
| 1294 | __m256 acc = _mm256_setzero_ps(); |
| 1295 | |
| 1296 | for (int i = 0; i < nb; ++i) { |
| 1297 | |
| 1298 | const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d); |
| 1299 | const float dmin = -y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin); |
| 1300 | |
| 1301 | const uint8_t * GGML_RESTRICT q2 = x[i].qs; |
| 1302 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 1303 | |
| 1304 | const __m128i mins_and_scales = _mm_loadu_si128(p: (const __m128i*)x[i].scales); |
| 1305 | const __m128i scales8 = _mm_and_si128(a: mins_and_scales, b: m4); |
| 1306 | const __m128i mins8 = _mm_and_si128(a: _mm_srli_epi16(a: mins_and_scales, count: 4), b: m4); |
| 1307 | const __m256i mins = _mm256_cvtepi8_epi16(V: mins8); |
| 1308 | const __m256i prod = _mm256_madd_epi16(a: mins, b: _mm256_loadu_si256(p: (const __m256i*)y[i].bsums)); |
| 1309 | |
| 1310 | acc = _mm256_fmadd_ps(A: _mm256_broadcast_ss(a: &dmin), B: _mm256_cvtepi32_ps(a: prod), C: acc); |
| 1311 | |
| 1312 | const __m256i all_scales = _mm256_cvtepi8_epi16(V: scales8); |
| 1313 | const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0); |
| 1314 | const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1); |
| 1315 | const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)}; |
| 1316 | |
| 1317 | __m256i sumi = _mm256_setzero_si256(); |
| 1318 | |
| 1319 | for (int j = 0; j < QK_K/128; ++j) { |
| 1320 | |
| 1321 | const __m256i q2bits = _mm256_loadu_si256(p: (const __m256i*)q2); q2 += 32; |
| 1322 | |
| 1323 | const __m256i q8_0 = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 1324 | const __m256i q8_1 = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 1325 | const __m256i q8_2 = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 1326 | const __m256i q8_3 = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 1327 | |
| 1328 | const __m256i q2_0 = _mm256_and_si256(a: q2bits, b: m3); |
| 1329 | const __m256i q2_1 = _mm256_and_si256(a: _mm256_srli_epi16(a: q2bits, count: 2), b: m3); |
| 1330 | const __m256i q2_2 = _mm256_and_si256(a: _mm256_srli_epi16(a: q2bits, count: 4), b: m3); |
| 1331 | const __m256i q2_3 = _mm256_and_si256(a: _mm256_srli_epi16(a: q2bits, count: 6), b: m3); |
| 1332 | |
| 1333 | __m256i p0 = _mm256_maddubs_epi16(a: q2_0, b: q8_0); |
| 1334 | __m256i p1 = _mm256_maddubs_epi16(a: q2_1, b: q8_1); |
| 1335 | __m256i p2 = _mm256_maddubs_epi16(a: q2_2, b: q8_2); |
| 1336 | __m256i p3 = _mm256_maddubs_epi16(a: q2_3, b: q8_3); |
| 1337 | |
| 1338 | p0 = _mm256_madd_epi16(a: _mm256_shuffle_epi8(a: scales[j], b: get_scale_shuffle_q3k(i: 0)), b: p0); |
| 1339 | p1 = _mm256_madd_epi16(a: _mm256_shuffle_epi8(a: scales[j], b: get_scale_shuffle_q3k(i: 1)), b: p1); |
| 1340 | p2 = _mm256_madd_epi16(a: _mm256_shuffle_epi8(a: scales[j], b: get_scale_shuffle_q3k(i: 2)), b: p2); |
| 1341 | p3 = _mm256_madd_epi16(a: _mm256_shuffle_epi8(a: scales[j], b: get_scale_shuffle_q3k(i: 3)), b: p3); |
| 1342 | |
| 1343 | p0 = _mm256_add_epi32(a: p0, b: p1); |
| 1344 | p2 = _mm256_add_epi32(a: p2, b: p3); |
| 1345 | |
| 1346 | sumi = _mm256_add_epi32(a: sumi, b: _mm256_add_epi32(a: p0, b: p2)); |
| 1347 | } |
| 1348 | |
| 1349 | acc = _mm256_fmadd_ps(A: _mm256_broadcast_ss(a: &d), B: _mm256_cvtepi32_ps(a: sumi), C: acc); |
| 1350 | |
| 1351 | } |
| 1352 | |
| 1353 | *s = hsum_float_8(x: acc); |
| 1354 | |
| 1355 | #elif defined __AVX__ |
| 1356 | |
| 1357 | const __m128i m3 = _mm_set1_epi8(0x3); |
| 1358 | const __m128i m4 = _mm_set1_epi8(0xF); |
| 1359 | const __m128i m2 = _mm_set1_epi8(0x2); |
| 1360 | |
| 1361 | __m256 acc = _mm256_setzero_ps(); |
| 1362 | |
| 1363 | for (int i = 0; i < nb; ++i) { |
| 1364 | |
| 1365 | const float dall = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d); |
| 1366 | const float dmin = -y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin); |
| 1367 | |
| 1368 | const uint8_t * GGML_RESTRICT q2 = x[i].qs; |
| 1369 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 1370 | |
| 1371 | // load mins and scales from block_q2_K.scales[QK_K/16] |
| 1372 | const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales); |
| 1373 | const __m128i scales16 = _mm_and_si128(mins_and_scales, m4); |
| 1374 | const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4); |
| 1375 | const __m128i mins_0 = _mm_cvtepi8_epi16(mins16); |
| 1376 | const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16)); |
| 1377 | |
| 1378 | // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2 |
| 1379 | const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0])); |
| 1380 | const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8])); |
| 1381 | |
| 1382 | // sumf += -dmin * summs in 32bits*8 |
| 1383 | acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc); |
| 1384 | |
| 1385 | const __m128i scales_0 = _mm_cvtepi8_epi16(scales16); |
| 1386 | const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16)); |
| 1387 | const __m128i scales[2] = { scales_0, scales_1 }; |
| 1388 | |
| 1389 | __m128i sumi_0 = _mm_setzero_si128(); |
| 1390 | __m128i sumi_1 = _mm_setzero_si128(); |
| 1391 | |
| 1392 | for (int j = 0; j < QK_K/128; ++j) { |
| 1393 | |
| 1394 | // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K] |
| 1395 | const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1396 | const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1397 | const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1398 | const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1399 | const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1400 | const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1401 | const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1402 | const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1403 | |
| 1404 | // load 2bits*16*8 from block_q2_K.qs[QK_K/4] |
| 1405 | __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16; |
| 1406 | const __m128i q2_0 = _mm_and_si128(q2bits, m3); |
| 1407 | const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3); |
| 1408 | const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3); |
| 1409 | const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3); |
| 1410 | q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16; |
| 1411 | const __m128i q2_1 = _mm_and_si128(q2bits, m3); |
| 1412 | const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3); |
| 1413 | const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3); |
| 1414 | const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3); |
| 1415 | |
| 1416 | // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8 |
| 1417 | __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0); |
| 1418 | __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1); |
| 1419 | __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2); |
| 1420 | __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3); |
| 1421 | __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4); |
| 1422 | __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5); |
| 1423 | __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6); |
| 1424 | __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7); |
| 1425 | |
| 1426 | // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8 |
| 1427 | __m128i shuffle = _mm_set1_epi16(0x0100); |
| 1428 | p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0); |
| 1429 | shuffle = _mm_add_epi16(shuffle, m2); |
| 1430 | p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1); |
| 1431 | shuffle = _mm_add_epi16(shuffle, m2); |
| 1432 | p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2); |
| 1433 | shuffle = _mm_add_epi16(shuffle, m2); |
| 1434 | p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3); |
| 1435 | shuffle = _mm_add_epi16(shuffle, m2); |
| 1436 | p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4); |
| 1437 | shuffle = _mm_add_epi16(shuffle, m2); |
| 1438 | p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5); |
| 1439 | shuffle = _mm_add_epi16(shuffle, m2); |
| 1440 | p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6); |
| 1441 | shuffle = _mm_add_epi16(shuffle, m2); |
| 1442 | p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7); |
| 1443 | |
| 1444 | p0 = _mm_add_epi32(p0, p1); |
| 1445 | p2 = _mm_add_epi32(p2, p3); |
| 1446 | p4 = _mm_add_epi32(p4, p5); |
| 1447 | p6 = _mm_add_epi32(p6, p7); |
| 1448 | |
| 1449 | // isum in 32bits*4*2 |
| 1450 | sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2)); |
| 1451 | sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6)); |
| 1452 | } |
| 1453 | |
| 1454 | // sumf += dall * isum - dmin * summs in 32bits |
| 1455 | __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0); |
| 1456 | acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc); |
| 1457 | } |
| 1458 | |
| 1459 | *s = hsum_float_8(acc); |
| 1460 | |
| 1461 | #else |
| 1462 | UNUSED(x); |
| 1463 | UNUSED(y); |
| 1464 | UNUSED(nb); |
| 1465 | ggml_vec_dot_q2_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc); |
| 1466 | #endif |
| 1467 | } |
| 1468 | |
| 1469 | void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 1470 | assert(n % QK_K == 0); |
| 1471 | assert(nrc == 1); |
| 1472 | UNUSED(nrc); |
| 1473 | UNUSED(bx); |
| 1474 | UNUSED(by); |
| 1475 | UNUSED(bs); |
| 1476 | |
| 1477 | const uint32_t kmask1 = 0x03030303; |
| 1478 | const uint32_t kmask2 = 0x0f0f0f0f; |
| 1479 | |
| 1480 | const block_q3_K * GGML_RESTRICT x = vx; |
| 1481 | const block_q8_K * GGML_RESTRICT y = vy; |
| 1482 | |
| 1483 | const int nb = n / QK_K; |
| 1484 | |
| 1485 | #if defined __AVX2__ |
| 1486 | |
| 1487 | const __m256i m3 = _mm256_set1_epi8(b: 3); |
| 1488 | const __m256i mone = _mm256_set1_epi8(b: 1); |
| 1489 | const __m128i m32 = _mm_set1_epi8(b: 32); |
| 1490 | |
| 1491 | __m256 acc = _mm256_setzero_ps(); |
| 1492 | |
| 1493 | uint32_t aux[3]; |
| 1494 | |
| 1495 | for (int i = 0; i < nb; ++i) { |
| 1496 | |
| 1497 | const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d); |
| 1498 | |
| 1499 | const uint8_t * GGML_RESTRICT q3 = x[i].qs; |
| 1500 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 1501 | |
| 1502 | // Set up scales |
| 1503 | memcpy(dest: aux, src: x[i].scales, n: 12); |
| 1504 | __m128i scales128 = _mm_set_epi32( |
| 1505 | i3: ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4), |
| 1506 | i2: ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4), |
| 1507 | i1: (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4), |
| 1508 | i0: (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4)); |
| 1509 | scales128 = _mm_sub_epi8(a: scales128, b: m32); |
| 1510 | const __m256i all_scales = _mm256_cvtepi8_epi16(V: scales128); |
| 1511 | const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0); |
| 1512 | const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1); |
| 1513 | const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)}; |
| 1514 | |
| 1515 | // high bit |
| 1516 | const __m256i hbits = _mm256_loadu_si256(p: (const __m256i*)x[i].hmask); |
| 1517 | |
| 1518 | // integer accumulator |
| 1519 | __m256i sumi = _mm256_setzero_si256(); |
| 1520 | |
| 1521 | int bit = 0; |
| 1522 | int is = 0; |
| 1523 | |
| 1524 | for (int j = 0; j < QK_K/128; ++j) { |
| 1525 | // load low 2 bits |
| 1526 | const __m256i q3bits = _mm256_loadu_si256(p: (const __m256i*)q3); q3 += 32; |
| 1527 | |
| 1528 | // prepare low and high bits |
| 1529 | const __m256i q3l_0 = _mm256_and_si256(a: q3bits, b: m3); |
| 1530 | const __m256i q3h_0 = _mm256_slli_epi16(a: _mm256_srli_epi16(a: _mm256_andnot_si256(a: hbits, b: _mm256_slli_epi16(a: mone, count: bit)), count: bit), count: 2); |
| 1531 | ++bit; |
| 1532 | |
| 1533 | const __m256i q3l_1 = _mm256_and_si256(a: _mm256_srli_epi16(a: q3bits, count: 2), b: m3); |
| 1534 | const __m256i q3h_1 = _mm256_slli_epi16(a: _mm256_srli_epi16(a: _mm256_andnot_si256(a: hbits, b: _mm256_slli_epi16(a: mone, count: bit)), count: bit), count: 2); |
| 1535 | ++bit; |
| 1536 | |
| 1537 | const __m256i q3l_2 = _mm256_and_si256(a: _mm256_srli_epi16(a: q3bits, count: 4), b: m3); |
| 1538 | const __m256i q3h_2 = _mm256_slli_epi16(a: _mm256_srli_epi16(a: _mm256_andnot_si256(a: hbits, b: _mm256_slli_epi16(a: mone, count: bit)), count: bit), count: 2); |
| 1539 | ++bit; |
| 1540 | |
| 1541 | const __m256i q3l_3 = _mm256_and_si256(a: _mm256_srli_epi16(a: q3bits, count: 6), b: m3); |
| 1542 | const __m256i q3h_3 = _mm256_slli_epi16(a: _mm256_srli_epi16(a: _mm256_andnot_si256(a: hbits, b: _mm256_slli_epi16(a: mone, count: bit)), count: bit), count: 2); |
| 1543 | ++bit; |
| 1544 | |
| 1545 | // load Q8 quants |
| 1546 | const __m256i q8_0 = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 1547 | const __m256i q8_1 = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 1548 | const __m256i q8_2 = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 1549 | const __m256i q8_3 = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 1550 | |
| 1551 | // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16, |
| 1552 | // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, |
| 1553 | // and 2 if the high bit was set) |
| 1554 | __m256i q8s_0 = _mm256_maddubs_epi16(a: q3h_0, b: q8_0); |
| 1555 | __m256i q8s_1 = _mm256_maddubs_epi16(a: q3h_1, b: q8_1); |
| 1556 | __m256i q8s_2 = _mm256_maddubs_epi16(a: q3h_2, b: q8_2); |
| 1557 | __m256i q8s_3 = _mm256_maddubs_epi16(a: q3h_3, b: q8_3); |
| 1558 | |
| 1559 | __m256i p16_0 = _mm256_maddubs_epi16(a: q3l_0, b: q8_0); |
| 1560 | __m256i p16_1 = _mm256_maddubs_epi16(a: q3l_1, b: q8_1); |
| 1561 | __m256i p16_2 = _mm256_maddubs_epi16(a: q3l_2, b: q8_2); |
| 1562 | __m256i p16_3 = _mm256_maddubs_epi16(a: q3l_3, b: q8_3); |
| 1563 | |
| 1564 | p16_0 = _mm256_sub_epi16(a: p16_0, b: q8s_0); |
| 1565 | p16_1 = _mm256_sub_epi16(a: p16_1, b: q8s_1); |
| 1566 | p16_2 = _mm256_sub_epi16(a: p16_2, b: q8s_2); |
| 1567 | p16_3 = _mm256_sub_epi16(a: p16_3, b: q8s_3); |
| 1568 | |
| 1569 | // multiply with scales |
| 1570 | p16_0 = _mm256_madd_epi16(a: _mm256_shuffle_epi8(a: scales[j], b: get_scale_shuffle_q3k(i: is + 0)), b: p16_0); |
| 1571 | p16_1 = _mm256_madd_epi16(a: _mm256_shuffle_epi8(a: scales[j], b: get_scale_shuffle_q3k(i: is + 1)), b: p16_1); |
| 1572 | p16_2 = _mm256_madd_epi16(a: _mm256_shuffle_epi8(a: scales[j], b: get_scale_shuffle_q3k(i: is + 2)), b: p16_2); |
| 1573 | p16_3 = _mm256_madd_epi16(a: _mm256_shuffle_epi8(a: scales[j], b: get_scale_shuffle_q3k(i: is + 3)), b: p16_3); |
| 1574 | |
| 1575 | // accumulate |
| 1576 | p16_0 = _mm256_add_epi32(a: p16_0, b: p16_1); |
| 1577 | p16_2 = _mm256_add_epi32(a: p16_2, b: p16_3); |
| 1578 | sumi = _mm256_add_epi32(a: sumi, b: _mm256_add_epi32(a: p16_0, b: p16_2)); |
| 1579 | |
| 1580 | } |
| 1581 | |
| 1582 | // multiply with block scale and accumulate |
| 1583 | acc = _mm256_fmadd_ps(A: _mm256_broadcast_ss(a: &d), B: _mm256_cvtepi32_ps(a: sumi), C: acc); |
| 1584 | |
| 1585 | } |
| 1586 | |
| 1587 | *s = hsum_float_8(x: acc); |
| 1588 | |
| 1589 | #elif defined __AVX__ |
| 1590 | |
| 1591 | const __m128i m3 = _mm_set1_epi8(3); |
| 1592 | const __m128i mone = _mm_set1_epi8(1); |
| 1593 | const __m128i m32 = _mm_set1_epi8(32); |
| 1594 | const __m128i m2 = _mm_set1_epi8(2); |
| 1595 | |
| 1596 | __m256 acc = _mm256_setzero_ps(); |
| 1597 | |
| 1598 | const uint32_t *aux; |
| 1599 | |
| 1600 | for (int i = 0; i < nb; ++i) { |
| 1601 | |
| 1602 | const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d); |
| 1603 | |
| 1604 | const uint8_t * GGML_RESTRICT q3 = x[i].qs; |
| 1605 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 1606 | |
| 1607 | // Set up scales |
| 1608 | aux = (const uint32_t *)x[i].scales; |
| 1609 | __m128i scales128 = _mm_set_epi32( |
| 1610 | ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4), |
| 1611 | ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4), |
| 1612 | (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4), |
| 1613 | (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4)); |
| 1614 | scales128 = _mm_sub_epi8(scales128, m32); |
| 1615 | const __m128i scales_0 = _mm_cvtepi8_epi16(scales128); |
| 1616 | const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128)); |
| 1617 | const __m128i scales[2] = { scales_0, scales_1 }; |
| 1618 | |
| 1619 | // high bit *128*2 from block_q3_K.hmask[QK_K/8] |
| 1620 | const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]); |
| 1621 | const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]); |
| 1622 | |
| 1623 | // integer accumulator |
| 1624 | __m128i sumi_0 = _mm_setzero_si128(); |
| 1625 | __m128i sumi_1 = _mm_setzero_si128(); |
| 1626 | |
| 1627 | for (int j = 0; j < QK_K/128; ++j) { |
| 1628 | // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4] |
| 1629 | const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16; |
| 1630 | const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16; |
| 1631 | |
| 1632 | // prepare low and high bits |
| 1633 | const int bit = j << 2; |
| 1634 | |
| 1635 | const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3); |
| 1636 | const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3); |
| 1637 | const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2); |
| 1638 | const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2); |
| 1639 | |
| 1640 | const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3); |
| 1641 | const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3); |
| 1642 | const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2); |
| 1643 | const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2); |
| 1644 | |
| 1645 | const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3); |
| 1646 | const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3); |
| 1647 | const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2); |
| 1648 | const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2); |
| 1649 | |
| 1650 | const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3); |
| 1651 | const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3); |
| 1652 | const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2); |
| 1653 | const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2); |
| 1654 | |
| 1655 | // load Q8 quants from block_q8_K.qs[QK_K] |
| 1656 | const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1657 | const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1658 | const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1659 | const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1660 | const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1661 | const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1662 | const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1663 | const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1664 | |
| 1665 | // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16, |
| 1666 | // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, |
| 1667 | // and 2 if the high bit was set) |
| 1668 | __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0); |
| 1669 | __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1); |
| 1670 | __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2); |
| 1671 | __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3); |
| 1672 | __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4); |
| 1673 | __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5); |
| 1674 | __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6); |
| 1675 | __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7); |
| 1676 | |
| 1677 | __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0); |
| 1678 | __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1); |
| 1679 | __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2); |
| 1680 | __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3); |
| 1681 | __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4); |
| 1682 | __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5); |
| 1683 | __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6); |
| 1684 | __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7); |
| 1685 | |
| 1686 | p16_0 = _mm_sub_epi16(p16_0, q8s_0); |
| 1687 | p16_1 = _mm_sub_epi16(p16_1, q8s_1); |
| 1688 | p16_2 = _mm_sub_epi16(p16_2, q8s_2); |
| 1689 | p16_3 = _mm_sub_epi16(p16_3, q8s_3); |
| 1690 | p16_4 = _mm_sub_epi16(p16_4, q8s_4); |
| 1691 | p16_5 = _mm_sub_epi16(p16_5, q8s_5); |
| 1692 | p16_6 = _mm_sub_epi16(p16_6, q8s_6); |
| 1693 | p16_7 = _mm_sub_epi16(p16_7, q8s_7); |
| 1694 | |
| 1695 | // multiply with scales |
| 1696 | __m128i shuffle = _mm_set1_epi16(0x0100); |
| 1697 | p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0); |
| 1698 | shuffle = _mm_add_epi16(shuffle, m2); |
| 1699 | p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1); |
| 1700 | shuffle = _mm_add_epi16(shuffle, m2); |
| 1701 | p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2); |
| 1702 | shuffle = _mm_add_epi16(shuffle, m2); |
| 1703 | p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3); |
| 1704 | shuffle = _mm_add_epi16(shuffle, m2); |
| 1705 | p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4); |
| 1706 | shuffle = _mm_add_epi16(shuffle, m2); |
| 1707 | p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5); |
| 1708 | shuffle = _mm_add_epi16(shuffle, m2); |
| 1709 | p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6); |
| 1710 | shuffle = _mm_add_epi16(shuffle, m2); |
| 1711 | p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7); |
| 1712 | |
| 1713 | // accumulate |
| 1714 | p16_0 = _mm_add_epi32(p16_0, p16_1); |
| 1715 | p16_2 = _mm_add_epi32(p16_2, p16_3); |
| 1716 | p16_4 = _mm_add_epi32(p16_4, p16_5); |
| 1717 | p16_6 = _mm_add_epi32(p16_6, p16_7); |
| 1718 | sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2)); |
| 1719 | sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6)); |
| 1720 | |
| 1721 | } |
| 1722 | |
| 1723 | // multiply with block scale and accumulate |
| 1724 | __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0); |
| 1725 | acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc); |
| 1726 | |
| 1727 | } |
| 1728 | |
| 1729 | *s = hsum_float_8(acc); |
| 1730 | |
| 1731 | #else |
| 1732 | UNUSED(kmask1); |
| 1733 | UNUSED(kmask2); |
| 1734 | UNUSED(x); |
| 1735 | UNUSED(y); |
| 1736 | UNUSED(nb); |
| 1737 | ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc); |
| 1738 | #endif |
| 1739 | } |
| 1740 | |
| 1741 | void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 1742 | assert(n % QK_K == 0); |
| 1743 | assert(nrc == 1); |
| 1744 | UNUSED(nrc); |
| 1745 | UNUSED(bx); |
| 1746 | UNUSED(by); |
| 1747 | UNUSED(bs); |
| 1748 | |
| 1749 | const block_q4_K * GGML_RESTRICT x = vx; |
| 1750 | const block_q8_K * GGML_RESTRICT y = vy; |
| 1751 | |
| 1752 | const int nb = n / QK_K; |
| 1753 | |
| 1754 | static const uint32_t kmask1 = 0x3f3f3f3f; |
| 1755 | static const uint32_t kmask2 = 0x0f0f0f0f; |
| 1756 | static const uint32_t kmask3 = 0x03030303; |
| 1757 | |
| 1758 | uint32_t utmp[4]; |
| 1759 | |
| 1760 | #if defined __AVX2__ |
| 1761 | |
| 1762 | const __m256i m4 = _mm256_set1_epi8(b: 0xF); |
| 1763 | |
| 1764 | __m256 acc = _mm256_setzero_ps(); |
| 1765 | __m128 acc_m = _mm_setzero_ps(); |
| 1766 | |
| 1767 | for (int i = 0; i < nb; ++i) { |
| 1768 | |
| 1769 | const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d); |
| 1770 | const float dmin = -y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin); |
| 1771 | |
| 1772 | memcpy(dest: utmp, src: x[i].scales, n: 12); |
| 1773 | utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); |
| 1774 | const uint32_t uaux = utmp[1] & kmask1; |
| 1775 | utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); |
| 1776 | utmp[2] = uaux; |
| 1777 | utmp[0] &= kmask1; |
| 1778 | |
| 1779 | const uint8_t * GGML_RESTRICT q4 = x[i].qs; |
| 1780 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 1781 | |
| 1782 | const __m256i mins_and_scales = _mm256_cvtepu8_epi16(V: _mm_set_epi32(i3: utmp[3], i2: utmp[2], i1: utmp[1], i0: utmp[0])); |
| 1783 | |
| 1784 | const __m256i q8sums = _mm256_loadu_si256(p: (const __m256i*)y[i].bsums); |
| 1785 | const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); |
| 1786 | const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), b: q8s); |
| 1787 | acc_m = _mm_fmadd_ps(A: _mm_set1_ps(w: dmin), B: _mm_cvtepi32_ps(a: prod), C: acc_m); |
| 1788 | |
| 1789 | const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0); |
| 1790 | const __m256i scales = MM256_SET_M128I(sc128, sc128); |
| 1791 | |
| 1792 | __m256i sumi = _mm256_setzero_si256(); |
| 1793 | |
| 1794 | for (int j = 0; j < QK_K/64; ++j) { |
| 1795 | |
| 1796 | const __m256i scale_l = _mm256_shuffle_epi8(a: scales, b: get_scale_shuffle_k4(i: 2*j+0)); |
| 1797 | const __m256i scale_h = _mm256_shuffle_epi8(a: scales, b: get_scale_shuffle_k4(i: 2*j+1)); |
| 1798 | |
| 1799 | const __m256i q4bits = _mm256_loadu_si256(p: (const __m256i*)q4); q4 += 32; |
| 1800 | const __m256i q4l = _mm256_and_si256(a: q4bits, b: m4); |
| 1801 | const __m256i q4h = _mm256_and_si256(a: _mm256_srli_epi16(a: q4bits, count: 4), b: m4); |
| 1802 | |
| 1803 | const __m256i q8l = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 1804 | __m256i p16l = _mm256_maddubs_epi16(a: q4l, b: q8l); |
| 1805 | p16l = _mm256_madd_epi16(a: scale_l, b: p16l); |
| 1806 | |
| 1807 | const __m256i q8h = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 1808 | __m256i p16h = _mm256_maddubs_epi16(a: q4h, b: q8h); |
| 1809 | p16h = _mm256_madd_epi16(a: scale_h, b: p16h); |
| 1810 | const __m256i sumj = _mm256_add_epi32(a: p16l, b: p16h); |
| 1811 | |
| 1812 | sumi = _mm256_add_epi32(a: sumi, b: sumj); |
| 1813 | } |
| 1814 | |
| 1815 | __m256 vd = _mm256_set1_ps(w: d); |
| 1816 | acc = _mm256_fmadd_ps(A: vd, B: _mm256_cvtepi32_ps(a: sumi), C: acc); |
| 1817 | |
| 1818 | } |
| 1819 | |
| 1820 | acc_m = _mm_add_ps(a: acc_m, b: _mm_movehl_ps(a: acc_m, b: acc_m)); |
| 1821 | acc_m = _mm_add_ss(a: acc_m, b: _mm_movehdup_ps(a: acc_m)); |
| 1822 | |
| 1823 | *s = hsum_float_8(x: acc) + _mm_cvtss_f32(a: acc_m); |
| 1824 | |
| 1825 | #elif defined __AVX__ |
| 1826 | |
| 1827 | const __m128i m4 = _mm_set1_epi8(0xF); |
| 1828 | const __m128i m2 = _mm_set1_epi8(0x2); |
| 1829 | |
| 1830 | __m256 acc = _mm256_setzero_ps(); |
| 1831 | __m128 acc_m = _mm_setzero_ps(); |
| 1832 | |
| 1833 | for (int i = 0; i < nb; ++i) { |
| 1834 | |
| 1835 | const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d); |
| 1836 | const float dmin = -y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin); |
| 1837 | |
| 1838 | const uint8_t * GGML_RESTRICT q4 = x[i].qs; |
| 1839 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 1840 | |
| 1841 | memcpy(utmp, x[i].scales, 12); |
| 1842 | utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); |
| 1843 | const uint32_t uaux = utmp[1] & kmask1; |
| 1844 | utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); |
| 1845 | utmp[2] = uaux; |
| 1846 | utmp[0] &= kmask1; |
| 1847 | |
| 1848 | const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]); |
| 1849 | const __m128i scales = _mm_cvtepu8_epi16(utmps); |
| 1850 | const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps)); |
| 1851 | |
| 1852 | const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]); |
| 1853 | const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]); |
| 1854 | const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1); |
| 1855 | const __m128i prod = _mm_madd_epi16(mins, q8s); |
| 1856 | acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m); |
| 1857 | |
| 1858 | __m128i sumi_0 = _mm_setzero_si128(); |
| 1859 | __m128i sumi_1 = _mm_setzero_si128(); |
| 1860 | |
| 1861 | __m128i shuffle = _mm_set1_epi16(0x0100); |
| 1862 | for (int j = 0; j < QK_K/64; ++j) { |
| 1863 | |
| 1864 | const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle); |
| 1865 | shuffle = _mm_add_epi16(shuffle, m2); |
| 1866 | const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle); |
| 1867 | shuffle = _mm_add_epi16(shuffle, m2); |
| 1868 | |
| 1869 | __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16; |
| 1870 | const __m128i q4l_0 = _mm_and_si128(q4bits, m4); |
| 1871 | const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4); |
| 1872 | q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16; |
| 1873 | const __m128i q4l_1 = _mm_and_si128(q4bits, m4); |
| 1874 | const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4); |
| 1875 | |
| 1876 | const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1877 | __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0); |
| 1878 | p16l = _mm_madd_epi16(scale_l, p16l); |
| 1879 | sumi_0 = _mm_add_epi32(sumi_0, p16l); |
| 1880 | const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1881 | p16l = _mm_maddubs_epi16(q4l_1, q8l_1); |
| 1882 | p16l = _mm_madd_epi16(scale_l, p16l); |
| 1883 | sumi_1 = _mm_add_epi32(sumi_1, p16l); |
| 1884 | |
| 1885 | const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1886 | __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0); |
| 1887 | p16h = _mm_madd_epi16(scale_h, p16h); |
| 1888 | sumi_0 = _mm_add_epi32(sumi_0, p16h); |
| 1889 | const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 1890 | p16h = _mm_maddubs_epi16(q4h_1, q8h_1); |
| 1891 | p16h = _mm_madd_epi16(scale_h, p16h); |
| 1892 | sumi_1 = _mm_add_epi32(sumi_1, p16h); |
| 1893 | |
| 1894 | } |
| 1895 | |
| 1896 | __m256 vd = _mm256_set1_ps(d); |
| 1897 | __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0); |
| 1898 | acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc); |
| 1899 | |
| 1900 | } |
| 1901 | |
| 1902 | acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m)); |
| 1903 | acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m)); |
| 1904 | |
| 1905 | *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m); |
| 1906 | |
| 1907 | #else |
| 1908 | UNUSED(x); |
| 1909 | UNUSED(y); |
| 1910 | UNUSED(nb); |
| 1911 | UNUSED(kmask1); |
| 1912 | UNUSED(kmask2); |
| 1913 | UNUSED(kmask3); |
| 1914 | UNUSED(utmp); |
| 1915 | ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc); |
| 1916 | #endif |
| 1917 | } |
| 1918 | |
| 1919 | void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 1920 | assert(n % QK_K == 0); |
| 1921 | assert(nrc == 1); |
| 1922 | UNUSED(nrc); |
| 1923 | UNUSED(bx); |
| 1924 | UNUSED(by); |
| 1925 | UNUSED(bs); |
| 1926 | |
| 1927 | const block_q5_K * GGML_RESTRICT x = vx; |
| 1928 | const block_q8_K * GGML_RESTRICT y = vy; |
| 1929 | |
| 1930 | const int nb = n / QK_K; |
| 1931 | |
| 1932 | static const uint32_t kmask1 = 0x3f3f3f3f; |
| 1933 | static const uint32_t kmask2 = 0x0f0f0f0f; |
| 1934 | static const uint32_t kmask3 = 0x03030303; |
| 1935 | |
| 1936 | uint32_t utmp[4]; |
| 1937 | |
| 1938 | #if defined __AVX2__ |
| 1939 | |
| 1940 | const __m256i m4 = _mm256_set1_epi8(b: 0xF); |
| 1941 | const __m128i mzero = _mm_setzero_si128(); |
| 1942 | const __m256i mone = _mm256_set1_epi8(b: 1); |
| 1943 | |
| 1944 | __m256 acc = _mm256_setzero_ps(); |
| 1945 | |
| 1946 | float summs = 0.f; |
| 1947 | |
| 1948 | for (int i = 0; i < nb; ++i) { |
| 1949 | const uint8_t * GGML_RESTRICT q5 = x[i].qs; |
| 1950 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 1951 | |
| 1952 | const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d); |
| 1953 | const float dmin = -y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin); |
| 1954 | |
| 1955 | memcpy(dest: utmp, src: x[i].scales, n: 12); |
| 1956 | utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); |
| 1957 | const uint32_t uaux = utmp[1] & kmask1; |
| 1958 | utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); |
| 1959 | utmp[2] = uaux; |
| 1960 | utmp[0] &= kmask1; |
| 1961 | |
| 1962 | const __m256i mins_and_scales = _mm256_cvtepu8_epi16(V: _mm_set_epi32(i3: utmp[3], i2: utmp[2], i1: utmp[1], i0: utmp[0])); |
| 1963 | |
| 1964 | const __m256i q8sums = _mm256_loadu_si256(p: (const __m256i*)y[i].bsums); |
| 1965 | const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); |
| 1966 | const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), b: q8s); |
| 1967 | const __m128i hsum = _mm_hadd_epi32(a: _mm_hadd_epi32(a: prod, b: mzero), b: mzero); |
| 1968 | summs += dmin * _mm_extract_epi32(hsum, 0); |
| 1969 | |
| 1970 | const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0); |
| 1971 | const __m256i scales = MM256_SET_M128I(sc128, sc128); |
| 1972 | |
| 1973 | const __m256i hbits = _mm256_loadu_si256(p: (const __m256i*)x[i].qh); |
| 1974 | __m256i hmask = mone; |
| 1975 | |
| 1976 | __m256i sumi = _mm256_setzero_si256(); |
| 1977 | |
| 1978 | int bit = 0; |
| 1979 | |
| 1980 | for (int j = 0; j < QK_K/64; ++j) { |
| 1981 | |
| 1982 | const __m256i scale_0 = _mm256_shuffle_epi8(a: scales, b: get_scale_shuffle_k4(i: 2*j+0)); |
| 1983 | const __m256i scale_1 = _mm256_shuffle_epi8(a: scales, b: get_scale_shuffle_k4(i: 2*j+1)); |
| 1984 | |
| 1985 | const __m256i q5bits = _mm256_loadu_si256(p: (const __m256i*)q5); q5 += 32; |
| 1986 | |
| 1987 | const __m256i q5l_0 = _mm256_and_si256(a: q5bits, b: m4); |
| 1988 | const __m256i q5h_0 = _mm256_slli_epi16(a: _mm256_srli_epi16(a: _mm256_and_si256(a: hbits, b: hmask), count: bit++), count: 4); |
| 1989 | const __m256i q5_0 = _mm256_add_epi8(a: q5l_0, b: q5h_0); |
| 1990 | hmask = _mm256_slli_epi16(a: hmask, count: 1); |
| 1991 | |
| 1992 | const __m256i q5l_1 = _mm256_and_si256(a: _mm256_srli_epi16(a: q5bits, count: 4), b: m4); |
| 1993 | const __m256i q5h_1 = _mm256_slli_epi16(a: _mm256_srli_epi16(a: _mm256_and_si256(a: hbits, b: hmask), count: bit++), count: 4); |
| 1994 | const __m256i q5_1 = _mm256_add_epi8(a: q5l_1, b: q5h_1); |
| 1995 | hmask = _mm256_slli_epi16(a: hmask, count: 1); |
| 1996 | |
| 1997 | const __m256i q8_0 = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 1998 | const __m256i q8_1 = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 1999 | |
| 2000 | __m256i p16_0 = _mm256_maddubs_epi16(a: q5_0, b: q8_0); |
| 2001 | __m256i p16_1 = _mm256_maddubs_epi16(a: q5_1, b: q8_1); |
| 2002 | |
| 2003 | p16_0 = _mm256_madd_epi16(a: scale_0, b: p16_0); |
| 2004 | p16_1 = _mm256_madd_epi16(a: scale_1, b: p16_1); |
| 2005 | |
| 2006 | sumi = _mm256_add_epi32(a: sumi, b: _mm256_add_epi32(a: p16_0, b: p16_1)); |
| 2007 | |
| 2008 | } |
| 2009 | |
| 2010 | __m256 vd = _mm256_set1_ps(w: d); |
| 2011 | acc = _mm256_fmadd_ps(A: vd, B: _mm256_cvtepi32_ps(a: sumi), C: acc); |
| 2012 | |
| 2013 | } |
| 2014 | |
| 2015 | *s = hsum_float_8(x: acc) + summs; |
| 2016 | |
| 2017 | #elif defined __AVX__ |
| 2018 | |
| 2019 | const __m128i m4 = _mm_set1_epi8(0xF); |
| 2020 | const __m128i mzero = _mm_setzero_si128(); |
| 2021 | const __m128i mone = _mm_set1_epi8(1); |
| 2022 | const __m128i m2 = _mm_set1_epi8(2); |
| 2023 | |
| 2024 | __m256 acc = _mm256_setzero_ps(); |
| 2025 | |
| 2026 | float summs = 0.f; |
| 2027 | |
| 2028 | for (int i = 0; i < nb; ++i) { |
| 2029 | |
| 2030 | const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d); |
| 2031 | const float dmin = -y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin); |
| 2032 | |
| 2033 | const uint8_t * GGML_RESTRICT q5 = x[i].qs; |
| 2034 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 2035 | |
| 2036 | memcpy(utmp, x[i].scales, 12); |
| 2037 | utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); |
| 2038 | const uint32_t uaux = utmp[1] & kmask1; |
| 2039 | utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); |
| 2040 | utmp[2] = uaux; |
| 2041 | utmp[0] &= kmask1; |
| 2042 | |
| 2043 | const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]); |
| 2044 | const __m128i scales = _mm_cvtepu8_epi16(utmps); |
| 2045 | const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps)); |
| 2046 | |
| 2047 | const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]); |
| 2048 | const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]); |
| 2049 | const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1); |
| 2050 | const __m128i prod = _mm_madd_epi16(mins, q8s); |
| 2051 | const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero); |
| 2052 | summs += dmin * _mm_extract_epi32(hsum, 0); |
| 2053 | |
| 2054 | const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]); |
| 2055 | const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]); |
| 2056 | __m128i hmask = mone; |
| 2057 | |
| 2058 | __m128i sumi_0 = _mm_setzero_si128(); |
| 2059 | __m128i sumi_1 = _mm_setzero_si128(); |
| 2060 | |
| 2061 | int bit = 0; |
| 2062 | |
| 2063 | __m128i shuffle = _mm_set1_epi16(0x0100); |
| 2064 | for (int j = 0; j < QK_K/64; ++j) { |
| 2065 | |
| 2066 | const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle); |
| 2067 | shuffle = _mm_add_epi16(shuffle, m2); |
| 2068 | const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle); |
| 2069 | shuffle = _mm_add_epi16(shuffle, m2); |
| 2070 | |
| 2071 | const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16; |
| 2072 | const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16; |
| 2073 | |
| 2074 | __m128i q5l_0 = _mm_and_si128(q5bits_0, m4); |
| 2075 | __m128i q5l_1 = _mm_and_si128(q5bits_1, m4); |
| 2076 | __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4); |
| 2077 | __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4); |
| 2078 | __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0); |
| 2079 | __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1); |
| 2080 | hmask = _mm_slli_epi16(hmask, 1); |
| 2081 | |
| 2082 | __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 2083 | __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 2084 | __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0); |
| 2085 | __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1); |
| 2086 | p16_0 = _mm_madd_epi16(scale_0, p16_0); |
| 2087 | p16_1 = _mm_madd_epi16(scale_0, p16_1); |
| 2088 | |
| 2089 | q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4); |
| 2090 | q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4); |
| 2091 | q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4); |
| 2092 | q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4); |
| 2093 | q5_0 = _mm_add_epi8(q5l_0, q5h_0); |
| 2094 | q5_1 = _mm_add_epi8(q5l_1, q5h_1); |
| 2095 | hmask = _mm_slli_epi16(hmask, 1); |
| 2096 | |
| 2097 | q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 2098 | q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 2099 | __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0); |
| 2100 | __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1); |
| 2101 | p16_2 = _mm_madd_epi16(scale_1, p16_2); |
| 2102 | p16_3 = _mm_madd_epi16(scale_1, p16_3); |
| 2103 | |
| 2104 | sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2)); |
| 2105 | sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3)); |
| 2106 | |
| 2107 | } |
| 2108 | |
| 2109 | __m256 vd = _mm256_set1_ps(d); |
| 2110 | __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0); |
| 2111 | acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc); |
| 2112 | |
| 2113 | } |
| 2114 | |
| 2115 | *s = hsum_float_8(acc) + summs; |
| 2116 | |
| 2117 | #else |
| 2118 | UNUSED(x); |
| 2119 | UNUSED(y); |
| 2120 | UNUSED(nb); |
| 2121 | UNUSED(kmask1); |
| 2122 | UNUSED(kmask2); |
| 2123 | UNUSED(kmask3); |
| 2124 | UNUSED(utmp); |
| 2125 | ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc); |
| 2126 | #endif |
| 2127 | } |
| 2128 | |
| 2129 | void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 2130 | assert(n % QK_K == 0); |
| 2131 | assert(nrc == 1); |
| 2132 | UNUSED(nrc); |
| 2133 | UNUSED(bx); |
| 2134 | UNUSED(by); |
| 2135 | UNUSED(bs); |
| 2136 | |
| 2137 | const block_q6_K * GGML_RESTRICT x = vx; |
| 2138 | const block_q8_K * GGML_RESTRICT y = vy; |
| 2139 | |
| 2140 | const int nb = n / QK_K; |
| 2141 | |
| 2142 | #if defined __AVX2__ |
| 2143 | |
| 2144 | const __m256i m4 = _mm256_set1_epi8(b: 0xF); |
| 2145 | const __m256i m2 = _mm256_set1_epi8(b: 3); |
| 2146 | const __m256i m32s = _mm256_set1_epi8(b: 32); |
| 2147 | |
| 2148 | __m256 acc = _mm256_setzero_ps(); |
| 2149 | |
| 2150 | for (int i = 0; i < nb; ++i) { |
| 2151 | |
| 2152 | const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d); |
| 2153 | |
| 2154 | const uint8_t * GGML_RESTRICT q4 = x[i].ql; |
| 2155 | const uint8_t * GGML_RESTRICT qh = x[i].qh; |
| 2156 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 2157 | |
| 2158 | const __m128i scales = _mm_loadu_si128(p: (const __m128i*)x[i].scales); |
| 2159 | |
| 2160 | __m256i sumi = _mm256_setzero_si256(); |
| 2161 | |
| 2162 | int is = 0; |
| 2163 | |
| 2164 | for (int j = 0; j < QK_K/128; ++j) { |
| 2165 | |
| 2166 | const __m128i scale_0 = _mm_shuffle_epi8(a: scales, b: get_scale_shuffle(i: is + 0)); |
| 2167 | const __m128i scale_1 = _mm_shuffle_epi8(a: scales, b: get_scale_shuffle(i: is + 1)); |
| 2168 | const __m128i scale_2 = _mm_shuffle_epi8(a: scales, b: get_scale_shuffle(i: is + 2)); |
| 2169 | const __m128i scale_3 = _mm_shuffle_epi8(a: scales, b: get_scale_shuffle(i: is + 3)); |
| 2170 | is += 4; |
| 2171 | |
| 2172 | const __m256i q4bits1 = _mm256_loadu_si256(p: (const __m256i*)q4); q4 += 32; |
| 2173 | const __m256i q4bits2 = _mm256_loadu_si256(p: (const __m256i*)q4); q4 += 32; |
| 2174 | const __m256i q4bitsH = _mm256_loadu_si256(p: (const __m256i*)qh); qh += 32; |
| 2175 | |
| 2176 | const __m256i q4h_0 = _mm256_slli_epi16(a: _mm256_and_si256(a: q4bitsH, b: m2), count: 4); |
| 2177 | const __m256i q4h_1 = _mm256_slli_epi16(a: _mm256_and_si256(a: _mm256_srli_epi16(a: q4bitsH, count: 2), b: m2), count: 4); |
| 2178 | const __m256i q4h_2 = _mm256_slli_epi16(a: _mm256_and_si256(a: _mm256_srli_epi16(a: q4bitsH, count: 4), b: m2), count: 4); |
| 2179 | const __m256i q4h_3 = _mm256_slli_epi16(a: _mm256_and_si256(a: _mm256_srli_epi16(a: q4bitsH, count: 6), b: m2), count: 4); |
| 2180 | |
| 2181 | const __m256i q4_0 = _mm256_or_si256(a: _mm256_and_si256(a: q4bits1, b: m4), b: q4h_0); |
| 2182 | const __m256i q4_1 = _mm256_or_si256(a: _mm256_and_si256(a: q4bits2, b: m4), b: q4h_1); |
| 2183 | const __m256i q4_2 = _mm256_or_si256(a: _mm256_and_si256(a: _mm256_srli_epi16(a: q4bits1, count: 4), b: m4), b: q4h_2); |
| 2184 | const __m256i q4_3 = _mm256_or_si256(a: _mm256_and_si256(a: _mm256_srli_epi16(a: q4bits2, count: 4), b: m4), b: q4h_3); |
| 2185 | |
| 2186 | const __m256i q8_0 = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 2187 | const __m256i q8_1 = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 2188 | const __m256i q8_2 = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 2189 | const __m256i q8_3 = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 2190 | |
| 2191 | __m256i q8s_0 = _mm256_maddubs_epi16(a: m32s, b: q8_0); |
| 2192 | __m256i q8s_1 = _mm256_maddubs_epi16(a: m32s, b: q8_1); |
| 2193 | __m256i q8s_2 = _mm256_maddubs_epi16(a: m32s, b: q8_2); |
| 2194 | __m256i q8s_3 = _mm256_maddubs_epi16(a: m32s, b: q8_3); |
| 2195 | |
| 2196 | __m256i p16_0 = _mm256_maddubs_epi16(a: q4_0, b: q8_0); |
| 2197 | __m256i p16_1 = _mm256_maddubs_epi16(a: q4_1, b: q8_1); |
| 2198 | __m256i p16_2 = _mm256_maddubs_epi16(a: q4_2, b: q8_2); |
| 2199 | __m256i p16_3 = _mm256_maddubs_epi16(a: q4_3, b: q8_3); |
| 2200 | |
| 2201 | p16_0 = _mm256_sub_epi16(a: p16_0, b: q8s_0); |
| 2202 | p16_1 = _mm256_sub_epi16(a: p16_1, b: q8s_1); |
| 2203 | p16_2 = _mm256_sub_epi16(a: p16_2, b: q8s_2); |
| 2204 | p16_3 = _mm256_sub_epi16(a: p16_3, b: q8s_3); |
| 2205 | |
| 2206 | p16_0 = _mm256_madd_epi16(a: _mm256_cvtepi8_epi16(V: scale_0), b: p16_0); |
| 2207 | p16_1 = _mm256_madd_epi16(a: _mm256_cvtepi8_epi16(V: scale_1), b: p16_1); |
| 2208 | p16_2 = _mm256_madd_epi16(a: _mm256_cvtepi8_epi16(V: scale_2), b: p16_2); |
| 2209 | p16_3 = _mm256_madd_epi16(a: _mm256_cvtepi8_epi16(V: scale_3), b: p16_3); |
| 2210 | |
| 2211 | sumi = _mm256_add_epi32(a: sumi, b: _mm256_add_epi32(a: p16_0, b: p16_1)); |
| 2212 | sumi = _mm256_add_epi32(a: sumi, b: _mm256_add_epi32(a: p16_2, b: p16_3)); |
| 2213 | |
| 2214 | } |
| 2215 | |
| 2216 | acc = _mm256_fmadd_ps(A: _mm256_broadcast_ss(a: &d), B: _mm256_cvtepi32_ps(a: sumi), C: acc); |
| 2217 | } |
| 2218 | |
| 2219 | *s = hsum_float_8(x: acc); |
| 2220 | |
| 2221 | #elif defined __AVX__ |
| 2222 | |
| 2223 | const __m128i m3 = _mm_set1_epi8(3); |
| 2224 | const __m128i m15 = _mm_set1_epi8(15); |
| 2225 | |
| 2226 | __m256 acc = _mm256_setzero_ps(); |
| 2227 | |
| 2228 | for (int i = 0; i < nb; ++i) { |
| 2229 | |
| 2230 | const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d); |
| 2231 | |
| 2232 | const uint8_t * GGML_RESTRICT q4 = x[i].ql; |
| 2233 | const uint8_t * GGML_RESTRICT qh = x[i].qh; |
| 2234 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 2235 | |
| 2236 | // handle the q6_k -32 offset separately using bsums |
| 2237 | const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)y[i].bsums); |
| 2238 | const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)y[i].bsums + 1); |
| 2239 | const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales); |
| 2240 | const __m128i scales_16_0 = _mm_cvtepi8_epi16(scales); |
| 2241 | const __m128i scales_16_1 = _mm_cvtepi8_epi16(_mm_bsrli_si128(scales, 8)); |
| 2242 | const __m128i q8sclsub_0 = _mm_slli_epi32(_mm_madd_epi16(q8sums_0, scales_16_0), 5); |
| 2243 | const __m128i q8sclsub_1 = _mm_slli_epi32(_mm_madd_epi16(q8sums_1, scales_16_1), 5); |
| 2244 | |
| 2245 | __m128i sumi_0 = _mm_setzero_si128(); |
| 2246 | __m128i sumi_1 = _mm_setzero_si128(); |
| 2247 | |
| 2248 | int is = 0; |
| 2249 | |
| 2250 | for (int j = 0; j < QK_K/128; ++j) { |
| 2251 | |
| 2252 | const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16; |
| 2253 | const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16; |
| 2254 | |
| 2255 | const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4); |
| 2256 | const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4); |
| 2257 | const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, _mm_set1_epi8(12)), 2); |
| 2258 | const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, _mm_set1_epi8(12)), 2); |
| 2259 | const __m128i q4h_4 = _mm_and_si128(q4bitsH_0, _mm_set1_epi8(48)); |
| 2260 | const __m128i q4h_5 = _mm_and_si128(q4bitsH_1, _mm_set1_epi8(48)); |
| 2261 | const __m128i q4h_6 = _mm_srli_epi16(_mm_and_si128(q4bitsH_0, _mm_set1_epi8(-64)), 2); |
| 2262 | const __m128i q4h_7 = _mm_srli_epi16(_mm_and_si128(q4bitsH_1, _mm_set1_epi8(-64)), 2); |
| 2263 | |
| 2264 | const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; |
| 2265 | const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; |
| 2266 | const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; |
| 2267 | const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; |
| 2268 | |
| 2269 | const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m15), q4h_0); |
| 2270 | const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m15), q4h_1); |
| 2271 | const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m15), q4h_2); |
| 2272 | const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m15), q4h_3); |
| 2273 | const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m15), q4h_4); |
| 2274 | const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m15), q4h_5); |
| 2275 | const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m15), q4h_6); |
| 2276 | const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m15), q4h_7); |
| 2277 | |
| 2278 | const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 2279 | const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 2280 | const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 2281 | const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 2282 | const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 2283 | const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 2284 | const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 2285 | const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; |
| 2286 | |
| 2287 | __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0); |
| 2288 | __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1); |
| 2289 | __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2); |
| 2290 | __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3); |
| 2291 | __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4); |
| 2292 | __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5); |
| 2293 | __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6); |
| 2294 | __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7); |
| 2295 | |
| 2296 | const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0)); |
| 2297 | const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1)); |
| 2298 | const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2)); |
| 2299 | const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3)); |
| 2300 | is += 4; |
| 2301 | |
| 2302 | p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0); |
| 2303 | p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_0, 8)), p16_1); |
| 2304 | p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2); |
| 2305 | p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_1, 8)), p16_3); |
| 2306 | p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4); |
| 2307 | p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_2, 8)), p16_5); |
| 2308 | p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6); |
| 2309 | p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_3, 8)), p16_7); |
| 2310 | |
| 2311 | sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2)); |
| 2312 | sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3)); |
| 2313 | sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6)); |
| 2314 | sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7)); |
| 2315 | |
| 2316 | } |
| 2317 | |
| 2318 | sumi_0 = _mm_sub_epi32(sumi_0, q8sclsub_0); |
| 2319 | sumi_1 = _mm_sub_epi32(sumi_1, q8sclsub_1); |
| 2320 | const __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0); |
| 2321 | acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sumi)), acc); |
| 2322 | } |
| 2323 | |
| 2324 | *s = hsum_float_8(acc); |
| 2325 | |
| 2326 | #else |
| 2327 | UNUSED(x); |
| 2328 | UNUSED(y); |
| 2329 | UNUSED(nb); |
| 2330 | ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc); |
| 2331 | #endif |
| 2332 | } |
| 2333 | |
| 2334 | #if defined (__AVX__) || defined (__AVX2__) |
| 2335 | static const int8_t keven_signs_q2xs[1024] = { |
| 2336 | 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, |
| 2337 | 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, |
| 2338 | 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, |
| 2339 | 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, |
| 2340 | 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, |
| 2341 | 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, |
| 2342 | 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, |
| 2343 | 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, |
| 2344 | 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, |
| 2345 | 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, |
| 2346 | 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, |
| 2347 | 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, |
| 2348 | 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, |
| 2349 | 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, |
| 2350 | 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, |
| 2351 | 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, |
| 2352 | 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, |
| 2353 | 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, |
| 2354 | 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, |
| 2355 | 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, |
| 2356 | 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, |
| 2357 | 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, |
| 2358 | 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, |
| 2359 | 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, |
| 2360 | 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, |
| 2361 | 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, |
| 2362 | 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, |
| 2363 | 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, |
| 2364 | 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, |
| 2365 | 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, |
| 2366 | 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, |
| 2367 | 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, |
| 2368 | }; |
| 2369 | #endif |
| 2370 | |
| 2371 | void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 2372 | assert(n % QK_K == 0); |
| 2373 | assert(nrc == 1); |
| 2374 | UNUSED(nrc); |
| 2375 | UNUSED(bx); |
| 2376 | UNUSED(by); |
| 2377 | UNUSED(bs); |
| 2378 | |
| 2379 | const block_iq2_xxs * GGML_RESTRICT x = vx; |
| 2380 | const block_q8_K * GGML_RESTRICT y = vy; |
| 2381 | |
| 2382 | const int nb = n / QK_K; |
| 2383 | |
| 2384 | #if defined(__AVX2__) |
| 2385 | |
| 2386 | const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; |
| 2387 | |
| 2388 | uint32_t aux32[4]; |
| 2389 | const uint8_t * aux8 = (const uint8_t *)aux32; |
| 2390 | |
| 2391 | __m256 accumf = _mm256_setzero_ps(); |
| 2392 | for (int i = 0; i < nb; ++i) { |
| 2393 | const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d; |
| 2394 | const uint16_t * GGML_RESTRICT q2 = x[i].qs; |
| 2395 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 2396 | __m256i sumi1 = _mm256_setzero_si256(); |
| 2397 | __m256i sumi2 = _mm256_setzero_si256(); |
| 2398 | for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { |
| 2399 | const __m256i q8_1 = _mm256_loadu_si256(p: (const __m256i *)q8); q8 += 32; |
| 2400 | const __m256i q8_2 = _mm256_loadu_si256(p: (const __m256i *)q8); q8 += 32; |
| 2401 | memcpy(dest: aux32, src: q2, n: 4*sizeof(uint32_t)); q2 += 8; |
| 2402 | const __m256i q2_1 = _mm256_set_epi64x(a: iq2xxs_grid[aux8[ 3]], b: iq2xxs_grid[aux8[ 2]], c: iq2xxs_grid[aux8[1]], d: iq2xxs_grid[aux8[0]]); |
| 2403 | const __m256i q2_2 = _mm256_set_epi64x(a: iq2xxs_grid[aux8[11]], b: iq2xxs_grid[aux8[10]], c: iq2xxs_grid[aux8[9]], d: iq2xxs_grid[aux8[8]]); |
| 2404 | const __m256i s2_1 = _mm256_set_epi64x(a: signs64[(aux32[1] >> 21) & 127], b: signs64[(aux32[1] >> 14) & 127], |
| 2405 | c: signs64[(aux32[1] >> 7) & 127], d: signs64[(aux32[1] >> 0) & 127]); |
| 2406 | const __m256i s2_2 = _mm256_set_epi64x(a: signs64[(aux32[3] >> 21) & 127], b: signs64[(aux32[3] >> 14) & 127], |
| 2407 | c: signs64[(aux32[3] >> 7) & 127], d: signs64[(aux32[3] >> 0) & 127]); |
| 2408 | const __m256i q8s_1 = _mm256_sign_epi8(a: q8_1, b: s2_1); |
| 2409 | const __m256i q8s_2 = _mm256_sign_epi8(a: q8_2, b: s2_2); |
| 2410 | const __m256i dot1 = _mm256_maddubs_epi16(a: q2_1, b: q8s_1); |
| 2411 | const __m256i dot2 = _mm256_maddubs_epi16(a: q2_2, b: q8s_2); |
| 2412 | const uint16_t ls1 = aux32[1] >> 28; |
| 2413 | const uint16_t ls2 = aux32[3] >> 28; |
| 2414 | const __m256i p1 = _mm256_madd_epi16(a: dot1, b: _mm256_set1_epi16(w: 2*ls1+1)); |
| 2415 | const __m256i p2 = _mm256_madd_epi16(a: dot2, b: _mm256_set1_epi16(w: 2*ls2+1)); |
| 2416 | sumi1 = _mm256_add_epi32(a: sumi1, b: p1); |
| 2417 | sumi2 = _mm256_add_epi32(a: sumi2, b: p2); |
| 2418 | } |
| 2419 | |
| 2420 | accumf = _mm256_fmadd_ps(A: _mm256_set1_ps(w: d), B: _mm256_cvtepi32_ps(a: _mm256_add_epi32(a: sumi1, b: sumi2)), C: accumf); |
| 2421 | |
| 2422 | } |
| 2423 | |
| 2424 | *s = 0.125f * hsum_float_8(x: accumf); |
| 2425 | |
| 2426 | #elif defined(__AVX__) |
| 2427 | const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; |
| 2428 | |
| 2429 | uint32_t aux32[4]; |
| 2430 | const uint8_t * aux8 = (const uint8_t *)aux32; |
| 2431 | |
| 2432 | __m256 accumf = _mm256_setzero_ps(); |
| 2433 | for (int i = 0; i < nb; ++i) { |
| 2434 | const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d; |
| 2435 | const uint16_t * GGML_RESTRICT q2 = x[i].qs; |
| 2436 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 2437 | __m128i sumi1_0 = _mm_setzero_si128(); |
| 2438 | __m128i sumi1_1 = _mm_setzero_si128(); |
| 2439 | __m128i sumi2_0 = _mm_setzero_si128(); |
| 2440 | __m128i sumi2_1 = _mm_setzero_si128(); |
| 2441 | for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { |
| 2442 | const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 2443 | const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 2444 | const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 2445 | const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 2446 | memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8; |
| 2447 | const __m128i q2_1_0 = _mm_set_epi64x(iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]); |
| 2448 | const __m128i q2_1_1 = _mm_set_epi64x(iq2xxs_grid[aux8[3]], iq2xxs_grid[aux8[2]]); |
| 2449 | const __m128i q2_2_0 = _mm_set_epi64x(iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]); |
| 2450 | const __m128i q2_2_1 = _mm_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]]); |
| 2451 | const __m128i s2_1_0 = _mm_set_epi64x(signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]); |
| 2452 | const __m128i s2_1_1 = _mm_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127]); |
| 2453 | const __m128i s2_2_0 = _mm_set_epi64x(signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]); |
| 2454 | const __m128i s2_2_1 = _mm_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127]); |
| 2455 | const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, s2_1_0); |
| 2456 | const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, s2_1_1); |
| 2457 | const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, s2_2_0); |
| 2458 | const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, s2_2_1); |
| 2459 | const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0); |
| 2460 | const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1); |
| 2461 | const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0); |
| 2462 | const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1); |
| 2463 | const uint16_t ls1 = aux32[1] >> 28; |
| 2464 | const uint16_t ls2 = aux32[3] >> 28; |
| 2465 | const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1)); |
| 2466 | const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1)); |
| 2467 | const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1)); |
| 2468 | const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1)); |
| 2469 | sumi1_0 = _mm_add_epi32(sumi1_0, p1_0); |
| 2470 | sumi1_1 = _mm_add_epi32(sumi1_1, p1_1); |
| 2471 | sumi2_0 = _mm_add_epi32(sumi2_0, p2_0); |
| 2472 | sumi2_1 = _mm_add_epi32(sumi2_1, p2_1); |
| 2473 | } |
| 2474 | |
| 2475 | accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf); |
| 2476 | |
| 2477 | } |
| 2478 | |
| 2479 | *s = 0.125f * hsum_float_8(accumf); |
| 2480 | |
| 2481 | #else |
| 2482 | UNUSED(x); |
| 2483 | UNUSED(y); |
| 2484 | UNUSED(nb); |
| 2485 | ggml_vec_dot_iq2_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc); |
| 2486 | #endif |
| 2487 | } |
| 2488 | |
| 2489 | void ggml_vec_dot_iq2_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 2490 | assert(n % QK_K == 0); |
| 2491 | assert(nrc == 1); |
| 2492 | UNUSED(nrc); |
| 2493 | UNUSED(bx); |
| 2494 | UNUSED(by); |
| 2495 | UNUSED(bs); |
| 2496 | |
| 2497 | const block_iq2_xs * GGML_RESTRICT x = vx; |
| 2498 | const block_q8_K * GGML_RESTRICT y = vy; |
| 2499 | |
| 2500 | const int nb = n / QK_K; |
| 2501 | |
| 2502 | #if defined(__AVX2__) |
| 2503 | |
| 2504 | const __m256i mone = _mm256_set1_epi8(b: 1); |
| 2505 | static const char block_sign_shuffle_mask_1[32] = { |
| 2506 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, |
| 2507 | 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, |
| 2508 | }; |
| 2509 | static const char block_sign_shuffle_mask_2[32] = { |
| 2510 | 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, |
| 2511 | 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, |
| 2512 | }; |
| 2513 | static const uint8_t bit_selector_mask_bytes[32] = { |
| 2514 | 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, |
| 2515 | 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, |
| 2516 | }; |
| 2517 | |
| 2518 | const __m256i bit_selector_mask = _mm256_loadu_si256(p: (const __m256i*)bit_selector_mask_bytes); |
| 2519 | const __m256i block_sign_shuffle_1 = _mm256_loadu_si256(p: (const __m256i*)block_sign_shuffle_mask_1); |
| 2520 | const __m256i block_sign_shuffle_2 = _mm256_loadu_si256(p: (const __m256i*)block_sign_shuffle_mask_2); |
| 2521 | |
| 2522 | static const uint8_t k_bit_helper[32] = { |
| 2523 | 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, |
| 2524 | 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, |
| 2525 | }; |
| 2526 | const __m256i bit_helper = _mm256_loadu_si256(p: (const __m256i*)k_bit_helper); |
| 2527 | const __m256i m511 = _mm256_set1_epi16(w: 511); |
| 2528 | const __m128i m4 = _mm_set1_epi8(b: 0xf); |
| 2529 | const __m128i m1 = _mm_set1_epi8(b: 1); |
| 2530 | |
| 2531 | uint64_t aux64; |
| 2532 | |
| 2533 | // somewhat hacky, but gives a significant boost in performance |
| 2534 | __m256i aux_gindex; |
| 2535 | const uint16_t * gindex = (const uint16_t *)&aux_gindex; |
| 2536 | |
| 2537 | __m256 accumf = _mm256_setzero_ps(); |
| 2538 | for (int i = 0; i < nb; ++i) { |
| 2539 | const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d; |
| 2540 | const uint16_t * GGML_RESTRICT q2 = x[i].qs; |
| 2541 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 2542 | |
| 2543 | memcpy(dest: &aux64, src: x[i].scales, n: 8); |
| 2544 | __m128i stmp = _mm_set1_epi64x(q: aux64); |
| 2545 | stmp = _mm_unpacklo_epi8(a: _mm_and_si128(a: stmp, b: m4), b: _mm_and_si128(a: _mm_srli_epi16(a: stmp, count: 4), b: m4)); |
| 2546 | const __m128i scales = _mm_add_epi8(a: _mm_slli_epi16(a: stmp, count: 1), b: m1); |
| 2547 | |
| 2548 | __m256i sumi1 = _mm256_setzero_si256(); |
| 2549 | __m256i sumi2 = _mm256_setzero_si256(); |
| 2550 | for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) { |
| 2551 | |
| 2552 | const __m256i q2_data = _mm256_loadu_si256(p: (const __m256i*)q2); q2 += 16; |
| 2553 | aux_gindex = _mm256_and_si256(a: q2_data, b: m511); |
| 2554 | |
| 2555 | const __m256i partial_sign_bits = _mm256_srli_epi16(a: q2_data, count: 9); |
| 2556 | const __m256i partial_sign_bits_upper = _mm256_srli_epi16(a: q2_data, count: 13); |
| 2557 | const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(a: partial_sign_bits, b: partial_sign_bits_upper); |
| 2558 | |
| 2559 | const __m256i odd_bits = _mm256_shuffle_epi8(a: bit_helper, b: partial_sign_bits_for_counting); |
| 2560 | const __m256i full_sign_bits = _mm256_or_si256(a: partial_sign_bits, b: odd_bits); |
| 2561 | |
| 2562 | const __m256i q8_1 = _mm256_loadu_si256(p: (const __m256i *)q8); q8 += 32; |
| 2563 | const __m256i q8_2 = _mm256_loadu_si256(p: (const __m256i *)q8); q8 += 32; |
| 2564 | const __m256i q8_3 = _mm256_loadu_si256(p: (const __m256i *)q8); q8 += 32; |
| 2565 | const __m256i q8_4 = _mm256_loadu_si256(p: (const __m256i *)q8); q8 += 32; |
| 2566 | |
| 2567 | const __m256i q2_1 = _mm256_set_epi64x(a: iq2xs_grid[gindex[ 3]], b: iq2xs_grid[gindex[ 2]], |
| 2568 | c: iq2xs_grid[gindex[ 1]], d: iq2xs_grid[gindex[ 0]]); |
| 2569 | const __m256i q2_2 = _mm256_set_epi64x(a: iq2xs_grid[gindex[ 7]], b: iq2xs_grid[gindex[ 6]], |
| 2570 | c: iq2xs_grid[gindex[ 5]], d: iq2xs_grid[gindex[ 4]]); |
| 2571 | const __m256i q2_3 = _mm256_set_epi64x(a: iq2xs_grid[gindex[11]], b: iq2xs_grid[gindex[10]], |
| 2572 | c: iq2xs_grid[gindex[ 9]], d: iq2xs_grid[gindex[ 8]]); |
| 2573 | const __m256i q2_4 = _mm256_set_epi64x(a: iq2xs_grid[gindex[15]], b: iq2xs_grid[gindex[14]], |
| 2574 | c: iq2xs_grid[gindex[13]], d: iq2xs_grid[gindex[12]]); |
| 2575 | |
| 2576 | const __m128i full_signs_l = _mm256_castsi256_si128(a: full_sign_bits); |
| 2577 | const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1); |
| 2578 | const __m256i full_signs_1 = MM256_SET_M128I(full_signs_l, full_signs_l); |
| 2579 | const __m256i full_signs_2 = MM256_SET_M128I(full_signs_h, full_signs_h); |
| 2580 | |
| 2581 | __m256i signs; |
| 2582 | signs = _mm256_shuffle_epi8(a: full_signs_1, b: block_sign_shuffle_1); |
| 2583 | signs = _mm256_cmpeq_epi8(a: _mm256_and_si256(a: signs, b: bit_selector_mask), b: bit_selector_mask); |
| 2584 | const __m256i q8s_1 = _mm256_sign_epi8(a: q8_1, b: _mm256_or_si256(a: signs, b: mone)); |
| 2585 | |
| 2586 | signs = _mm256_shuffle_epi8(a: full_signs_1, b: block_sign_shuffle_2); |
| 2587 | signs = _mm256_cmpeq_epi8(a: _mm256_and_si256(a: signs, b: bit_selector_mask), b: bit_selector_mask); |
| 2588 | const __m256i q8s_2 = _mm256_sign_epi8(a: q8_2, b: _mm256_or_si256(a: signs, b: mone)); |
| 2589 | |
| 2590 | signs = _mm256_shuffle_epi8(a: full_signs_2, b: block_sign_shuffle_1); |
| 2591 | signs = _mm256_cmpeq_epi8(a: _mm256_and_si256(a: signs, b: bit_selector_mask), b: bit_selector_mask); |
| 2592 | const __m256i q8s_3 = _mm256_sign_epi8(a: q8_3, b: _mm256_or_si256(a: signs, b: mone)); |
| 2593 | |
| 2594 | signs = _mm256_shuffle_epi8(a: full_signs_2, b: block_sign_shuffle_2); |
| 2595 | signs = _mm256_cmpeq_epi8(a: _mm256_and_si256(a: signs, b: bit_selector_mask), b: bit_selector_mask); |
| 2596 | const __m256i q8s_4 = _mm256_sign_epi8(a: q8_4, b: _mm256_or_si256(a: signs, b: mone)); |
| 2597 | |
| 2598 | const __m256i dot1 = _mm256_maddubs_epi16(a: q2_1, b: q8s_1); |
| 2599 | const __m256i dot2 = _mm256_maddubs_epi16(a: q2_2, b: q8s_2); |
| 2600 | const __m256i dot3 = _mm256_maddubs_epi16(a: q2_3, b: q8s_3); |
| 2601 | const __m256i dot4 = _mm256_maddubs_epi16(a: q2_4, b: q8s_4); |
| 2602 | |
| 2603 | const __m256i sc1 = _mm256_cvtepi8_epi16(V: _mm_shuffle_epi8(a: scales, b: get_scale_shuffle(i: ib32+0))); |
| 2604 | const __m256i sc2 = _mm256_cvtepi8_epi16(V: _mm_shuffle_epi8(a: scales, b: get_scale_shuffle(i: ib32+1))); |
| 2605 | const __m256i sc3 = _mm256_cvtepi8_epi16(V: _mm_shuffle_epi8(a: scales, b: get_scale_shuffle(i: ib32+2))); |
| 2606 | const __m256i sc4 = _mm256_cvtepi8_epi16(V: _mm_shuffle_epi8(a: scales, b: get_scale_shuffle(i: ib32+3))); |
| 2607 | |
| 2608 | sumi1 = _mm256_add_epi32(a: sumi1, b: _mm256_madd_epi16(a: dot1, b: sc1)); |
| 2609 | sumi2 = _mm256_add_epi32(a: sumi2, b: _mm256_madd_epi16(a: dot2, b: sc2)); |
| 2610 | sumi1 = _mm256_add_epi32(a: sumi1, b: _mm256_madd_epi16(a: dot3, b: sc3)); |
| 2611 | sumi2 = _mm256_add_epi32(a: sumi2, b: _mm256_madd_epi16(a: dot4, b: sc4)); |
| 2612 | } |
| 2613 | |
| 2614 | accumf = _mm256_fmadd_ps(A: _mm256_set1_ps(w: d), B: _mm256_cvtepi32_ps(a: _mm256_add_epi32(a: sumi1, b: sumi2)), C: accumf); |
| 2615 | |
| 2616 | } |
| 2617 | |
| 2618 | *s = 0.125f * hsum_float_8(x: accumf); |
| 2619 | |
| 2620 | #elif defined(__AVX__) |
| 2621 | const __m128i mone = _mm_set1_epi8(1); |
| 2622 | static const char block_sign_shuffle_mask_1[32] = { |
| 2623 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, |
| 2624 | 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, |
| 2625 | }; |
| 2626 | static const char block_sign_shuffle_mask_2[32] = { |
| 2627 | 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, |
| 2628 | 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, |
| 2629 | }; |
| 2630 | static const uint8_t bit_selector_mask_bytes[32] = { |
| 2631 | 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, |
| 2632 | 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, |
| 2633 | }; |
| 2634 | |
| 2635 | const __m128i bit_selector_mask_0 = _mm_loadu_si128((const __m128i*)bit_selector_mask_bytes); |
| 2636 | const __m128i bit_selector_mask_1 = _mm_loadu_si128((const __m128i*)bit_selector_mask_bytes + 1); |
| 2637 | const __m128i block_sign_shuffle_1_0 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_1); |
| 2638 | const __m128i block_sign_shuffle_1_1 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_1 + 1); |
| 2639 | const __m128i block_sign_shuffle_2_0 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_2); |
| 2640 | const __m128i block_sign_shuffle_2_1 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_2 + 1); |
| 2641 | |
| 2642 | static const uint8_t k_bit_helper[32] = { |
| 2643 | 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, |
| 2644 | 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, |
| 2645 | }; |
| 2646 | const __m128i bit_helper_0 = _mm_loadu_si128((const __m128i*)k_bit_helper); |
| 2647 | const __m128i bit_helper_1 = _mm_loadu_si128((const __m128i*)k_bit_helper + 1); |
| 2648 | const __m128i m511 = _mm_set1_epi16(511); |
| 2649 | const __m128i m4 = _mm_set1_epi8(0xf); |
| 2650 | const __m128i m1 = _mm_set1_epi8(1); |
| 2651 | |
| 2652 | uint64_t aux64; |
| 2653 | |
| 2654 | // somewhat hacky, but gives a significant boost in performance |
| 2655 | __m256i aux_gindex; |
| 2656 | const uint16_t * gindex = (const uint16_t *)&aux_gindex; |
| 2657 | |
| 2658 | __m256 accumf = _mm256_setzero_ps(); |
| 2659 | for (int i = 0; i < nb; ++i) { |
| 2660 | const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d; |
| 2661 | const uint16_t * GGML_RESTRICT q2 = x[i].qs; |
| 2662 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 2663 | |
| 2664 | memcpy(&aux64, x[i].scales, 8); |
| 2665 | __m128i stmp = _mm_set1_epi64x(aux64); |
| 2666 | stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4)); |
| 2667 | const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1); |
| 2668 | |
| 2669 | __m128i sumi1_0 = _mm_setzero_si128(); |
| 2670 | __m128i sumi1_1 = _mm_setzero_si128(); |
| 2671 | __m128i sumi2_0 = _mm_setzero_si128(); |
| 2672 | __m128i sumi2_1 = _mm_setzero_si128(); |
| 2673 | for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) { |
| 2674 | |
| 2675 | const __m128i q2_data_0 = _mm_loadu_si128((const __m128i*)q2); |
| 2676 | const __m128i q2_data_1 = _mm_loadu_si128((const __m128i*)q2 + 1); q2 += 16; |
| 2677 | aux_gindex = MM256_SET_M128I(_mm_and_si128(q2_data_1, m511), _mm_and_si128(q2_data_0, m511)); |
| 2678 | |
| 2679 | const __m128i partial_sign_bits_0 = _mm_srli_epi16(q2_data_0, 9); |
| 2680 | const __m128i partial_sign_bits_1 = _mm_srli_epi16(q2_data_1, 9); |
| 2681 | const __m128i partial_sign_bits_upper_0 = _mm_srli_epi16(q2_data_0, 13); |
| 2682 | const __m128i partial_sign_bits_upper_1 = _mm_srli_epi16(q2_data_1, 13); |
| 2683 | const __m128i partial_sign_bits_for_counting_0 = _mm_xor_si128(partial_sign_bits_0, partial_sign_bits_upper_0); |
| 2684 | const __m128i partial_sign_bits_for_counting_1 = _mm_xor_si128(partial_sign_bits_1, partial_sign_bits_upper_1); |
| 2685 | |
| 2686 | const __m128i odd_bits_0 = _mm_shuffle_epi8(bit_helper_0, partial_sign_bits_for_counting_0); |
| 2687 | const __m128i odd_bits_1 = _mm_shuffle_epi8(bit_helper_1, partial_sign_bits_for_counting_1); |
| 2688 | const __m128i full_sign_bits_0 = _mm_or_si128(partial_sign_bits_0, odd_bits_0); |
| 2689 | const __m128i full_sign_bits_1 = _mm_or_si128(partial_sign_bits_1, odd_bits_1); |
| 2690 | |
| 2691 | const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 2692 | const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 2693 | const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 2694 | const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 2695 | const __m128i q8_3_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 2696 | const __m128i q8_3_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 2697 | const __m128i q8_4_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 2698 | const __m128i q8_4_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 2699 | |
| 2700 | const __m128i q2_1_0 = _mm_set_epi64x(iq2xs_grid[gindex[1]], iq2xs_grid[gindex[0]]); |
| 2701 | const __m128i q2_1_1 = _mm_set_epi64x(iq2xs_grid[gindex[3]], iq2xs_grid[gindex[2]]); |
| 2702 | const __m128i q2_2_0 = _mm_set_epi64x(iq2xs_grid[gindex[5]], iq2xs_grid[gindex[4]]); |
| 2703 | const __m128i q2_2_1 = _mm_set_epi64x(iq2xs_grid[gindex[7]], iq2xs_grid[gindex[6]]); |
| 2704 | const __m128i q2_3_0 = _mm_set_epi64x(iq2xs_grid[gindex[9]], iq2xs_grid[gindex[8]]); |
| 2705 | const __m128i q2_3_1 = _mm_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]]); |
| 2706 | const __m128i q2_4_0 = _mm_set_epi64x(iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]); |
| 2707 | const __m128i q2_4_1 = _mm_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]]); |
| 2708 | |
| 2709 | // AVX2 full_signs_1 is full_sign_bits_0 here |
| 2710 | // AVX2 full_signs_2 is full_sign_bits_1 here |
| 2711 | __m128i signs_0, signs_1; |
| 2712 | signs_0 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_1_0); |
| 2713 | signs_1 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_1_1); |
| 2714 | signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0); |
| 2715 | signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1); |
| 2716 | const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, _mm_or_si128(signs_0, mone)); |
| 2717 | const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, _mm_or_si128(signs_1, mone)); |
| 2718 | |
| 2719 | signs_0 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_2_0); |
| 2720 | signs_1 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_2_1); |
| 2721 | signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0); |
| 2722 | signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1); |
| 2723 | const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, _mm_or_si128(signs_0, mone)); |
| 2724 | const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, _mm_or_si128(signs_1, mone)); |
| 2725 | |
| 2726 | signs_0 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_1_0); |
| 2727 | signs_1 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_1_1); |
| 2728 | signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0); |
| 2729 | signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1); |
| 2730 | const __m128i q8s_3_0 = _mm_sign_epi8(q8_3_0, _mm_or_si128(signs_0, mone)); |
| 2731 | const __m128i q8s_3_1 = _mm_sign_epi8(q8_3_1, _mm_or_si128(signs_1, mone)); |
| 2732 | |
| 2733 | signs_0 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_2_0); |
| 2734 | signs_1 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_2_1); |
| 2735 | signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0); |
| 2736 | signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1); |
| 2737 | const __m128i q8s_4_0 = _mm_sign_epi8(q8_4_0, _mm_or_si128(signs_0, mone)); |
| 2738 | const __m128i q8s_4_1 = _mm_sign_epi8(q8_4_1, _mm_or_si128(signs_1, mone)); |
| 2739 | |
| 2740 | const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0); |
| 2741 | const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1); |
| 2742 | const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0); |
| 2743 | const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1); |
| 2744 | const __m128i dot3_0 = _mm_maddubs_epi16(q2_3_0, q8s_3_0); |
| 2745 | const __m128i dot3_1 = _mm_maddubs_epi16(q2_3_1, q8s_3_1); |
| 2746 | const __m128i dot4_0 = _mm_maddubs_epi16(q2_4_0, q8s_4_0); |
| 2747 | const __m128i dot4_1 = _mm_maddubs_epi16(q2_4_1, q8s_4_1); |
| 2748 | |
| 2749 | __m128i sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)); |
| 2750 | const __m128i sc1_0 = _mm_cvtepi8_epi16(sc_tmp); |
| 2751 | const __m128i sc1_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8)); |
| 2752 | sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)); |
| 2753 | const __m128i sc2_0 = _mm_cvtepi8_epi16(sc_tmp); |
| 2754 | const __m128i sc2_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8)); |
| 2755 | sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)); |
| 2756 | const __m128i sc3_0 = _mm_cvtepi8_epi16(sc_tmp); |
| 2757 | const __m128i sc3_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8)); |
| 2758 | sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)); |
| 2759 | const __m128i sc4_0 = _mm_cvtepi8_epi16(sc_tmp); |
| 2760 | const __m128i sc4_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8)); |
| 2761 | |
| 2762 | sumi1_0 = _mm_add_epi32(sumi1_0, _mm_madd_epi16(dot1_0, sc1_0)); |
| 2763 | sumi1_1 = _mm_add_epi32(sumi1_1, _mm_madd_epi16(dot1_1, sc1_1)); |
| 2764 | sumi2_0 = _mm_add_epi32(sumi2_0, _mm_madd_epi16(dot2_0, sc2_0)); |
| 2765 | sumi2_1 = _mm_add_epi32(sumi2_1, _mm_madd_epi16(dot2_1, sc2_1)); |
| 2766 | sumi1_0 = _mm_add_epi32(sumi1_0, _mm_madd_epi16(dot3_0, sc3_0)); |
| 2767 | sumi1_1 = _mm_add_epi32(sumi1_1, _mm_madd_epi16(dot3_1, sc3_1)); |
| 2768 | sumi2_0 = _mm_add_epi32(sumi2_0, _mm_madd_epi16(dot4_0, sc4_0)); |
| 2769 | sumi2_1 = _mm_add_epi32(sumi2_1, _mm_madd_epi16(dot4_1, sc4_1)); |
| 2770 | } |
| 2771 | |
| 2772 | accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf); |
| 2773 | |
| 2774 | } |
| 2775 | |
| 2776 | *s = 0.125f * hsum_float_8(accumf); |
| 2777 | |
| 2778 | #else |
| 2779 | UNUSED(x); |
| 2780 | UNUSED(y); |
| 2781 | UNUSED(nb); |
| 2782 | ggml_vec_dot_iq2_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc); |
| 2783 | #endif |
| 2784 | } |
| 2785 | |
| 2786 | void ggml_vec_dot_iq2_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 2787 | assert(n % QK_K == 0); |
| 2788 | assert(nrc == 1); |
| 2789 | UNUSED(nrc); |
| 2790 | UNUSED(bx); |
| 2791 | UNUSED(by); |
| 2792 | UNUSED(bs); |
| 2793 | |
| 2794 | const block_iq2_s * GGML_RESTRICT x = vx; |
| 2795 | const block_q8_K * GGML_RESTRICT y = vy; |
| 2796 | |
| 2797 | const int nb = n / QK_K; |
| 2798 | |
| 2799 | #if defined(__AVX2__) |
| 2800 | |
| 2801 | static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, |
| 2802 | 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 |
| 2803 | }; |
| 2804 | |
| 2805 | static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, |
| 2806 | 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, |
| 2807 | }; |
| 2808 | |
| 2809 | const __m128i m4 = _mm_set1_epi8(b: 0xf); |
| 2810 | const __m128i m1 = _mm_set1_epi8(b: 1); |
| 2811 | |
| 2812 | const __m256i mask1 = _mm256_loadu_si256(p: (const __m256i*)k_mask1); |
| 2813 | const __m256i mask2 = _mm256_loadu_si256(p: (const __m256i*)k_mask2); |
| 2814 | |
| 2815 | uint64_t aux64; |
| 2816 | |
| 2817 | __m256 accumf = _mm256_setzero_ps(); |
| 2818 | for (int i = 0; i < nb; ++i) { |
| 2819 | const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d; |
| 2820 | const uint8_t * GGML_RESTRICT qs = x[i].qs; |
| 2821 | const uint8_t * GGML_RESTRICT qh = x[i].qh; |
| 2822 | const uint16_t * GGML_RESTRICT signs = (const uint16_t *)(x[i].qs + QK_K/8); |
| 2823 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 2824 | |
| 2825 | memcpy(dest: &aux64, src: x[i].scales, n: 8); |
| 2826 | const __m128i scales8 = _mm_add_epi8(a: _mm_slli_epi16(a: _mm_and_si128(a: _mm_set_epi64x(q1: aux64 >> 4, q0: aux64), b: m4), count: 1), b: m1); |
| 2827 | const __m256i scales16 = _mm256_cvtepi8_epi16(V: scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15 |
| 2828 | |
| 2829 | __m256i sumi1 = _mm256_setzero_si256(); |
| 2830 | __m256i sumi2 = _mm256_setzero_si256(); |
| 2831 | for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { |
| 2832 | const __m256i q8_1 = _mm256_loadu_si256(p: (const __m256i *)q8); q8 += 32; |
| 2833 | const __m256i q8_2 = _mm256_loadu_si256(p: (const __m256i *)q8); q8 += 32; |
| 2834 | const __m256i q2_1 = _mm256_set_epi64x(a: iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)], |
| 2835 | b: iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)], |
| 2836 | c: iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)], |
| 2837 | d: iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]); |
| 2838 | const __m256i q2_2 = _mm256_set_epi64x(a: iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)], |
| 2839 | b: iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)], |
| 2840 | c: iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)], |
| 2841 | d: iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]); |
| 2842 | qs += 8; |
| 2843 | |
| 2844 | __m256i aux256 = _mm256_set1_epi32(i: signs[0] | ((uint32_t) signs[1] << 16)); |
| 2845 | aux256 = _mm256_and_si256(a: _mm256_shuffle_epi8(a: aux256,b: mask1), b: mask2); |
| 2846 | const __m256i s2_1 = _mm256_cmpeq_epi8(a: aux256, b: mask2); |
| 2847 | const __m256i q8s_1 = _mm256_sub_epi8(a: _mm256_xor_si256(a: s2_1, b: q8_1), b: s2_1); |
| 2848 | |
| 2849 | aux256 = _mm256_set1_epi32(i: signs[2] | ((uint32_t) signs[3] << 16)); |
| 2850 | aux256 = _mm256_and_si256(a: _mm256_shuffle_epi8(a: aux256,b: mask1), b: mask2); |
| 2851 | const __m256i s2_2 = _mm256_cmpeq_epi8(a: aux256, b: mask2); |
| 2852 | const __m256i q8s_2 = _mm256_sub_epi8(a: _mm256_xor_si256(a: s2_2, b: q8_2), b: s2_2); |
| 2853 | |
| 2854 | signs += 4; |
| 2855 | |
| 2856 | const __m256i dot1 = _mm256_maddubs_epi16(a: q2_1, b: q8s_1); // blocks 2*ib32+0, 2*ib32+1 |
| 2857 | const __m256i dot2 = _mm256_maddubs_epi16(a: q2_2, b: q8s_2); // blocks 2*ib32+2, 2*ib32+3 |
| 2858 | |
| 2859 | const __m256i p1 = _mm256_madd_epi16(a: dot1, b: _mm256_shuffle_epi8(a: scales16, b: get_scale_shuffle_k4(i: ib32+0))); |
| 2860 | const __m256i p2 = _mm256_madd_epi16(a: dot2, b: _mm256_shuffle_epi8(a: scales16, b: get_scale_shuffle_k4(i: ib32+1))); |
| 2861 | sumi1 = _mm256_add_epi32(a: sumi1, b: p1); |
| 2862 | sumi2 = _mm256_add_epi32(a: sumi2, b: p2); |
| 2863 | } |
| 2864 | |
| 2865 | accumf = _mm256_fmadd_ps(A: _mm256_set1_ps(w: d), B: _mm256_cvtepi32_ps(a: _mm256_add_epi32(a: sumi1, b: sumi2)), C: accumf); |
| 2866 | |
| 2867 | } |
| 2868 | |
| 2869 | *s = 0.125f * hsum_float_8(x: accumf); |
| 2870 | |
| 2871 | #elif defined(__AVX__) |
| 2872 | static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, |
| 2873 | 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 |
| 2874 | }; |
| 2875 | |
| 2876 | static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, |
| 2877 | 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, |
| 2878 | }; |
| 2879 | |
| 2880 | const __m128i m4 = _mm_set1_epi8(0xf); |
| 2881 | const __m128i m1 = _mm_set1_epi8(1); |
| 2882 | |
| 2883 | const __m128i mask1_0 = _mm_loadu_si128((const __m128i*)k_mask1); |
| 2884 | const __m128i mask1_1 = _mm_loadu_si128((const __m128i*)k_mask1 + 1); |
| 2885 | const __m128i mask2_0 = _mm_loadu_si128((const __m128i*)k_mask2); |
| 2886 | const __m128i mask2_1 = _mm_loadu_si128((const __m128i*)k_mask2 + 1); |
| 2887 | |
| 2888 | uint64_t aux64; |
| 2889 | |
| 2890 | __m256 accumf = _mm256_setzero_ps(); |
| 2891 | for (int i = 0; i < nb; ++i) { |
| 2892 | const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d; |
| 2893 | const uint8_t * GGML_RESTRICT qs = x[i].qs; |
| 2894 | const uint8_t * GGML_RESTRICT qh = x[i].qh; |
| 2895 | const uint16_t * GGML_RESTRICT signs = (const uint16_t *)(x[i].qs + QK_K/8); |
| 2896 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 2897 | |
| 2898 | memcpy(&aux64, x[i].scales, 8); |
| 2899 | const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1); |
| 2900 | const __m128i scales16_0 = _mm_cvtepi8_epi16(scales8); |
| 2901 | const __m128i scales16_1 = _mm_cvtepi8_epi16(_mm_srli_si128(scales8, 8)); |
| 2902 | |
| 2903 | __m128i sumi1_0 = _mm_setzero_si128(); |
| 2904 | __m128i sumi1_1 = _mm_setzero_si128(); |
| 2905 | __m128i sumi2_0 = _mm_setzero_si128(); |
| 2906 | __m128i sumi2_1 = _mm_setzero_si128(); |
| 2907 | for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { |
| 2908 | const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 2909 | const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 2910 | const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 2911 | const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 2912 | const __m128i q2_1_0 = _mm_set_epi64x(iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)], |
| 2913 | iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]); |
| 2914 | const __m128i q2_1_1 = _mm_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)], |
| 2915 | iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)]); |
| 2916 | const __m128i q2_2_0 = _mm_set_epi64x(iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)], |
| 2917 | iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]); |
| 2918 | const __m128i q2_2_1 = _mm_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)], |
| 2919 | iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)]); |
| 2920 | qs += 8; |
| 2921 | |
| 2922 | __m128i aux128_0 = _mm_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16)); |
| 2923 | __m128i aux128_1 = aux128_0; |
| 2924 | aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0); |
| 2925 | aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1); |
| 2926 | const __m128i s2_1_0 = _mm_cmpeq_epi8(aux128_0, mask2_0); |
| 2927 | const __m128i s2_1_1 = _mm_cmpeq_epi8(aux128_1, mask2_1); |
| 2928 | const __m128i q8s_1_0 = _mm_sub_epi8(_mm_xor_si128(s2_1_0, q8_1_0), s2_1_0); |
| 2929 | const __m128i q8s_1_1 = _mm_sub_epi8(_mm_xor_si128(s2_1_1, q8_1_1), s2_1_1); |
| 2930 | |
| 2931 | aux128_0 = _mm_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16)); |
| 2932 | aux128_1 = aux128_0; |
| 2933 | aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0); |
| 2934 | aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1); |
| 2935 | const __m128i s2_2_0 = _mm_cmpeq_epi8(aux128_0, mask2_0); |
| 2936 | const __m128i s2_2_1 = _mm_cmpeq_epi8(aux128_1, mask2_1); |
| 2937 | const __m128i q8s_2_0 = _mm_sub_epi8(_mm_xor_si128(s2_2_0, q8_2_0), s2_2_0); |
| 2938 | const __m128i q8s_2_1 = _mm_sub_epi8(_mm_xor_si128(s2_2_1, q8_2_1), s2_2_1); |
| 2939 | |
| 2940 | signs += 4; |
| 2941 | |
| 2942 | const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0); |
| 2943 | const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1); |
| 2944 | const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0); |
| 2945 | const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1); |
| 2946 | |
| 2947 | const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_shuffle_epi8(scales16_0, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+0), 0))); |
| 2948 | const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_shuffle_epi8(scales16_1, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+0), 1))); |
| 2949 | const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_shuffle_epi8(scales16_0, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+1), 0))); |
| 2950 | const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_shuffle_epi8(scales16_1, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+1), 1))); |
| 2951 | sumi1_0 = _mm_add_epi32(sumi1_0, p1_0); |
| 2952 | sumi1_1 = _mm_add_epi32(sumi1_1, p1_1); |
| 2953 | sumi2_0 = _mm_add_epi32(sumi2_0, p2_0); |
| 2954 | sumi2_1 = _mm_add_epi32(sumi2_1, p2_1); |
| 2955 | } |
| 2956 | |
| 2957 | accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf); |
| 2958 | |
| 2959 | } |
| 2960 | |
| 2961 | *s = 0.125f * hsum_float_8(accumf); |
| 2962 | |
| 2963 | #else |
| 2964 | UNUSED(x); |
| 2965 | UNUSED(y); |
| 2966 | UNUSED(nb); |
| 2967 | ggml_vec_dot_iq2_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc); |
| 2968 | #endif |
| 2969 | } |
| 2970 | |
| 2971 | void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 2972 | assert(n % QK_K == 0); |
| 2973 | assert(nrc == 1); |
| 2974 | UNUSED(nrc); |
| 2975 | UNUSED(bx); |
| 2976 | UNUSED(by); |
| 2977 | UNUSED(bs); |
| 2978 | |
| 2979 | const block_iq3_xxs * GGML_RESTRICT x = vx; |
| 2980 | const block_q8_K * GGML_RESTRICT y = vy; |
| 2981 | |
| 2982 | const int nb = n / QK_K; |
| 2983 | |
| 2984 | #if defined(__AVX2__) |
| 2985 | |
| 2986 | const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; |
| 2987 | |
| 2988 | uint32_t aux32[2]; |
| 2989 | |
| 2990 | __m256 accumf = _mm256_setzero_ps(); |
| 2991 | for (int i = 0; i < nb; ++i) { |
| 2992 | const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d; |
| 2993 | const uint8_t * GGML_RESTRICT q3 = x[i].qs; |
| 2994 | const uint8_t * GGML_RESTRICT gas = x[i].qs + QK_K/4; |
| 2995 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 2996 | __m256i sumi1 = _mm256_setzero_si256(); |
| 2997 | __m256i sumi2 = _mm256_setzero_si256(); |
| 2998 | for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { |
| 2999 | const __m256i q8_1 = _mm256_loadu_si256(p: (const __m256i *)q8); q8 += 32; |
| 3000 | const __m256i q8_2 = _mm256_loadu_si256(p: (const __m256i *)q8); q8 += 32; |
| 3001 | const __m256i q2_1 = _mm256_set_epi32(i0: iq3xxs_grid[q3[7]], i1: iq3xxs_grid[q3[6]], i2: iq3xxs_grid[q3[5]], i3: iq3xxs_grid[q3[4]], |
| 3002 | i4: iq3xxs_grid[q3[3]], i5: iq3xxs_grid[q3[2]], i6: iq3xxs_grid[q3[1]], i7: iq3xxs_grid[q3[0]]); |
| 3003 | q3 += 8; |
| 3004 | const __m256i q2_2 = _mm256_set_epi32(i0: iq3xxs_grid[q3[7]], i1: iq3xxs_grid[q3[6]], i2: iq3xxs_grid[q3[5]], i3: iq3xxs_grid[q3[4]], |
| 3005 | i4: iq3xxs_grid[q3[3]], i5: iq3xxs_grid[q3[2]], i6: iq3xxs_grid[q3[1]], i7: iq3xxs_grid[q3[0]]); |
| 3006 | q3 += 8; |
| 3007 | memcpy(dest: aux32, src: gas, n: 8); gas += 8; |
| 3008 | const __m256i s2_1 = _mm256_set_epi64x(a: signs64[(aux32[0] >> 21) & 127], b: signs64[(aux32[0] >> 14) & 127], |
| 3009 | c: signs64[(aux32[0] >> 7) & 127], d: signs64[(aux32[0] >> 0) & 127]); |
| 3010 | const __m256i s2_2 = _mm256_set_epi64x(a: signs64[(aux32[1] >> 21) & 127], b: signs64[(aux32[1] >> 14) & 127], |
| 3011 | c: signs64[(aux32[1] >> 7) & 127], d: signs64[(aux32[1] >> 0) & 127]); |
| 3012 | const __m256i q8s_1 = _mm256_sign_epi8(a: q8_1, b: s2_1); |
| 3013 | const __m256i q8s_2 = _mm256_sign_epi8(a: q8_2, b: s2_2); |
| 3014 | const __m256i dot1 = _mm256_maddubs_epi16(a: q2_1, b: q8s_1); |
| 3015 | const __m256i dot2 = _mm256_maddubs_epi16(a: q2_2, b: q8s_2); |
| 3016 | const uint16_t ls1 = aux32[0] >> 28; |
| 3017 | const uint16_t ls2 = aux32[1] >> 28; |
| 3018 | const __m256i p1 = _mm256_madd_epi16(a: dot1, b: _mm256_set1_epi16(w: 2*ls1+1)); |
| 3019 | const __m256i p2 = _mm256_madd_epi16(a: dot2, b: _mm256_set1_epi16(w: 2*ls2+1)); |
| 3020 | sumi1 = _mm256_add_epi32(a: sumi1, b: p1); |
| 3021 | sumi2 = _mm256_add_epi32(a: sumi2, b: p2); |
| 3022 | } |
| 3023 | |
| 3024 | accumf = _mm256_fmadd_ps(A: _mm256_set1_ps(w: d), B: _mm256_cvtepi32_ps(a: _mm256_add_epi32(a: sumi1, b: sumi2)), C: accumf); |
| 3025 | |
| 3026 | } |
| 3027 | |
| 3028 | *s = 0.25f * hsum_float_8(x: accumf); |
| 3029 | |
| 3030 | #elif defined(__AVX__) |
| 3031 | const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; |
| 3032 | |
| 3033 | uint32_t aux32[2]; |
| 3034 | |
| 3035 | __m256 accumf = _mm256_setzero_ps(); |
| 3036 | for (int i = 0; i < nb; ++i) { |
| 3037 | const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d; |
| 3038 | const uint8_t * GGML_RESTRICT q3 = x[i].qs; |
| 3039 | const uint8_t * GGML_RESTRICT gas = x[i].qs + QK_K/4; |
| 3040 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 3041 | __m128i sumi1_0 = _mm_setzero_si128(); |
| 3042 | __m128i sumi1_1 = _mm_setzero_si128(); |
| 3043 | __m128i sumi2_0 = _mm_setzero_si128(); |
| 3044 | __m128i sumi2_1 = _mm_setzero_si128(); |
| 3045 | for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { |
| 3046 | const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3047 | const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3048 | const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3049 | const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3050 | const __m128i q2_1_0 = _mm_set_epi32(iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]); |
| 3051 | const __m128i q2_1_1 = _mm_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]]); |
| 3052 | q3 += 8; |
| 3053 | const __m128i q2_2_0 = _mm_set_epi32(iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]); |
| 3054 | const __m128i q2_2_1 = _mm_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]]); |
| 3055 | q3 += 8; |
| 3056 | memcpy(aux32, gas, 8); gas += 8; |
| 3057 | const __m128i s2_1_0 = _mm_set_epi64x(signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]); |
| 3058 | const __m128i s2_1_1 = _mm_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127]); |
| 3059 | const __m128i s2_2_0 = _mm_set_epi64x(signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]); |
| 3060 | const __m128i s2_2_1 = _mm_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127]); |
| 3061 | const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, s2_1_0); |
| 3062 | const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, s2_1_1); |
| 3063 | const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, s2_2_0); |
| 3064 | const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, s2_2_1); |
| 3065 | const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0); |
| 3066 | const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1); |
| 3067 | const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0); |
| 3068 | const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1); |
| 3069 | const uint16_t ls1 = aux32[0] >> 28; |
| 3070 | const uint16_t ls2 = aux32[1] >> 28; |
| 3071 | const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1)); |
| 3072 | const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1)); |
| 3073 | const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1)); |
| 3074 | const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1)); |
| 3075 | sumi1_0 = _mm_add_epi32(sumi1_0, p1_0); |
| 3076 | sumi1_1 = _mm_add_epi32(sumi1_1, p1_1); |
| 3077 | sumi2_0 = _mm_add_epi32(sumi2_0, p2_0); |
| 3078 | sumi2_1 = _mm_add_epi32(sumi2_1, p2_1); |
| 3079 | } |
| 3080 | |
| 3081 | accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf); |
| 3082 | |
| 3083 | } |
| 3084 | |
| 3085 | *s = 0.25f * hsum_float_8(accumf); |
| 3086 | |
| 3087 | #else |
| 3088 | UNUSED(x); |
| 3089 | UNUSED(y); |
| 3090 | UNUSED(nb); |
| 3091 | ggml_vec_dot_iq3_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc); |
| 3092 | #endif |
| 3093 | } |
| 3094 | |
| 3095 | void ggml_vec_dot_iq3_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 3096 | assert(n % QK_K == 0); |
| 3097 | assert(nrc == 1); |
| 3098 | UNUSED(nrc); |
| 3099 | UNUSED(bx); |
| 3100 | UNUSED(by); |
| 3101 | UNUSED(bs); |
| 3102 | |
| 3103 | const block_iq3_s * GGML_RESTRICT x = vx; |
| 3104 | const block_q8_K * GGML_RESTRICT y = vy; |
| 3105 | |
| 3106 | const int nb = n / QK_K; |
| 3107 | |
| 3108 | #if defined(__AVX2__) |
| 3109 | |
| 3110 | static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, |
| 3111 | 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 |
| 3112 | }; |
| 3113 | |
| 3114 | static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, |
| 3115 | 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, |
| 3116 | }; |
| 3117 | |
| 3118 | const __m256i mask1 = _mm256_loadu_si256(p: (const __m256i*)k_mask1); |
| 3119 | const __m256i mask2 = _mm256_loadu_si256(p: (const __m256i*)k_mask2); |
| 3120 | |
| 3121 | const __m256i idx_shift = _mm256_set_epi32(i0: 1, i1: 2, i2: 3, i3: 4, i4: 5, i5: 6, i6: 7, i7: 8); |
| 3122 | const __m256i idx_mask = _mm256_set1_epi32(i: 256); |
| 3123 | |
| 3124 | typedef union { |
| 3125 | __m256i vec[2]; |
| 3126 | uint32_t index[16]; |
| 3127 | } index_t; |
| 3128 | |
| 3129 | index_t idx; |
| 3130 | |
| 3131 | __m256 accumf = _mm256_setzero_ps(); |
| 3132 | for (int i = 0; i < nb; ++i) { |
| 3133 | const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d; |
| 3134 | const uint8_t * GGML_RESTRICT qs = x[i].qs; |
| 3135 | const uint8_t * GGML_RESTRICT qh = x[i].qh; |
| 3136 | const uint16_t * GGML_RESTRICT signs = (const uint16_t *)x[i].signs; |
| 3137 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 3138 | __m256i sumi1 = _mm256_setzero_si256(); |
| 3139 | __m256i sumi2 = _mm256_setzero_si256(); |
| 3140 | for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { |
| 3141 | const __m256i q8_1 = _mm256_loadu_si256(p: (const __m256i *)q8); q8 += 32; |
| 3142 | const __m256i q8_2 = _mm256_loadu_si256(p: (const __m256i *)q8); q8 += 32; |
| 3143 | const __m256i idx_l = _mm256_cvtepu8_epi16(V: _mm_loadu_si128(p: (const __m128i *)qs)); qs += 16; |
| 3144 | idx.vec[0] = _mm256_set1_epi32(i: qh[ib32+0]); |
| 3145 | idx.vec[1] = _mm256_set1_epi32(i: qh[ib32+1]); |
| 3146 | idx.vec[0] = _mm256_and_si256(a: _mm256_sllv_epi32(X: idx.vec[0], Y: idx_shift), b: idx_mask); |
| 3147 | idx.vec[1] = _mm256_and_si256(a: _mm256_sllv_epi32(X: idx.vec[1], Y: idx_shift), b: idx_mask); |
| 3148 | idx.vec[0] = _mm256_or_si256(a: idx.vec[0], b: _mm256_cvtepi16_epi32(V: _mm256_castsi256_si128(a: idx_l))); |
| 3149 | idx.vec[1] = _mm256_or_si256(a: idx.vec[1], b: _mm256_cvtepi16_epi32(_mm256_extractf128_si256(idx_l, 1))); |
| 3150 | |
| 3151 | // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange. |
| 3152 | //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4); |
| 3153 | //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4); |
| 3154 | const __m256i q2_1 = _mm256_set_epi32( |
| 3155 | i0: iq3s_grid[idx.index[7]], i1: iq3s_grid[idx.index[6]], i2: iq3s_grid[idx.index[5]], i3: iq3s_grid[idx.index[4]], |
| 3156 | i4: iq3s_grid[idx.index[3]], i5: iq3s_grid[idx.index[2]], i6: iq3s_grid[idx.index[1]], i7: iq3s_grid[idx.index[0]] |
| 3157 | ); |
| 3158 | const __m256i q2_2 = _mm256_set_epi32( |
| 3159 | i0: iq3s_grid[idx.index[15]], i1: iq3s_grid[idx.index[14]], i2: iq3s_grid[idx.index[13]], i3: iq3s_grid[idx.index[12]], |
| 3160 | i4: iq3s_grid[idx.index[11]], i5: iq3s_grid[idx.index[10]], i6: iq3s_grid[idx.index[ 9]], i7: iq3s_grid[idx.index[ 8]] |
| 3161 | ); |
| 3162 | |
| 3163 | __m256i aux256 = _mm256_set1_epi32(i: signs[0] | (signs[1] << 16)); |
| 3164 | aux256 = _mm256_and_si256(a: _mm256_shuffle_epi8(a: aux256,b: mask1), b: mask2); |
| 3165 | const __m256i s2_1 = _mm256_cmpeq_epi8(a: aux256, b: mask2); |
| 3166 | const __m256i q8s_1 = _mm256_sub_epi8(a: _mm256_xor_si256(a: s2_1, b: q8_1), b: s2_1); |
| 3167 | |
| 3168 | aux256 = _mm256_set1_epi32(i: signs[2] | (signs[3] << 16)); |
| 3169 | aux256 = _mm256_and_si256(a: _mm256_shuffle_epi8(a: aux256,b: mask1), b: mask2); |
| 3170 | const __m256i s2_2 = _mm256_cmpeq_epi8(a: aux256, b: mask2); |
| 3171 | const __m256i q8s_2 = _mm256_sub_epi8(a: _mm256_xor_si256(a: s2_2, b: q8_2), b: s2_2); |
| 3172 | |
| 3173 | signs += 4; |
| 3174 | |
| 3175 | const __m256i dot1 = _mm256_maddubs_epi16(a: q2_1, b: q8s_1); |
| 3176 | const __m256i dot2 = _mm256_maddubs_epi16(a: q2_2, b: q8s_2); |
| 3177 | const uint16_t ls1 = x[i].scales[ib32/2] & 0xf; |
| 3178 | const uint16_t ls2 = x[i].scales[ib32/2] >> 4; |
| 3179 | const __m256i p1 = _mm256_madd_epi16(a: dot1, b: _mm256_set1_epi16(w: 2*ls1+1)); |
| 3180 | const __m256i p2 = _mm256_madd_epi16(a: dot2, b: _mm256_set1_epi16(w: 2*ls2+1)); |
| 3181 | sumi1 = _mm256_add_epi32(a: sumi1, b: p1); |
| 3182 | sumi2 = _mm256_add_epi32(a: sumi2, b: p2); |
| 3183 | } |
| 3184 | |
| 3185 | accumf = _mm256_fmadd_ps(A: _mm256_set1_ps(w: d), B: _mm256_cvtepi32_ps(a: _mm256_add_epi32(a: sumi1, b: sumi2)), C: accumf); |
| 3186 | |
| 3187 | } |
| 3188 | |
| 3189 | *s = hsum_float_8(x: accumf); |
| 3190 | |
| 3191 | #elif defined(__AVX__) |
| 3192 | static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, |
| 3193 | 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 |
| 3194 | }; |
| 3195 | |
| 3196 | static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, |
| 3197 | 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, |
| 3198 | }; |
| 3199 | |
| 3200 | const __m128i mask1_0 = _mm_loadu_si128((const __m128i*)k_mask1); |
| 3201 | const __m128i mask1_1 = _mm_loadu_si128((const __m128i*)k_mask1 + 1); |
| 3202 | const __m128i mask2_0 = _mm_loadu_si128((const __m128i*)k_mask2); |
| 3203 | const __m128i mask2_1 = _mm_loadu_si128((const __m128i*)k_mask2 + 1); |
| 3204 | |
| 3205 | const __m128i idx_mul_0 = _mm_set_epi32(32, 64, 128, 256); |
| 3206 | const __m128i idx_mul_1 = _mm_set_epi32(2, 4, 8, 16); |
| 3207 | const __m128i idx_mask = _mm_set1_epi32(256); |
| 3208 | |
| 3209 | typedef union { |
| 3210 | __m128i vec[4]; |
| 3211 | uint32_t index[16]; |
| 3212 | } index_t; |
| 3213 | |
| 3214 | index_t idx; |
| 3215 | |
| 3216 | __m256 accumf = _mm256_setzero_ps(); |
| 3217 | for (int i = 0; i < nb; ++i) { |
| 3218 | const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d; |
| 3219 | const uint8_t * GGML_RESTRICT qs = x[i].qs; |
| 3220 | const uint8_t * GGML_RESTRICT qh = x[i].qh; |
| 3221 | const uint16_t * GGML_RESTRICT signs = (const uint16_t *)x[i].signs; |
| 3222 | const int8_t * GGML_RESTRICT q8 = y[i].qs; |
| 3223 | __m128i sumi1_0 = _mm_setzero_si128(); |
| 3224 | __m128i sumi1_1 = _mm_setzero_si128(); |
| 3225 | __m128i sumi2_0 = _mm_setzero_si128(); |
| 3226 | __m128i sumi2_1 = _mm_setzero_si128(); |
| 3227 | for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { |
| 3228 | const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3229 | const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3230 | const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3231 | const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3232 | const __m128i qs_tmp = _mm_loadu_si128((const __m128i *)qs); |
| 3233 | const __m128i idx_l_0 = _mm_cvtepu8_epi16(qs_tmp); |
| 3234 | const __m128i idx_l_1 = _mm_cvtepu8_epi16(_mm_srli_si128(qs_tmp, 8)); qs += 16; |
| 3235 | idx.vec[0] = _mm_set1_epi32(qh[ib32+0]); |
| 3236 | idx.vec[1] = idx.vec[0]; |
| 3237 | idx.vec[2] = _mm_set1_epi32(qh[ib32+1]); |
| 3238 | idx.vec[3] = idx.vec[2]; |
| 3239 | |
| 3240 | idx.vec[0] = _mm_and_si128(_mm_mullo_epi32(idx.vec[0], idx_mul_0), idx_mask); |
| 3241 | idx.vec[1] = _mm_and_si128(_mm_mullo_epi32(idx.vec[1], idx_mul_1), idx_mask); |
| 3242 | idx.vec[2] = _mm_and_si128(_mm_mullo_epi32(idx.vec[2], idx_mul_0), idx_mask); |
| 3243 | idx.vec[3] = _mm_and_si128(_mm_mullo_epi32(idx.vec[3], idx_mul_1), idx_mask); |
| 3244 | |
| 3245 | idx.vec[0] = _mm_or_si128(idx.vec[0], _mm_cvtepi16_epi32(idx_l_0)); |
| 3246 | idx.vec[1] = _mm_or_si128(idx.vec[1], _mm_cvtepi16_epi32(_mm_srli_si128(idx_l_0, 8))); |
| 3247 | idx.vec[2] = _mm_or_si128(idx.vec[2], _mm_cvtepi16_epi32(idx_l_1)); |
| 3248 | idx.vec[3] = _mm_or_si128(idx.vec[3], _mm_cvtepi16_epi32(_mm_srli_si128(idx_l_1, 8))); |
| 3249 | |
| 3250 | const __m128i q2_1_0 = _mm_set_epi32(iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]); |
| 3251 | const __m128i q2_1_1 = _mm_set_epi32(iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]]); |
| 3252 | const __m128i q2_2_0 = _mm_set_epi32(iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[9]], iq3s_grid[idx.index[8]]); |
| 3253 | const __m128i q2_2_1 = _mm_set_epi32(iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]]); |
| 3254 | |
| 3255 | __m128i aux128_0 = _mm_set1_epi32(signs[0] | (signs[1] << 16)); |
| 3256 | __m128i aux128_1 = aux128_0; |
| 3257 | aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0); |
| 3258 | aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1); |
| 3259 | const __m128i s2_1_0 = _mm_cmpeq_epi8(aux128_0, mask2_0); |
| 3260 | const __m128i s2_1_1 = _mm_cmpeq_epi8(aux128_1, mask2_1); |
| 3261 | const __m128i q8s_1_0 = _mm_sub_epi8(_mm_xor_si128(s2_1_0, q8_1_0), s2_1_0); |
| 3262 | const __m128i q8s_1_1 = _mm_sub_epi8(_mm_xor_si128(s2_1_1, q8_1_1), s2_1_1); |
| 3263 | |
| 3264 | aux128_0 = _mm_set1_epi32(signs[2] | (signs[3] << 16)); |
| 3265 | aux128_1 = aux128_0; |
| 3266 | aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0); |
| 3267 | aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1); |
| 3268 | const __m128i s2_2_0 = _mm_cmpeq_epi8(aux128_0, mask2_0); |
| 3269 | const __m128i s2_2_1 = _mm_cmpeq_epi8(aux128_1, mask2_1); |
| 3270 | const __m128i q8s_2_0 = _mm_sub_epi8(_mm_xor_si128(s2_2_0, q8_2_0), s2_2_0); |
| 3271 | const __m128i q8s_2_1 = _mm_sub_epi8(_mm_xor_si128(s2_2_1, q8_2_1), s2_2_1); |
| 3272 | |
| 3273 | signs += 4; |
| 3274 | |
| 3275 | const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0); |
| 3276 | const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1); |
| 3277 | const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0); |
| 3278 | const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1); |
| 3279 | const uint16_t ls1 = x[i].scales[ib32/2] & 0xf; |
| 3280 | const uint16_t ls2 = x[i].scales[ib32/2] >> 4; |
| 3281 | const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1)); |
| 3282 | const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1)); |
| 3283 | const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1)); |
| 3284 | const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1)); |
| 3285 | sumi1_0 = _mm_add_epi32(sumi1_0, p1_0); |
| 3286 | sumi1_1 = _mm_add_epi32(sumi1_1, p1_1); |
| 3287 | sumi2_0 = _mm_add_epi32(sumi2_0, p2_0); |
| 3288 | sumi2_1 = _mm_add_epi32(sumi2_1, p2_1); |
| 3289 | } |
| 3290 | |
| 3291 | accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf); |
| 3292 | |
| 3293 | } |
| 3294 | |
| 3295 | *s = hsum_float_8(accumf); |
| 3296 | |
| 3297 | #else |
| 3298 | UNUSED(x); |
| 3299 | UNUSED(y); |
| 3300 | UNUSED(nb); |
| 3301 | ggml_vec_dot_iq3_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc); |
| 3302 | #endif |
| 3303 | } |
| 3304 | |
| 3305 | void ggml_vec_dot_iq1_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 3306 | assert(n % QK_K == 0); |
| 3307 | assert(nrc == 1); |
| 3308 | UNUSED(nrc); |
| 3309 | UNUSED(bx); |
| 3310 | UNUSED(by); |
| 3311 | UNUSED(bs); |
| 3312 | |
| 3313 | const block_iq1_s * GGML_RESTRICT x = vx; |
| 3314 | const block_q8_K * GGML_RESTRICT y = vy; |
| 3315 | |
| 3316 | const int nb = n / QK_K; |
| 3317 | |
| 3318 | #if defined __AVX2__ |
| 3319 | |
| 3320 | __m256 accum = _mm256_setzero_ps(); |
| 3321 | float accum1 = 0; |
| 3322 | for (int i = 0; i < nb; ++i) { |
| 3323 | |
| 3324 | const int8_t * q8 = y[i].qs; |
| 3325 | const uint8_t * qs = x[i].qs; |
| 3326 | const uint16_t * qh = x[i].qh; |
| 3327 | |
| 3328 | __m256i sumi = _mm256_setzero_si256(); |
| 3329 | int sumi1 = 0; |
| 3330 | for (int ib = 0; ib < QK_K/32; ib += 2) { |
| 3331 | #ifdef __BMI2__ |
| 3332 | const uint64_t packed_idx1 = _pdep_u64(X: *(const uint32_t *)qs, Y: 0x00ff00ff00ff00ffULL) | _pdep_u64(X: qh[ib], Y: 0x700070007000700ULL); |
| 3333 | const uint64_t packed_idx2 = _pdep_u64(X: *(const uint32_t *)(qs + 4), Y: 0x00ff00ff00ff00ffULL) | _pdep_u64(X: qh[ib + 1], Y: 0x700070007000700ULL); |
| 3334 | const uint16_t *idx1 = (const uint16_t *)(&packed_idx1); |
| 3335 | const uint16_t *idx2 = (const uint16_t *)(&packed_idx2); |
| 3336 | const __m256i q1b_1 = _mm256_set_epi64x(a: iq1s_grid[idx1[3]], b: iq1s_grid[idx1[2]], c: iq1s_grid[idx1[1]], d: iq1s_grid[idx1[0]]); |
| 3337 | const __m256i q1b_2 = _mm256_set_epi64x(a: iq1s_grid[idx2[3]], b: iq1s_grid[idx2[2]], c: iq1s_grid[idx2[1]], d: iq1s_grid[idx2[0]]); |
| 3338 | #else |
| 3339 | const __m256i q1b_1 = _mm256_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)], |
| 3340 | iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]); |
| 3341 | const __m256i q1b_2 = _mm256_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)], |
| 3342 | iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]); |
| 3343 | #endif |
| 3344 | qs += 8; |
| 3345 | const __m256i q8b_1 = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 3346 | const __m256i q8b_2 = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 3347 | |
| 3348 | const __m256i dot1 = mul_add_epi8(x: q1b_1, y: q8b_1); |
| 3349 | const __m256i dot2 = mul_add_epi8(x: q1b_2, y: q8b_2); |
| 3350 | const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1; |
| 3351 | const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1; |
| 3352 | const __m256i p1 = _mm256_madd_epi16(a: dot1, b: _mm256_set1_epi16(w: ls1)); |
| 3353 | const __m256i p2 = _mm256_madd_epi16(a: dot2, b: _mm256_set1_epi16(w: ls2)); |
| 3354 | |
| 3355 | sumi = _mm256_add_epi32(a: sumi, b: _mm256_add_epi32(a: p1, b: p2)); |
| 3356 | sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1 |
| 3357 | + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2; |
| 3358 | } |
| 3359 | |
| 3360 | const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d); |
| 3361 | accum = _mm256_fmadd_ps(A: _mm256_set1_ps(w: d), B: _mm256_cvtepi32_ps(a: sumi), C: accum); |
| 3362 | accum1 += d * sumi1; |
| 3363 | |
| 3364 | } |
| 3365 | |
| 3366 | *s = hsum_float_8(x: accum) + IQ1S_DELTA * accum1; |
| 3367 | |
| 3368 | #elif defined __AVX__ |
| 3369 | __m256 accum = _mm256_setzero_ps(); |
| 3370 | float accum1 = 0; |
| 3371 | for (int i = 0; i < nb; ++i) { |
| 3372 | |
| 3373 | const int8_t * q8 = y[i].qs; |
| 3374 | const uint8_t * qs = x[i].qs; |
| 3375 | const uint16_t * qh = x[i].qh; |
| 3376 | |
| 3377 | __m128i sumi1_0 = _mm_setzero_si128(); |
| 3378 | __m128i sumi1_1 = _mm_setzero_si128(); |
| 3379 | int sumi1 = 0; |
| 3380 | for (int ib = 0; ib < QK_K/32; ib += 2) { |
| 3381 | const __m128i q1b_1_0 = _mm_set_epi64x(iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]); |
| 3382 | const __m128i q1b_1_1 = _mm_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)]); |
| 3383 | const __m128i q1b_2_0 = _mm_set_epi64x(iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]); |
| 3384 | const __m128i q1b_2_1 = _mm_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)]); |
| 3385 | qs += 8; |
| 3386 | const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3387 | const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3388 | const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3389 | const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3390 | |
| 3391 | const __m128i dot1_0 = mul_add_epi8_sse(q1b_1_0, q8b_1_0); |
| 3392 | const __m128i dot1_1 = mul_add_epi8_sse(q1b_1_1, q8b_1_1); |
| 3393 | const __m128i dot2_0 = mul_add_epi8_sse(q1b_2_0, q8b_2_0); |
| 3394 | const __m128i dot2_1 = mul_add_epi8_sse(q1b_2_1, q8b_2_1); |
| 3395 | const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1; |
| 3396 | const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1; |
| 3397 | const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(ls1)); |
| 3398 | const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(ls1)); |
| 3399 | const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(ls2)); |
| 3400 | const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(ls2)); |
| 3401 | |
| 3402 | sumi1_0 = _mm_add_epi32(sumi1_0, _mm_add_epi32(p1_0, p2_0)); |
| 3403 | sumi1_1 = _mm_add_epi32(sumi1_1, _mm_add_epi32(p1_1, p2_1)); |
| 3404 | sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1 |
| 3405 | + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2; |
| 3406 | } |
| 3407 | |
| 3408 | const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d); |
| 3409 | accum = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi1_1, sumi1_0))), accum); |
| 3410 | accum1 += d * sumi1; |
| 3411 | |
| 3412 | } |
| 3413 | |
| 3414 | *s = hsum_float_8(accum) + IQ1S_DELTA * accum1; |
| 3415 | |
| 3416 | #else |
| 3417 | UNUSED(x); |
| 3418 | UNUSED(y); |
| 3419 | UNUSED(nb); |
| 3420 | ggml_vec_dot_iq1_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc); |
| 3421 | #endif |
| 3422 | } |
| 3423 | |
| 3424 | void ggml_vec_dot_iq1_m_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 3425 | assert(n % QK_K == 0); |
| 3426 | assert(nrc == 1); |
| 3427 | UNUSED(nrc); |
| 3428 | UNUSED(bx); |
| 3429 | UNUSED(by); |
| 3430 | UNUSED(bs); |
| 3431 | |
| 3432 | const block_iq1_m * GGML_RESTRICT x = vx; |
| 3433 | const block_q8_K * GGML_RESTRICT y = vy; |
| 3434 | |
| 3435 | const int nb = n / QK_K; |
| 3436 | |
| 3437 | iq1m_scale_t scale; |
| 3438 | |
| 3439 | #if defined __AVX2__ |
| 3440 | |
| 3441 | const __m256i mask = _mm256_set1_epi16(w: 0x7); |
| 3442 | const __m256i mone = _mm256_set1_epi16(w: 1); |
| 3443 | const __m256i mone8 = _mm256_set1_epi8(b: 1); |
| 3444 | const __m256i mtwo8 = _mm256_set1_epi8(b: 2); |
| 3445 | // VPSHUFB cannot cross 128-bit lanes so odd shifts go to upper half. |
| 3446 | const __m256i scales_shift = _mm256_set_epi64x(a: 9, b: 3, c: 6, d: 0); |
| 3447 | |
| 3448 | __m256 accum1 = _mm256_setzero_ps(); |
| 3449 | __m256 accum2 = _mm256_setzero_ps(); |
| 3450 | for (int i = 0; i < nb; ++i) { |
| 3451 | |
| 3452 | const int8_t * q8 = y[i].qs; |
| 3453 | const uint8_t * qs = x[i].qs; |
| 3454 | const uint8_t * qh = x[i].qh; |
| 3455 | const uint16_t * sc = (const uint16_t *)x[i].scales; |
| 3456 | |
| 3457 | scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); |
| 3458 | // Extract 3-bit scales (16 values) |
| 3459 | __m256i scales = _mm256_set1_epi64x(q: *(const uint64_t*)sc); |
| 3460 | scales = _mm256_srlv_epi64(X: scales, Y: scales_shift); |
| 3461 | scales = _mm256_add_epi16(a: _mm256_slli_epi16(a: _mm256_and_si256(a: scales, b: mask), count: 1), b: mone); |
| 3462 | |
| 3463 | // Indices to repeat each scale 8 times. |
| 3464 | __m256i scales_idx1 = _mm256_set1_epi16(w: 0x0100); |
| 3465 | __m256i scales_idx2 = _mm256_add_epi8(a: scales_idx1, b: _mm256_set1_epi8(b: 8)); |
| 3466 | |
| 3467 | __m256i sumi1 = _mm256_setzero_si256(); |
| 3468 | __m256i sumi2 = _mm256_setzero_si256(); |
| 3469 | for (int ib = 0; ib < QK_K/32; ib += 2) { |
| 3470 | #ifdef __BMI2__ |
| 3471 | const uint64_t packed_idx1 = _pdep_u64(X: *(const uint32_t *)qs, Y: 0x00ff00ff00ff00ffULL) |
| 3472 | | _pdep_u64(X: *(const uint16_t*)(qh) & 0x7777, Y: 0xf000f000f000f00ULL); |
| 3473 | const uint64_t packed_idx2 = _pdep_u64(X: *(const uint32_t *)(qs + 4), Y: 0x00ff00ff00ff00ffULL) |
| 3474 | | _pdep_u64(X: *(const uint16_t*)(qh + 2) & 0x7777, Y: 0xf000f000f000f00ULL); |
| 3475 | const uint16_t *idx1 = (const uint16_t *)(&packed_idx1); |
| 3476 | const uint16_t *idx2 = (const uint16_t *)(&packed_idx2); |
| 3477 | const __m256i q1b_1 = _mm256_set_epi64x(a: iq1s_grid[idx1[3]], b: iq1s_grid[idx1[2]], c: iq1s_grid[idx1[1]], d: iq1s_grid[idx1[0]]); |
| 3478 | const __m256i q1b_2 = _mm256_set_epi64x(a: iq1s_grid[idx2[3]], b: iq1s_grid[idx2[2]], c: iq1s_grid[idx2[1]], d: iq1s_grid[idx2[0]]); |
| 3479 | |
| 3480 | // Convert signs to bytes 0x81 (negative) or 0x01 (positive) |
| 3481 | const uint64_t delta_sign = _pdep_u64(X: *(const uint32_t*)(qh) & 0x88888888, Y: 0xf0f0f0f0f0f0f0f0ULL); |
| 3482 | const __m256i delta1 = _mm256_or_si256(a: mone8, b: _mm256_cvtepi8_epi64(V: _mm_set1_epi32(i: delta_sign))); |
| 3483 | const __m256i delta2 = _mm256_or_si256(a: mone8, b: _mm256_cvtepi8_epi64(V: _mm_set1_epi32(i: delta_sign >> 32))); |
| 3484 | #else |
| 3485 | const __m256i q1b_1 = _mm256_set_epi64x( |
| 3486 | iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)], |
| 3487 | iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)] |
| 3488 | ); |
| 3489 | const __m256i q1b_2 = _mm256_set_epi64x( |
| 3490 | iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)], |
| 3491 | iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)] |
| 3492 | ); |
| 3493 | |
| 3494 | const __m256i delta1 = _mm256_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101, |
| 3495 | qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101, |
| 3496 | qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101, |
| 3497 | qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101); |
| 3498 | const __m256i delta2 = _mm256_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101, |
| 3499 | qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101, |
| 3500 | qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101, |
| 3501 | qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101); |
| 3502 | #endif |
| 3503 | const __m256i q8b_1 = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 3504 | const __m256i q8b_2 = _mm256_loadu_si256(p: (const __m256i*)q8); q8 += 32; |
| 3505 | |
| 3506 | const __m256i dot1 = mul_add_epi8(x: q1b_1, y: q8b_1); |
| 3507 | const __m256i dot2 = mul_add_epi8(x: q1b_2, y: q8b_2); |
| 3508 | const __m256i dot3 = _mm256_maddubs_epi16(a: mone8, b: _mm256_sign_epi8(a: q8b_1, b: delta1)); |
| 3509 | const __m256i dot4 = _mm256_maddubs_epi16(a: mone8, b: _mm256_sign_epi8(a: q8b_2, b: delta2)); |
| 3510 | |
| 3511 | __m256i scale1 = _mm256_shuffle_epi8(a: scales, b: scales_idx1); |
| 3512 | __m256i scale2 = _mm256_shuffle_epi8(a: scales, b: scales_idx2); |
| 3513 | |
| 3514 | scales_idx1 = _mm256_add_epi8(a: scales_idx1, b: mtwo8); |
| 3515 | scales_idx2 = _mm256_add_epi8(a: scales_idx2, b: mtwo8); |
| 3516 | |
| 3517 | const __m256i p1 = _mm256_madd_epi16(a: dot1, b: scale1); |
| 3518 | const __m256i p2 = _mm256_madd_epi16(a: dot2, b: scale2); |
| 3519 | const __m256i p3 = _mm256_madd_epi16(a: dot3, b: scale1); |
| 3520 | const __m256i p4 = _mm256_madd_epi16(a: dot4, b: scale2); |
| 3521 | |
| 3522 | sumi1 = _mm256_add_epi32(a: sumi1, b: _mm256_add_epi32(a: p1, b: p2)); |
| 3523 | sumi2 = _mm256_add_epi32(a: sumi2, b: _mm256_add_epi32(a: p3, b: p4)); |
| 3524 | |
| 3525 | qs += 8; qh += 4; |
| 3526 | } |
| 3527 | |
| 3528 | const __m256 d = _mm256_set1_ps(w: y[i].d * GGML_CPU_FP16_TO_FP32(scale.f16)); |
| 3529 | |
| 3530 | accum1 = _mm256_fmadd_ps(A: d, B: _mm256_cvtepi32_ps(a: sumi1), C: accum1); |
| 3531 | accum2 = _mm256_fmadd_ps(A: d, B: _mm256_cvtepi32_ps(a: sumi2), C: accum2); |
| 3532 | } |
| 3533 | |
| 3534 | *s = hsum_float_8(x: accum1) + IQ1M_DELTA * hsum_float_8(x: accum2); |
| 3535 | |
| 3536 | #elif defined __AVX__ |
| 3537 | const __m128i mask = _mm_set1_epi16(0x7); |
| 3538 | const __m128i mone = _mm_set1_epi16(1); |
| 3539 | |
| 3540 | __m256 accum1 = _mm256_setzero_ps(); |
| 3541 | __m256 accum2 = _mm256_setzero_ps(); |
| 3542 | for (int i = 0; i < nb; ++i) { |
| 3543 | |
| 3544 | const int8_t * q8 = y[i].qs; |
| 3545 | const uint8_t * qs = x[i].qs; |
| 3546 | const uint8_t * qh = x[i].qh; |
| 3547 | const uint16_t * sc = (const uint16_t *)x[i].scales; |
| 3548 | |
| 3549 | scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); |
| 3550 | |
| 3551 | __m128i sumi1_0 = _mm_setzero_si128(); |
| 3552 | __m128i sumi1_1 = _mm_setzero_si128(); |
| 3553 | __m128i sumi2_0 = _mm_setzero_si128(); |
| 3554 | __m128i sumi2_1 = _mm_setzero_si128(); |
| 3555 | for (int ib = 0; ib < QK_K/32; ib += 2) { |
| 3556 | const __m128i q1b_1_0 = _mm_set_epi64x( |
| 3557 | iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]); |
| 3558 | const __m128i q1b_1_1 = _mm_set_epi64x( |
| 3559 | iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)]); |
| 3560 | const __m128i q1b_2_0 = _mm_set_epi64x( |
| 3561 | iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]); |
| 3562 | const __m128i q1b_2_1 = _mm_set_epi64x( |
| 3563 | iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)]); |
| 3564 | const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3565 | const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3566 | const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3567 | const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3568 | |
| 3569 | const __m128i dot1_0 = mul_add_epi8_sse(q1b_1_0, q8b_1_0); |
| 3570 | const __m128i dot1_1 = mul_add_epi8_sse(q1b_1_1, q8b_1_1); |
| 3571 | const __m128i dot2_0 = mul_add_epi8_sse(q1b_2_0, q8b_2_0); |
| 3572 | const __m128i dot2_1 = mul_add_epi8_sse(q1b_2_1, q8b_2_1); |
| 3573 | |
| 3574 | const __m128i delta1_0 = _mm_set_epi64x(qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101, |
| 3575 | qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101); |
| 3576 | const __m128i delta1_1 = _mm_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101, |
| 3577 | qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101); |
| 3578 | const __m128i delta2_0 = _mm_set_epi64x(qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101, |
| 3579 | qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101); |
| 3580 | const __m128i delta2_1 = _mm_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101, |
| 3581 | qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101); |
| 3582 | |
| 3583 | const __m128i dot3_0 = mul_add_epi8_sse(delta1_0, q8b_1_0); |
| 3584 | const __m128i dot3_1 = mul_add_epi8_sse(delta1_1, q8b_1_1); |
| 3585 | const __m128i dot4_0 = mul_add_epi8_sse(delta2_0, q8b_2_0); |
| 3586 | const __m128i dot4_1 = mul_add_epi8_sse(delta2_1, q8b_2_1); |
| 3587 | |
| 3588 | __m128i scale1_0 = _mm_set1_epi16(sc[ib/2] >> 0); |
| 3589 | __m128i scale1_1 = _mm_set1_epi16(sc[ib/2] >> 3); |
| 3590 | __m128i scale2_0 = _mm_set1_epi16(sc[ib/2] >> 6); |
| 3591 | __m128i scale2_1 = _mm_set1_epi16(sc[ib/2] >> 9); |
| 3592 | |
| 3593 | scale1_0 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale1_0, mask), 1), mone); |
| 3594 | scale1_1 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale1_1, mask), 1), mone); |
| 3595 | scale2_0 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale2_0, mask), 1), mone); |
| 3596 | scale2_1 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale2_1, mask), 1), mone); |
| 3597 | const __m128i p1_0 = _mm_madd_epi16(dot1_0, scale1_0); |
| 3598 | const __m128i p1_1 = _mm_madd_epi16(dot1_1, scale1_1); |
| 3599 | const __m128i p2_0 = _mm_madd_epi16(dot2_0, scale2_0); |
| 3600 | const __m128i p2_1 = _mm_madd_epi16(dot2_1, scale2_1); |
| 3601 | const __m128i p3_0 = _mm_madd_epi16(dot3_0, scale1_0); |
| 3602 | const __m128i p3_1 = _mm_madd_epi16(dot3_1, scale1_1); |
| 3603 | const __m128i p4_0 = _mm_madd_epi16(dot4_0, scale2_0); |
| 3604 | const __m128i p4_1 = _mm_madd_epi16(dot4_1, scale2_1); |
| 3605 | |
| 3606 | sumi1_0 = _mm_add_epi32(sumi1_0, _mm_add_epi32(p1_0, p2_0)); |
| 3607 | sumi1_1 = _mm_add_epi32(sumi1_1, _mm_add_epi32(p1_1, p2_1)); |
| 3608 | sumi2_0 = _mm_add_epi32(sumi2_0, _mm_add_epi32(p3_0, p4_0)); |
| 3609 | sumi2_1 = _mm_add_epi32(sumi2_1, _mm_add_epi32(p3_1, p4_1)); |
| 3610 | |
| 3611 | qs += 8; qh += 4; |
| 3612 | } |
| 3613 | |
| 3614 | const __m256 d = _mm256_set1_ps(y[i].d * GGML_CPU_FP16_TO_FP32(scale.f16)); |
| 3615 | |
| 3616 | accum1 = _mm256_add_ps(_mm256_mul_ps(d, _mm256_cvtepi32_ps(MM256_SET_M128I(sumi1_1, sumi1_0))), accum1); |
| 3617 | accum2 = _mm256_add_ps(_mm256_mul_ps(d, _mm256_cvtepi32_ps(MM256_SET_M128I(sumi2_1, sumi2_0))), accum2); |
| 3618 | } |
| 3619 | |
| 3620 | *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2); |
| 3621 | |
| 3622 | #else |
| 3623 | UNUSED(x); |
| 3624 | UNUSED(y); |
| 3625 | UNUSED(nb); |
| 3626 | UNUSED(scale); |
| 3627 | ggml_vec_dot_iq1_m_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc); |
| 3628 | #endif |
| 3629 | } |
| 3630 | |
| 3631 | void ggml_vec_dot_iq4_nl_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 3632 | assert(nrc == 1); |
| 3633 | UNUSED(nrc); |
| 3634 | UNUSED(bx); |
| 3635 | UNUSED(by); |
| 3636 | UNUSED(bs); |
| 3637 | assert(n % QK4_NL == 0); |
| 3638 | static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same" ); |
| 3639 | |
| 3640 | const block_iq4_nl * GGML_RESTRICT x = vx; |
| 3641 | const block_q8_0 * GGML_RESTRICT y = vy; |
| 3642 | |
| 3643 | const int nb = n / QK4_NL; |
| 3644 | |
| 3645 | int ib = 0; |
| 3646 | float sumf = 0; |
| 3647 | |
| 3648 | #if defined __AVX2__ |
| 3649 | |
| 3650 | const __m128i values128 = _mm_loadu_si128(p: (const __m128i*)kvalues_iq4nl); |
| 3651 | const __m128i m4b = _mm_set1_epi8(b: 0x0f); |
| 3652 | const __m256i mone = _mm256_set1_epi16(w: 1); |
| 3653 | |
| 3654 | __m256 accum1 = _mm256_setzero_ps(); |
| 3655 | __m256 accum2 = _mm256_setzero_ps(); |
| 3656 | for (; ib + 1 < nb; ib += 2) { |
| 3657 | const __m128i q4bits_1 = _mm_loadu_si128(p: (const __m128i*)x[ib + 0].qs); |
| 3658 | const __m128i q4bits_2 = _mm_loadu_si128(p: (const __m128i*)x[ib + 1].qs); |
| 3659 | const __m256i q8b_1 = _mm256_loadu_si256(p: (const __m256i *)y[ib + 0].qs); |
| 3660 | const __m256i q8b_2 = _mm256_loadu_si256(p: (const __m256i *)y[ib + 1].qs); |
| 3661 | const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)), |
| 3662 | _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b))); |
| 3663 | const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)), |
| 3664 | _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b))); |
| 3665 | const __m256i p16_1 = mul_add_epi8(x: q4b_1, y: q8b_1); |
| 3666 | const __m256i p16_2 = mul_add_epi8(x: q4b_2, y: q8b_2); |
| 3667 | const __m256i p_1 = _mm256_madd_epi16(a: p16_1, b: mone); |
| 3668 | const __m256i p_2 = _mm256_madd_epi16(a: p16_2, b: mone); |
| 3669 | accum1 = _mm256_fmadd_ps(A: _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 0].d)*GGML_CPU_FP16_TO_FP32(x[ib + 0].d)), |
| 3670 | B: _mm256_cvtepi32_ps(a: p_1), C: accum1); |
| 3671 | accum2 = _mm256_fmadd_ps(A: _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 1].d)*GGML_CPU_FP16_TO_FP32(x[ib + 1].d)), |
| 3672 | B: _mm256_cvtepi32_ps(a: p_2), C: accum2); |
| 3673 | } |
| 3674 | |
| 3675 | sumf = hsum_float_8(x: _mm256_add_ps(a: accum1, b: accum2)); |
| 3676 | |
| 3677 | #elif defined __AVX__ |
| 3678 | const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl); |
| 3679 | const __m128i m4b = _mm_set1_epi8(0x0f); |
| 3680 | |
| 3681 | __m256 accum = _mm256_setzero_ps(); |
| 3682 | for (; ib + 1 < nb; ib += 2) { |
| 3683 | const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs); |
| 3684 | const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs); |
| 3685 | const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs); |
| 3686 | const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs + 1); |
| 3687 | const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs); |
| 3688 | const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1); |
| 3689 | |
| 3690 | const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)); |
| 3691 | const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)); |
| 3692 | const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)); |
| 3693 | const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)); |
| 3694 | |
| 3695 | const __m256 p = mul_sum_i8_quad_float(q4b_1_0, q4b_1_1, q4b_2_0, q4b_2_1, q8b_1_0, q8b_1_1, q8b_2_0, q8b_2_1); |
| 3696 | const __m256 deltas = quad_fp16_delta_float(x[ib].d, y[ib].d, x[ib + 1].d, y[ib + 1].d); |
| 3697 | accum = _mm256_add_ps(_mm256_mul_ps(deltas, p), accum); |
| 3698 | } |
| 3699 | |
| 3700 | sumf = hsum_float_8(accum); |
| 3701 | |
| 3702 | #endif |
| 3703 | for (; ib < nb; ++ib) { |
| 3704 | const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_CPU_FP16_TO_FP32(x[ib].d); |
| 3705 | int sumi1 = 0, sumi2 = 0; |
| 3706 | for (int j = 0; j < QK4_NL/2; ++j) { |
| 3707 | sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf]; |
| 3708 | sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4]; |
| 3709 | } |
| 3710 | sumf += d * (sumi1 + sumi2); |
| 3711 | } |
| 3712 | *s = sumf; |
| 3713 | } |
| 3714 | |
| 3715 | void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { |
| 3716 | assert(nrc == 1); |
| 3717 | UNUSED(nrc); |
| 3718 | UNUSED(bx); |
| 3719 | UNUSED(by); |
| 3720 | UNUSED(bs); |
| 3721 | assert(n % QK_K == 0); |
| 3722 | |
| 3723 | const block_iq4_xs * GGML_RESTRICT x = vx; |
| 3724 | const block_q8_K * GGML_RESTRICT y = vy; |
| 3725 | |
| 3726 | const int nb = n / QK_K; |
| 3727 | |
| 3728 | #if defined __AVX2__ |
| 3729 | |
| 3730 | const __m128i values128 = _mm_loadu_si128(p: (const __m128i*)kvalues_iq4nl); |
| 3731 | const __m128i m4b = _mm_set1_epi8(b: 0x0f); |
| 3732 | |
| 3733 | __m256 accum = _mm256_setzero_ps(); |
| 3734 | for (int ibl = 0; ibl < nb; ++ibl) { |
| 3735 | const uint8_t * qs = x[ibl].qs; |
| 3736 | const int8_t * q8 = y[ibl].qs; |
| 3737 | uint16_t sh = x[ibl].scales_h; |
| 3738 | __m256i sumi1 = _mm256_setzero_si256(); |
| 3739 | __m256i sumi2 = _mm256_setzero_si256(); |
| 3740 | for (int ib = 0; ib < QK_K/32; ib += 2) { |
| 3741 | const __m128i q4bits_1 = _mm_loadu_si128(p: (const __m128i*)qs); qs += 16; |
| 3742 | const __m128i q4bits_2 = _mm_loadu_si128(p: (const __m128i*)qs); qs += 16; |
| 3743 | const __m256i q8b_1 = _mm256_loadu_si256(p: (const __m256i *)q8); q8 += 32; |
| 3744 | const __m256i q8b_2 = _mm256_loadu_si256(p: (const __m256i *)q8); q8 += 32; |
| 3745 | const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)), |
| 3746 | _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b))); |
| 3747 | const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)), |
| 3748 | _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b))); |
| 3749 | const __m256i p16_1 = mul_add_epi8(x: q4b_1, y: q8b_1); |
| 3750 | const __m256i p16_2 = mul_add_epi8(x: q4b_2, y: q8b_2); |
| 3751 | const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32; |
| 3752 | const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32; |
| 3753 | sh >>= 4; |
| 3754 | const __m256i p_1 = _mm256_madd_epi16(a: p16_1, b: _mm256_set1_epi16(w: ls1)); |
| 3755 | const __m256i p_2 = _mm256_madd_epi16(a: p16_2, b: _mm256_set1_epi16(w: ls2)); |
| 3756 | sumi1 = _mm256_add_epi32(a: p_1, b: sumi1); |
| 3757 | sumi2 = _mm256_add_epi32(a: p_2, b: sumi2); |
| 3758 | } |
| 3759 | accum = _mm256_fmadd_ps(A: _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(x[ibl].d)*y[ibl].d), |
| 3760 | B: _mm256_cvtepi32_ps(a: _mm256_add_epi32(a: sumi1, b: sumi2)), C: accum); |
| 3761 | } |
| 3762 | |
| 3763 | *s = hsum_float_8(x: accum); |
| 3764 | |
| 3765 | #elif defined __AVX__ |
| 3766 | const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl); |
| 3767 | const __m128i m4b = _mm_set1_epi8(0x0f); |
| 3768 | |
| 3769 | __m256 accum = _mm256_setzero_ps(); |
| 3770 | for (int ibl = 0; ibl < nb; ++ibl) { |
| 3771 | const uint8_t * qs = x[ibl].qs; |
| 3772 | const int8_t * q8 = y[ibl].qs; |
| 3773 | uint16_t sh = x[ibl].scales_h; |
| 3774 | __m128i sumi1_0 = _mm_setzero_si128(); |
| 3775 | __m128i sumi1_1 = _mm_setzero_si128(); |
| 3776 | __m128i sumi2_0 = _mm_setzero_si128(); |
| 3777 | __m128i sumi2_1 = _mm_setzero_si128(); |
| 3778 | for (int ib = 0; ib < QK_K/32; ib += 2) { |
| 3779 | const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)qs); qs += 16; |
| 3780 | const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)qs); qs += 16; |
| 3781 | const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3782 | const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3783 | const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3784 | const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16; |
| 3785 | const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)); |
| 3786 | const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)); |
| 3787 | const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)); |
| 3788 | const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)); |
| 3789 | const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0); |
| 3790 | const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1); |
| 3791 | const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0); |
| 3792 | const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1); |
| 3793 | const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32; |
| 3794 | const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32; |
| 3795 | sh >>= 4; |
| 3796 | const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, _mm_set1_epi16(ls1)); |
| 3797 | const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, _mm_set1_epi16(ls1)); |
| 3798 | const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, _mm_set1_epi16(ls2)); |
| 3799 | const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, _mm_set1_epi16(ls2)); |
| 3800 | sumi1_0 = _mm_add_epi32(p_1_0, sumi1_0); |
| 3801 | sumi1_1 = _mm_add_epi32(p_1_1, sumi1_1); |
| 3802 | sumi2_0 = _mm_add_epi32(p_2_0, sumi2_0); |
| 3803 | sumi2_1 = _mm_add_epi32(p_2_1, sumi2_1); |
| 3804 | } |
| 3805 | __m128i sumi12_0 = _mm_add_epi32(sumi1_0, sumi2_0); |
| 3806 | __m128i sumi12_1 = _mm_add_epi32(sumi1_1, sumi2_1); |
| 3807 | accum = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_CPU_FP16_TO_FP32(x[ibl].d)*y[ibl].d), |
| 3808 | _mm256_cvtepi32_ps(MM256_SET_M128I(sumi12_1, sumi12_0))), accum); |
| 3809 | } |
| 3810 | |
| 3811 | *s = hsum_float_8(accum); |
| 3812 | |
| 3813 | #else |
| 3814 | UNUSED(x); |
| 3815 | UNUSED(y); |
| 3816 | UNUSED(nb); |
| 3817 | ggml_vec_dot_iq4_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc); |
| 3818 | #endif |
| 3819 | } |
| 3820 | |
| 3821 | |