| 1 | #define _CRT_SECURE_NO_DEPRECATE // Disables "unsafe" warnings on Windows |
| 2 | #define _USE_MATH_DEFINES // For M_PI on MSVC |
| 3 | |
| 4 | #include "ggml-backend-impl.h" |
| 5 | #include "ggml-backend.h" |
| 6 | #include "traits.h" |
| 7 | #include "ggml-cpu-impl.h" |
| 8 | #include "ggml-cpu.h" |
| 9 | #include "ggml-impl.h" |
| 10 | #include "quants.h" |
| 11 | #include "ggml-threading.h" |
| 12 | #include "unary-ops.h" |
| 13 | #include "binary-ops.h" |
| 14 | #include "vec.h" |
| 15 | #include "ops.h" |
| 16 | #include "ggml.h" |
| 17 | |
| 18 | #if defined(_MSC_VER) || defined(__MINGW32__) |
| 19 | #include <malloc.h> // using malloc.h with MSC/MINGW |
| 20 | #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__) |
| 21 | #include <alloca.h> |
| 22 | #endif |
| 23 | |
| 24 | #include <assert.h> |
| 25 | #include <errno.h> |
| 26 | #include <time.h> |
| 27 | #include <math.h> |
| 28 | #include <stdlib.h> |
| 29 | #include <string.h> |
| 30 | #include <stdint.h> |
| 31 | #include <inttypes.h> |
| 32 | #include <stdio.h> |
| 33 | #include <float.h> |
| 34 | #include <limits.h> |
| 35 | #include <stdarg.h> |
| 36 | #include <signal.h> |
| 37 | #if defined(__gnu_linux__) |
| 38 | #include <syscall.h> |
| 39 | #endif |
| 40 | |
| 41 | #ifdef GGML_USE_OPENMP |
| 42 | #include <omp.h> |
| 43 | #endif |
| 44 | |
| 45 | #if defined(__ARM_FEATURE_SVE) || defined(__ARM_FEATURE_MATMUL_INT8) |
| 46 | #undef GGML_USE_LLAMAFILE |
| 47 | #endif |
| 48 | |
| 49 | #ifdef GGML_USE_LLAMAFILE |
| 50 | #include "llamafile/sgemm.h" |
| 51 | #endif |
| 52 | |
| 53 | // Note: once we move threading into a separate C++ file |
| 54 | // will use std::hardware_destructive_interference_size instead of hardcoding it here |
| 55 | // and we'll use C++ attribute syntax. |
| 56 | #define GGML_CACHE_LINE 64 |
| 57 | |
| 58 | #if defined(__clang__) || defined(__GNUC__) |
| 59 | #define GGML_CACHE_ALIGN __attribute__((aligned(GGML_CACHE_LINE))) |
| 60 | #endif |
| 61 | |
| 62 | #if defined(__has_feature) |
| 63 | #if __has_feature(thread_sanitizer) |
| 64 | #define GGML_TSAN_ENABLED 1 |
| 65 | #endif |
| 66 | #else // __has_feature |
| 67 | #if defined(__SANITIZE_THREAD__) |
| 68 | #define GGML_TSAN_ENABLED 1 |
| 69 | #endif |
| 70 | #endif // __has_feature |
| 71 | |
| 72 | #define UNUSED GGML_UNUSED |
| 73 | #define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0) |
| 74 | |
| 75 | // precomputed f32 table for f16 (256 KB) (simd-mappings.h) |
| 76 | float ggml_table_f32_f16[1 << 16]; |
| 77 | |
| 78 | #if defined(__ARM_ARCH) |
| 79 | struct ggml_arm_arch_features_type { |
| 80 | int sve_cnt; |
| 81 | } ggml_arm_arch_features = { 0 }; |
| 82 | #endif |
| 83 | |
| 84 | |
| 85 | #if defined(_WIN32) |
| 86 | |
| 87 | #define WIN32_LEAN_AND_MEAN |
| 88 | #ifndef NOMINMAX |
| 89 | #define NOMINMAX |
| 90 | #endif |
| 91 | #include <windows.h> |
| 92 | |
| 93 | #if defined(_MSC_VER) && !defined(__clang__) |
| 94 | #define GGML_CACHE_ALIGN __declspec(align(GGML_CACHE_LINE)) |
| 95 | |
| 96 | typedef volatile LONG atomic_int; |
| 97 | typedef atomic_int atomic_bool; |
| 98 | typedef atomic_int atomic_flag; |
| 99 | |
| 100 | #define ATOMIC_FLAG_INIT 0 |
| 101 | |
| 102 | typedef enum { |
| 103 | memory_order_relaxed, |
| 104 | memory_order_consume, |
| 105 | memory_order_acquire, |
| 106 | memory_order_release, |
| 107 | memory_order_acq_rel, |
| 108 | memory_order_seq_cst |
| 109 | } memory_order; |
| 110 | |
| 111 | static void atomic_store(atomic_int * ptr, LONG val) { |
| 112 | InterlockedExchange(ptr, val); |
| 113 | } |
| 114 | static void atomic_store_explicit(atomic_int * ptr, LONG val, memory_order mo) { |
| 115 | // TODO: add support for explicit memory order |
| 116 | InterlockedExchange(ptr, val); |
| 117 | } |
| 118 | static LONG atomic_load(atomic_int * ptr) { |
| 119 | return InterlockedCompareExchange(ptr, 0, 0); |
| 120 | } |
| 121 | static LONG atomic_load_explicit(atomic_int * ptr, memory_order mo) { |
| 122 | // TODO: add support for explicit memory order |
| 123 | return InterlockedCompareExchange(ptr, 0, 0); |
| 124 | } |
| 125 | static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) { |
| 126 | return InterlockedExchangeAdd(ptr, inc); |
| 127 | } |
| 128 | static LONG atomic_fetch_add_explicit(atomic_int * ptr, LONG inc, memory_order mo) { |
| 129 | // TODO: add support for explicit memory order |
| 130 | return InterlockedExchangeAdd(ptr, inc); |
| 131 | } |
| 132 | static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) { |
| 133 | return InterlockedExchange(ptr, 1); |
| 134 | } |
| 135 | static void atomic_flag_clear(atomic_flag * ptr) { |
| 136 | InterlockedExchange(ptr, 0); |
| 137 | } |
| 138 | static void atomic_thread_fence(memory_order mo) { |
| 139 | MemoryBarrier(); |
| 140 | } |
| 141 | #else // clang |
| 142 | #include <stdatomic.h> |
| 143 | #endif |
| 144 | |
| 145 | typedef HANDLE pthread_t; |
| 146 | |
| 147 | typedef DWORD thread_ret_t; |
| 148 | static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) { |
| 149 | (void) unused; |
| 150 | HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL); |
| 151 | if (handle == NULL) |
| 152 | { |
| 153 | return EAGAIN; |
| 154 | } |
| 155 | |
| 156 | *out = handle; |
| 157 | return 0; |
| 158 | } |
| 159 | |
| 160 | static int pthread_join(pthread_t thread, void * unused) { |
| 161 | (void) unused; |
| 162 | int ret = (int) WaitForSingleObject(thread, INFINITE); |
| 163 | CloseHandle(thread); |
| 164 | return ret; |
| 165 | } |
| 166 | |
| 167 | static int sched_yield (void) { |
| 168 | Sleep (0); |
| 169 | return 0; |
| 170 | } |
| 171 | #else |
| 172 | |
| 173 | #include <pthread.h> |
| 174 | #include <stdatomic.h> |
| 175 | #include <sched.h> |
| 176 | #if defined(__FreeBSD__) |
| 177 | #include <pthread_np.h> |
| 178 | #endif |
| 179 | |
| 180 | typedef void * thread_ret_t; |
| 181 | |
| 182 | #include <sys/types.h> |
| 183 | #include <sys/stat.h> |
| 184 | #include <unistd.h> |
| 185 | |
| 186 | #endif |
| 187 | |
| 188 | typedef pthread_t ggml_thread_t; |
| 189 | |
| 190 | #if defined(__APPLE__) |
| 191 | #include <unistd.h> |
| 192 | #include <mach/mach.h> |
| 193 | #include <TargetConditionals.h> |
| 194 | #endif |
| 195 | |
| 196 | static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = { |
| 197 | [GGML_TYPE_F32] = { |
| 198 | .from_float = (ggml_from_float_t) ggml_cpu_fp32_to_fp32, |
| 199 | .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32, |
| 200 | .vec_dot_type = GGML_TYPE_F32, |
| 201 | .nrows = 1, |
| 202 | }, |
| 203 | [GGML_TYPE_F16] = { |
| 204 | .from_float = (ggml_from_float_t) ggml_cpu_fp32_to_fp16, |
| 205 | .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16, |
| 206 | .vec_dot_type = GGML_TYPE_F16, |
| 207 | .nrows = 1, |
| 208 | }, |
| 209 | [GGML_TYPE_Q4_0] = { |
| 210 | .from_float = quantize_row_q4_0, |
| 211 | .vec_dot = ggml_vec_dot_q4_0_q8_0, |
| 212 | .vec_dot_type = GGML_TYPE_Q8_0, |
| 213 | #if defined (__ARM_FEATURE_MATMUL_INT8) |
| 214 | .nrows = 2, |
| 215 | #else |
| 216 | .nrows = 1, |
| 217 | #endif |
| 218 | }, |
| 219 | [GGML_TYPE_Q4_1] = { |
| 220 | .from_float = quantize_row_q4_1, |
| 221 | .vec_dot = ggml_vec_dot_q4_1_q8_1, |
| 222 | .vec_dot_type = GGML_TYPE_Q8_1, |
| 223 | #if defined (__ARM_FEATURE_MATMUL_INT8) |
| 224 | .nrows = 2, |
| 225 | #else |
| 226 | .nrows = 1, |
| 227 | #endif |
| 228 | }, |
| 229 | [GGML_TYPE_Q5_0] = { |
| 230 | .from_float = quantize_row_q5_0, |
| 231 | .vec_dot = ggml_vec_dot_q5_0_q8_0, |
| 232 | .vec_dot_type = GGML_TYPE_Q8_0, |
| 233 | .nrows = 1, |
| 234 | }, |
| 235 | [GGML_TYPE_Q5_1] = { |
| 236 | .from_float = quantize_row_q5_1, |
| 237 | .vec_dot = ggml_vec_dot_q5_1_q8_1, |
| 238 | .vec_dot_type = GGML_TYPE_Q8_1, |
| 239 | .nrows = 1, |
| 240 | }, |
| 241 | [GGML_TYPE_Q8_0] = { |
| 242 | .from_float = quantize_row_q8_0, |
| 243 | .vec_dot = ggml_vec_dot_q8_0_q8_0, |
| 244 | .vec_dot_type = GGML_TYPE_Q8_0, |
| 245 | #if defined (__ARM_FEATURE_MATMUL_INT8) |
| 246 | .nrows = 2, |
| 247 | #else |
| 248 | .nrows = 1, |
| 249 | #endif |
| 250 | }, |
| 251 | [GGML_TYPE_Q8_1] = { |
| 252 | .from_float = quantize_row_q8_1, |
| 253 | .vec_dot_type = GGML_TYPE_Q8_1, |
| 254 | .nrows = 1, |
| 255 | }, |
| 256 | [GGML_TYPE_MXFP4] = { |
| 257 | .from_float = quantize_row_mxfp4, |
| 258 | .vec_dot = ggml_vec_dot_mxfp4_q8_0, |
| 259 | .vec_dot_type = GGML_TYPE_Q8_0, |
| 260 | .nrows = 1, |
| 261 | }, |
| 262 | [GGML_TYPE_Q2_K] = { |
| 263 | .from_float = quantize_row_q2_K, |
| 264 | .vec_dot = ggml_vec_dot_q2_K_q8_K, |
| 265 | .vec_dot_type = GGML_TYPE_Q8_K, |
| 266 | .nrows = 1, |
| 267 | }, |
| 268 | [GGML_TYPE_Q3_K] = { |
| 269 | .from_float = quantize_row_q3_K, |
| 270 | .vec_dot = ggml_vec_dot_q3_K_q8_K, |
| 271 | .vec_dot_type = GGML_TYPE_Q8_K, |
| 272 | .nrows = 1, |
| 273 | }, |
| 274 | [GGML_TYPE_Q4_K] = { |
| 275 | .from_float = quantize_row_q4_K, |
| 276 | .vec_dot = ggml_vec_dot_q4_K_q8_K, |
| 277 | .vec_dot_type = GGML_TYPE_Q8_K, |
| 278 | #if defined (__ARM_FEATURE_MATMUL_INT8) |
| 279 | .nrows = 2, |
| 280 | #else |
| 281 | .nrows = 1, |
| 282 | #endif |
| 283 | }, |
| 284 | [GGML_TYPE_Q5_K] = { |
| 285 | .from_float = quantize_row_q5_K, |
| 286 | .vec_dot = ggml_vec_dot_q5_K_q8_K, |
| 287 | .vec_dot_type = GGML_TYPE_Q8_K, |
| 288 | .nrows = 1, |
| 289 | }, |
| 290 | [GGML_TYPE_Q6_K] = { |
| 291 | .from_float = quantize_row_q6_K, |
| 292 | .vec_dot = ggml_vec_dot_q6_K_q8_K, |
| 293 | .vec_dot_type = GGML_TYPE_Q8_K, |
| 294 | #if defined (__ARM_FEATURE_MATMUL_INT8) |
| 295 | .nrows = 2, |
| 296 | #else |
| 297 | .nrows = 1, |
| 298 | #endif |
| 299 | }, |
| 300 | [GGML_TYPE_IQ2_XXS] = { |
| 301 | .from_float = NULL, |
| 302 | .vec_dot = ggml_vec_dot_iq2_xxs_q8_K, |
| 303 | .vec_dot_type = GGML_TYPE_Q8_K, |
| 304 | .nrows = 1, |
| 305 | }, |
| 306 | [GGML_TYPE_IQ2_XS] = { |
| 307 | .from_float = NULL, |
| 308 | .vec_dot = ggml_vec_dot_iq2_xs_q8_K, |
| 309 | .vec_dot_type = GGML_TYPE_Q8_K, |
| 310 | .nrows = 1, |
| 311 | }, |
| 312 | [GGML_TYPE_IQ3_XXS] = { |
| 313 | // NOTE: from_float for iq3 and iq2_s was removed because these quants require initialization in ggml_quantize_init |
| 314 | //.from_float = quantize_row_iq3_xxs, |
| 315 | .vec_dot = ggml_vec_dot_iq3_xxs_q8_K, |
| 316 | .vec_dot_type = GGML_TYPE_Q8_K, |
| 317 | .nrows = 1, |
| 318 | }, |
| 319 | [GGML_TYPE_IQ3_S] = { |
| 320 | //.from_float = quantize_row_iq3_s, |
| 321 | .vec_dot = ggml_vec_dot_iq3_s_q8_K, |
| 322 | .vec_dot_type = GGML_TYPE_Q8_K, |
| 323 | .nrows = 1, |
| 324 | }, |
| 325 | [GGML_TYPE_IQ2_S] = { |
| 326 | //.from_float = quantize_row_iq2_s, |
| 327 | .vec_dot = ggml_vec_dot_iq2_s_q8_K, |
| 328 | .vec_dot_type = GGML_TYPE_Q8_K, |
| 329 | .nrows = 1, |
| 330 | }, |
| 331 | [GGML_TYPE_IQ1_S] = { |
| 332 | .from_float = NULL, |
| 333 | .vec_dot = ggml_vec_dot_iq1_s_q8_K, |
| 334 | .vec_dot_type = GGML_TYPE_Q8_K, |
| 335 | .nrows = 1, |
| 336 | }, |
| 337 | [GGML_TYPE_IQ1_M] = { |
| 338 | .from_float = NULL, |
| 339 | .vec_dot = ggml_vec_dot_iq1_m_q8_K, |
| 340 | .vec_dot_type = GGML_TYPE_Q8_K, |
| 341 | .nrows = 1, |
| 342 | }, |
| 343 | [GGML_TYPE_IQ4_NL] = { |
| 344 | .from_float = quantize_row_iq4_nl, |
| 345 | .vec_dot = ggml_vec_dot_iq4_nl_q8_0, |
| 346 | .vec_dot_type = GGML_TYPE_Q8_0, |
| 347 | .nrows = 1, |
| 348 | }, |
| 349 | [GGML_TYPE_IQ4_XS] = { |
| 350 | .from_float = quantize_row_iq4_xs, |
| 351 | .vec_dot = ggml_vec_dot_iq4_xs_q8_K, |
| 352 | .vec_dot_type = GGML_TYPE_Q8_K, |
| 353 | .nrows = 1, |
| 354 | }, |
| 355 | [GGML_TYPE_Q8_K] = { |
| 356 | .from_float = quantize_row_q8_K, |
| 357 | }, |
| 358 | [GGML_TYPE_BF16] = { |
| 359 | .from_float = (ggml_from_float_t) ggml_cpu_fp32_to_bf16, |
| 360 | .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16, |
| 361 | .vec_dot_type = GGML_TYPE_BF16, |
| 362 | .nrows = 1, |
| 363 | }, |
| 364 | [GGML_TYPE_TQ1_0] = { |
| 365 | .from_float = quantize_row_tq1_0, |
| 366 | .vec_dot = ggml_vec_dot_tq1_0_q8_K, |
| 367 | .vec_dot_type = GGML_TYPE_Q8_K, |
| 368 | .nrows = 1, |
| 369 | }, |
| 370 | [GGML_TYPE_TQ2_0] = { |
| 371 | .from_float = quantize_row_tq2_0, |
| 372 | .vec_dot = ggml_vec_dot_tq2_0_q8_K, |
| 373 | .vec_dot_type = GGML_TYPE_Q8_K, |
| 374 | .nrows = 1, |
| 375 | }, |
| 376 | [GGML_TYPE_I32] = { |
| 377 | .from_float = (ggml_from_float_t) ggml_cpu_fp32_to_i32, |
| 378 | }, |
| 379 | }; |
| 380 | |
| 381 | const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type) { |
| 382 | return &type_traits_cpu[type]; |
| 383 | } |
| 384 | |
| 385 | // |
| 386 | // Threading defs |
| 387 | // |
| 388 | |
| 389 | typedef pthread_t ggml_thread_t; |
| 390 | |
| 391 | #if defined(_WIN32) |
| 392 | |
| 393 | typedef CONDITION_VARIABLE ggml_cond_t; |
| 394 | typedef SRWLOCK ggml_mutex_t; |
| 395 | |
| 396 | #define ggml_mutex_init(m) InitializeSRWLock(m) |
| 397 | #define ggml_mutex_destroy(m) |
| 398 | #define ggml_mutex_lock(m) AcquireSRWLockExclusive(m) |
| 399 | #define ggml_mutex_unlock(m) ReleaseSRWLockExclusive(m) |
| 400 | #define ggml_mutex_lock_shared(m) AcquireSRWLockShared(m) |
| 401 | #define ggml_mutex_unlock_shared(m) ReleaseSRWLockShared(m) |
| 402 | |
| 403 | #define ggml_cond_init(c) InitializeConditionVariable(c) |
| 404 | #define ggml_cond_destroy(c) |
| 405 | #define ggml_cond_wait(c, m) SleepConditionVariableSRW(c, m, INFINITE, CONDITION_VARIABLE_LOCKMODE_SHARED) |
| 406 | #define ggml_cond_broadcast(c) WakeAllConditionVariable(c) |
| 407 | |
| 408 | #define ggml_thread_create pthread_create |
| 409 | #define ggml_thread_join pthread_join |
| 410 | |
| 411 | #else |
| 412 | |
| 413 | typedef pthread_cond_t ggml_cond_t; |
| 414 | typedef pthread_mutex_t ggml_mutex_t; |
| 415 | |
| 416 | #define ggml_mutex_init(m) pthread_mutex_init(m, NULL) |
| 417 | #define ggml_mutex_destroy(m) pthread_mutex_destroy(m) |
| 418 | #define ggml_mutex_lock(m) pthread_mutex_lock(m) |
| 419 | #define ggml_mutex_unlock(m) pthread_mutex_unlock(m) |
| 420 | #define ggml_mutex_lock_shared(m) pthread_mutex_lock(m) |
| 421 | #define ggml_mutex_unlock_shared(m) pthread_mutex_unlock(m) |
| 422 | |
| 423 | #define ggml_lock_init(x) UNUSED(x) |
| 424 | #define ggml_lock_destroy(x) UNUSED(x) |
| 425 | #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64)) |
| 426 | #define ggml_lock_lock(x) _mm_pause() |
| 427 | #else |
| 428 | #define ggml_lock_lock(x) UNUSED(x) |
| 429 | #endif |
| 430 | #define ggml_lock_unlock(x) UNUSED(x) |
| 431 | |
| 432 | #define GGML_LOCK_INITIALIZER 0 |
| 433 | #define ggml_cond_init(c) pthread_cond_init(c, NULL) |
| 434 | #define ggml_cond_destroy(c) pthread_cond_destroy(c) |
| 435 | #define ggml_cond_wait(c, m) pthread_cond_wait(c, m) |
| 436 | #define ggml_cond_broadcast(c) pthread_cond_broadcast(c) |
| 437 | |
| 438 | #define ggml_thread_create pthread_create |
| 439 | #define ggml_thread_join pthread_join |
| 440 | |
| 441 | #endif |
| 442 | |
| 443 | // Threadpool def |
| 444 | struct ggml_threadpool { |
| 445 | ggml_mutex_t mutex; // mutex for cond.var |
| 446 | ggml_cond_t cond; // cond.var for waiting for new work |
| 447 | |
| 448 | struct ggml_cgraph * cgraph; |
| 449 | struct ggml_cplan * cplan; |
| 450 | |
| 451 | // synchronization primitives |
| 452 | atomic_int n_graph; // incremented when there is work to be done (i.e each graph) |
| 453 | atomic_int GGML_CACHE_ALIGN n_barrier; |
| 454 | atomic_int GGML_CACHE_ALIGN n_barrier_passed; |
| 455 | atomic_int GGML_CACHE_ALIGN current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads. |
| 456 | |
| 457 | // these are atomic as an annotation for thread-sanitizer |
| 458 | atomic_bool stop; // Used for stopping the threadpool altogether |
| 459 | atomic_bool pause; // Used for pausing the threadpool or individual threads |
| 460 | atomic_int abort; // Used for aborting processing of a graph |
| 461 | |
| 462 | struct ggml_compute_state * workers; // per thread state |
| 463 | int n_threads_max; // number of threads in the pool |
| 464 | atomic_int n_threads_cur; // number of threads used in the current graph |
| 465 | |
| 466 | int32_t prio; // Scheduling priority |
| 467 | uint32_t poll; // Polling level (0 - no polling) |
| 468 | |
| 469 | enum ggml_status ec; |
| 470 | }; |
| 471 | |
| 472 | // Per-thread state |
| 473 | struct ggml_compute_state { |
| 474 | #ifndef GGML_USE_OPENMP |
| 475 | ggml_thread_t thrd; |
| 476 | int last_graph; |
| 477 | bool pending; |
| 478 | #endif |
| 479 | bool cpumask[GGML_MAX_N_THREADS]; |
| 480 | struct ggml_threadpool * threadpool; |
| 481 | int ith; |
| 482 | }; |
| 483 | |
| 484 | // Helpers for polling loops |
| 485 | #if defined(__aarch64__) && ( defined(__clang__) || defined(__GNUC__) ) |
| 486 | static inline void ggml_thread_cpu_relax(void) { |
| 487 | __asm__ volatile("yield" ::: "memory" ); |
| 488 | } |
| 489 | #elif defined(__x86_64__) |
| 490 | static inline void ggml_thread_cpu_relax(void) { |
| 491 | _mm_pause(); |
| 492 | } |
| 493 | #else |
| 494 | static inline void ggml_thread_cpu_relax(void) {;} |
| 495 | #endif |
| 496 | |
| 497 | // |
| 498 | // NUMA support |
| 499 | // |
| 500 | |
| 501 | #define GGML_NUMA_MAX_NODES 8 |
| 502 | #define GGML_NUMA_MAX_CPUS 512 |
| 503 | |
| 504 | struct ggml_numa_node { |
| 505 | uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node |
| 506 | uint32_t n_cpus; |
| 507 | }; |
| 508 | |
| 509 | struct ggml_numa_nodes { |
| 510 | enum ggml_numa_strategy numa_strategy; |
| 511 | struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES]; |
| 512 | uint32_t n_nodes; |
| 513 | uint32_t total_cpus; // hardware threads on system |
| 514 | uint32_t current_node; // node on which main process is execting |
| 515 | #if defined(__gnu_linux__) |
| 516 | cpu_set_t cpuset; // cpuset from numactl |
| 517 | #else |
| 518 | uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype |
| 519 | #endif |
| 520 | }; |
| 521 | |
| 522 | // |
| 523 | // ggml state |
| 524 | // |
| 525 | |
| 526 | struct ggml_state { |
| 527 | struct ggml_numa_nodes numa; |
| 528 | }; |
| 529 | |
| 530 | static struct ggml_state g_state = {0}; |
| 531 | |
| 532 | void ggml_barrier(struct ggml_threadpool * tp) { |
| 533 | int n_threads = atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed); |
| 534 | if (n_threads == 1) { |
| 535 | return; |
| 536 | } |
| 537 | |
| 538 | #ifdef GGML_USE_OPENMP |
| 539 | #pragma omp barrier |
| 540 | #else |
| 541 | int n_passed = atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed); |
| 542 | |
| 543 | // enter barrier (full seq-cst fence) |
| 544 | int n_barrier = atomic_fetch_add_explicit(&tp->n_barrier, 1, memory_order_seq_cst); |
| 545 | |
| 546 | if (n_barrier == (n_threads - 1)) { |
| 547 | // last thread |
| 548 | atomic_store_explicit(&tp->n_barrier, 0, memory_order_relaxed); |
| 549 | |
| 550 | // exit barrier (fill seq-cst fence) |
| 551 | atomic_fetch_add_explicit(&tp->n_barrier_passed, 1, memory_order_seq_cst); |
| 552 | return; |
| 553 | } |
| 554 | |
| 555 | // wait for other threads |
| 556 | while (atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed) == n_passed) { |
| 557 | ggml_thread_cpu_relax(); |
| 558 | } |
| 559 | |
| 560 | // exit barrier (full seq-cst fence) |
| 561 | // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead |
| 562 | #ifdef GGML_TSAN_ENABLED |
| 563 | atomic_fetch_add_explicit(&tp->n_barrier_passed, 0, memory_order_seq_cst); |
| 564 | #else |
| 565 | atomic_thread_fence(memory_order_seq_cst); |
| 566 | #endif |
| 567 | #endif |
| 568 | } |
| 569 | |
| 570 | void ggml_threadpool_chunk_set(struct ggml_threadpool * tp, int value) { |
| 571 | atomic_store_explicit(&tp->current_chunk, value, memory_order_relaxed); |
| 572 | } |
| 573 | |
| 574 | int ggml_threadpool_chunk_add(struct ggml_threadpool * tp, int value) { |
| 575 | return atomic_fetch_add_explicit(&tp->current_chunk, value, memory_order_relaxed); |
| 576 | } |
| 577 | |
| 578 | #if defined(__gnu_linux__) |
| 579 | static cpu_set_t ggml_get_numa_affinity(void) { |
| 580 | cpu_set_t cpuset; |
| 581 | pthread_t thread; |
| 582 | thread = pthread_self(); |
| 583 | CPU_ZERO(&cpuset); |
| 584 | pthread_getaffinity_np(th: thread, cpusetsize: sizeof(cpu_set_t), cpuset: &cpuset); |
| 585 | return cpuset; |
| 586 | } |
| 587 | #else |
| 588 | static uint32_t ggml_get_numa_affinity(void) { |
| 589 | return 0; // no NUMA support |
| 590 | } |
| 591 | #endif |
| 592 | |
| 593 | void ggml_numa_init(enum ggml_numa_strategy numa_flag) { |
| 594 | if (g_state.numa.n_nodes > 0) { |
| 595 | fprintf(stderr, format: "ggml_numa_init: NUMA already initialized\n" ); |
| 596 | |
| 597 | return; |
| 598 | } |
| 599 | |
| 600 | #if defined(__gnu_linux__) |
| 601 | struct stat st; |
| 602 | char path[256]; |
| 603 | int rv; |
| 604 | |
| 605 | // set numa scheme |
| 606 | g_state.numa.numa_strategy = numa_flag; |
| 607 | |
| 608 | GGML_PRINT_DEBUG("numa strategy %u\n" ,g_state.numa.numa_strategy); |
| 609 | |
| 610 | g_state.numa.cpuset = ggml_get_numa_affinity(); |
| 611 | |
| 612 | // enumerate nodes |
| 613 | while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) { |
| 614 | rv = snprintf(s: path, maxlen: sizeof(path), format: "/sys/devices/system/node/node%u" , g_state.numa.n_nodes); |
| 615 | GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path)); |
| 616 | if (stat(file: path, buf: &st) != 0) { break; } |
| 617 | ++g_state.numa.n_nodes; |
| 618 | } |
| 619 | |
| 620 | // enumerate CPUs |
| 621 | while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) { |
| 622 | rv = snprintf(s: path, maxlen: sizeof(path), format: "/sys/devices/system/cpu/cpu%u" , g_state.numa.total_cpus); |
| 623 | GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path)); |
| 624 | if (stat(file: path, buf: &st) != 0) { break; } |
| 625 | ++g_state.numa.total_cpus; |
| 626 | } |
| 627 | |
| 628 | GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n" , g_state.numa.n_nodes, g_state.numa.total_cpus); |
| 629 | |
| 630 | // figure out which node we're on |
| 631 | uint current_cpu; |
| 632 | int getcpu_ret = 0; |
| 633 | #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 33) || defined(__COSMOPOLITAN__) |
| 634 | getcpu_ret = getcpu(¤t_cpu, &g_state.numa.current_node); |
| 635 | #else |
| 636 | // old glibc doesn't have a wrapper for this call. Fall back on direct syscall |
| 637 | # if !defined(SYS_getcpu) && defined(SYS_get_cpu) |
| 638 | # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name |
| 639 | # endif |
| 640 | getcpu_ret = syscall(SYS_getcpu, ¤t_cpu, &g_state.numa.current_node); |
| 641 | #endif |
| 642 | |
| 643 | if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) { |
| 644 | g_state.numa.n_nodes = 0; |
| 645 | return; |
| 646 | } |
| 647 | |
| 648 | GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n" , g_state.numa.current_node, current_cpu); |
| 649 | |
| 650 | for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) { |
| 651 | struct ggml_numa_node * node = &g_state.numa.nodes[n]; |
| 652 | GGML_PRINT_DEBUG("CPUs on node %u:" , n); |
| 653 | node->n_cpus = 0; |
| 654 | for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) { |
| 655 | rv = snprintf(s: path, maxlen: sizeof(path), format: "/sys/devices/system/node/node%u/cpu%u" , n, c); |
| 656 | GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path)); |
| 657 | if (stat(file: path, buf: &st) == 0) { |
| 658 | node->cpus[node->n_cpus++] = c; |
| 659 | GGML_PRINT_DEBUG(" %u" , c); |
| 660 | } |
| 661 | } |
| 662 | GGML_PRINT_DEBUG("\n" ); |
| 663 | } |
| 664 | |
| 665 | if (ggml_is_numa()) { |
| 666 | FILE *fptr = fopen(filename: "/proc/sys/kernel/numa_balancing" , modes: "r" ); |
| 667 | if (fptr != NULL) { |
| 668 | char buf[42]; |
| 669 | if (fgets(s: buf, n: sizeof(buf), stream: fptr) && strncmp(s1: buf, s2: "0\n" , n: sizeof(buf)) != 0) { |
| 670 | GGML_LOG_WARN("/proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n" ); |
| 671 | } |
| 672 | fclose(stream: fptr); |
| 673 | } |
| 674 | } |
| 675 | #else |
| 676 | UNUSED(numa_flag); |
| 677 | // TODO |
| 678 | #endif |
| 679 | } |
| 680 | |
| 681 | bool ggml_is_numa(void) { |
| 682 | return g_state.numa.n_nodes > 1; |
| 683 | } |
| 684 | |
| 685 | #if defined(__ARM_ARCH) |
| 686 | |
| 687 | #if defined(__linux__) && defined(__aarch64__) |
| 688 | #include <sys/auxv.h> |
| 689 | #endif |
| 690 | |
| 691 | static void ggml_init_arm_arch_features(void) { |
| 692 | #if defined(__aarch64__) && defined(__ARM_FEATURE_SVE) |
| 693 | #if defined(__linux__) |
| 694 | ggml_arm_arch_features.sve_cnt = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL); |
| 695 | #else |
| 696 | // TODO: add support of SVE for non-linux systems |
| 697 | #error "TODO: SVE is not supported on this platform. To use SVE, sve_cnt needs to be initialized here." |
| 698 | #endif |
| 699 | #endif |
| 700 | } |
| 701 | |
| 702 | #endif // __ARM_ARCH |
| 703 | |
| 704 | struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) { |
| 705 | GGML_ASSERT(!ggml_get_no_alloc(ctx)); |
| 706 | |
| 707 | struct ggml_tensor * result = ggml_new_tensor_1d(ctx, type: GGML_TYPE_I32, ne0: 1); |
| 708 | |
| 709 | ggml_set_i32(tensor: result, value); |
| 710 | |
| 711 | return result; |
| 712 | } |
| 713 | |
| 714 | struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) { |
| 715 | GGML_ASSERT(!ggml_get_no_alloc(ctx)); |
| 716 | |
| 717 | struct ggml_tensor * result = ggml_new_tensor_1d(ctx, type: GGML_TYPE_F32, ne0: 1); |
| 718 | |
| 719 | ggml_set_f32(tensor: result, value); |
| 720 | |
| 721 | return result; |
| 722 | } |
| 723 | |
| 724 | struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) { |
| 725 | const int n = ggml_nrows(tensor); |
| 726 | const int nc = tensor->ne[0]; |
| 727 | const size_t n1 = tensor->nb[1]; |
| 728 | |
| 729 | char * const data = tensor->data; |
| 730 | |
| 731 | switch (tensor->type) { |
| 732 | case GGML_TYPE_I8: |
| 733 | { |
| 734 | assert(tensor->nb[0] == sizeof(int8_t)); |
| 735 | for (int i = 0; i < n; i++) { |
| 736 | ggml_vec_set_i8(n: nc, x: (int8_t *)(data + i*n1), v: value); |
| 737 | } |
| 738 | } break; |
| 739 | case GGML_TYPE_I16: |
| 740 | { |
| 741 | assert(tensor->nb[0] == sizeof(int16_t)); |
| 742 | for (int i = 0; i < n; i++) { |
| 743 | ggml_vec_set_i16(n: nc, x: (int16_t *)(data + i*n1), v: value); |
| 744 | } |
| 745 | } break; |
| 746 | case GGML_TYPE_I32: |
| 747 | { |
| 748 | assert(tensor->nb[0] == sizeof(int32_t)); |
| 749 | for (int i = 0; i < n; i++) { |
| 750 | ggml_vec_set_i32(n: nc, x: (int32_t *)(data + i*n1), v: value); |
| 751 | } |
| 752 | } break; |
| 753 | case GGML_TYPE_F16: |
| 754 | { |
| 755 | assert(tensor->nb[0] == sizeof(ggml_fp16_t)); |
| 756 | for (int i = 0; i < n; i++) { |
| 757 | ggml_vec_set_f16(n: nc, x: (ggml_fp16_t *)(data + i*n1), GGML_CPU_FP32_TO_FP16(value)); |
| 758 | } |
| 759 | } break; |
| 760 | case GGML_TYPE_BF16: |
| 761 | { |
| 762 | assert(tensor->nb[0] == sizeof(ggml_fp16_t)); |
| 763 | for (int i = 0; i < n; i++) { |
| 764 | ggml_vec_set_bf16(n: nc, x: (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value)); |
| 765 | } |
| 766 | } break; |
| 767 | case GGML_TYPE_F32: |
| 768 | { |
| 769 | assert(tensor->nb[0] == sizeof(float)); |
| 770 | for (int i = 0; i < n; i++) { |
| 771 | ggml_vec_set_f32(n: nc, x: (float *)(data + i*n1), v: value); |
| 772 | } |
| 773 | } break; |
| 774 | default: |
| 775 | { |
| 776 | GGML_ABORT("fatal error" ); |
| 777 | } |
| 778 | } |
| 779 | |
| 780 | return tensor; |
| 781 | } |
| 782 | |
| 783 | struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) { |
| 784 | const int n = ggml_nrows(tensor); |
| 785 | const int nc = tensor->ne[0]; |
| 786 | const size_t n1 = tensor->nb[1]; |
| 787 | |
| 788 | char * const data = tensor->data; |
| 789 | |
| 790 | switch (tensor->type) { |
| 791 | case GGML_TYPE_I8: |
| 792 | { |
| 793 | assert(tensor->nb[0] == sizeof(int8_t)); |
| 794 | for (int i = 0; i < n; i++) { |
| 795 | ggml_vec_set_i8(n: nc, x: (int8_t *)(data + i*n1), v: value); |
| 796 | } |
| 797 | } break; |
| 798 | case GGML_TYPE_I16: |
| 799 | { |
| 800 | assert(tensor->nb[0] == sizeof(int16_t)); |
| 801 | for (int i = 0; i < n; i++) { |
| 802 | ggml_vec_set_i16(n: nc, x: (int16_t *)(data + i*n1), v: value); |
| 803 | } |
| 804 | } break; |
| 805 | case GGML_TYPE_I32: |
| 806 | { |
| 807 | assert(tensor->nb[0] == sizeof(int32_t)); |
| 808 | for (int i = 0; i < n; i++) { |
| 809 | ggml_vec_set_i32(n: nc, x: (int32_t *)(data + i*n1), v: value); |
| 810 | } |
| 811 | } break; |
| 812 | case GGML_TYPE_F16: |
| 813 | { |
| 814 | assert(tensor->nb[0] == sizeof(ggml_fp16_t)); |
| 815 | for (int i = 0; i < n; i++) { |
| 816 | ggml_vec_set_f16(n: nc, x: (ggml_fp16_t *)(data + i*n1), GGML_CPU_FP32_TO_FP16(value)); |
| 817 | } |
| 818 | } break; |
| 819 | case GGML_TYPE_BF16: |
| 820 | { |
| 821 | assert(tensor->nb[0] == sizeof(ggml_bf16_t)); |
| 822 | for (int i = 0; i < n; i++) { |
| 823 | ggml_vec_set_bf16(n: nc, x: (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value)); |
| 824 | } |
| 825 | } break; |
| 826 | case GGML_TYPE_F32: |
| 827 | { |
| 828 | assert(tensor->nb[0] == sizeof(float)); |
| 829 | for (int i = 0; i < n; i++) { |
| 830 | ggml_vec_set_f32(n: nc, x: (float *)(data + i*n1), v: value); |
| 831 | } |
| 832 | } break; |
| 833 | default: |
| 834 | { |
| 835 | GGML_ABORT("fatal error" ); |
| 836 | } |
| 837 | } |
| 838 | |
| 839 | return tensor; |
| 840 | } |
| 841 | |
| 842 | int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) { |
| 843 | if (!ggml_is_contiguous(tensor)) { |
| 844 | int64_t id[4] = { 0, 0, 0, 0 }; |
| 845 | ggml_unravel_index(tensor, i, i0: &id[0], i1: &id[1], i2: &id[2], i3: &id[3]); |
| 846 | return ggml_get_i32_nd(tensor, i0: id[0], i1: id[1], i2: id[2], i3: id[3]); |
| 847 | } |
| 848 | switch (tensor->type) { |
| 849 | case GGML_TYPE_I8: |
| 850 | { |
| 851 | GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); |
| 852 | return ((int8_t *)(tensor->data))[i]; |
| 853 | } |
| 854 | case GGML_TYPE_I16: |
| 855 | { |
| 856 | GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); |
| 857 | return ((int16_t *)(tensor->data))[i]; |
| 858 | } |
| 859 | case GGML_TYPE_I32: |
| 860 | { |
| 861 | GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); |
| 862 | return ((int32_t *)(tensor->data))[i]; |
| 863 | } |
| 864 | case GGML_TYPE_F16: |
| 865 | { |
| 866 | GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); |
| 867 | return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]); |
| 868 | } |
| 869 | case GGML_TYPE_BF16: |
| 870 | { |
| 871 | GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t)); |
| 872 | return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]); |
| 873 | } |
| 874 | case GGML_TYPE_F32: |
| 875 | { |
| 876 | GGML_ASSERT(tensor->nb[0] == sizeof(float)); |
| 877 | return ((float *)(tensor->data))[i]; |
| 878 | } |
| 879 | default: |
| 880 | { |
| 881 | GGML_ABORT("fatal error" ); |
| 882 | } |
| 883 | } |
| 884 | } |
| 885 | |
| 886 | void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) { |
| 887 | if (!ggml_is_contiguous(tensor)) { |
| 888 | int64_t id[4] = { 0, 0, 0, 0 }; |
| 889 | ggml_unravel_index(tensor, i, i0: &id[0], i1: &id[1], i2: &id[2], i3: &id[3]); |
| 890 | ggml_set_i32_nd(tensor, i0: id[0], i1: id[1], i2: id[2], i3: id[3], value); |
| 891 | return; |
| 892 | } |
| 893 | switch (tensor->type) { |
| 894 | case GGML_TYPE_I8: |
| 895 | { |
| 896 | GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); |
| 897 | ((int8_t *)(tensor->data))[i] = value; |
| 898 | } break; |
| 899 | case GGML_TYPE_I16: |
| 900 | { |
| 901 | GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); |
| 902 | ((int16_t *)(tensor->data))[i] = value; |
| 903 | } break; |
| 904 | case GGML_TYPE_I32: |
| 905 | { |
| 906 | GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); |
| 907 | ((int32_t *)(tensor->data))[i] = value; |
| 908 | } break; |
| 909 | case GGML_TYPE_F16: |
| 910 | { |
| 911 | GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); |
| 912 | ((ggml_fp16_t *)(tensor->data))[i] = GGML_CPU_FP32_TO_FP16(value); |
| 913 | } break; |
| 914 | case GGML_TYPE_BF16: |
| 915 | { |
| 916 | GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t)); |
| 917 | ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value); |
| 918 | } break; |
| 919 | case GGML_TYPE_F32: |
| 920 | { |
| 921 | GGML_ASSERT(tensor->nb[0] == sizeof(float)); |
| 922 | ((float *)(tensor->data))[i] = value; |
| 923 | } break; |
| 924 | default: |
| 925 | { |
| 926 | GGML_ABORT("fatal error" ); |
| 927 | } |
| 928 | } |
| 929 | } |
| 930 | |
| 931 | int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) { |
| 932 | void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; |
| 933 | switch (tensor->type) { |
| 934 | case GGML_TYPE_I8: |
| 935 | return ((int8_t *) data)[0]; |
| 936 | case GGML_TYPE_I16: |
| 937 | return ((int16_t *) data)[0]; |
| 938 | case GGML_TYPE_I32: |
| 939 | return ((int32_t *) data)[0]; |
| 940 | case GGML_TYPE_F16: |
| 941 | return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *) data)[0]); |
| 942 | case GGML_TYPE_BF16: |
| 943 | return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]); |
| 944 | case GGML_TYPE_F32: |
| 945 | return ((float *) data)[0]; |
| 946 | default: |
| 947 | GGML_ABORT("fatal error" ); |
| 948 | } |
| 949 | } |
| 950 | |
| 951 | void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) { |
| 952 | void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; |
| 953 | switch (tensor->type) { |
| 954 | case GGML_TYPE_I8: |
| 955 | { |
| 956 | ((int8_t *)(data))[0] = value; |
| 957 | } break; |
| 958 | case GGML_TYPE_I16: |
| 959 | { |
| 960 | ((int16_t *)(data))[0] = value; |
| 961 | } break; |
| 962 | case GGML_TYPE_I32: |
| 963 | { |
| 964 | ((int32_t *)(data))[0] = value; |
| 965 | } break; |
| 966 | case GGML_TYPE_F16: |
| 967 | { |
| 968 | ((ggml_fp16_t *)(data))[0] = GGML_CPU_FP32_TO_FP16(value); |
| 969 | } break; |
| 970 | case GGML_TYPE_BF16: |
| 971 | { |
| 972 | ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value); |
| 973 | } break; |
| 974 | case GGML_TYPE_F32: |
| 975 | { |
| 976 | ((float *)(data))[0] = value; |
| 977 | } break; |
| 978 | default: |
| 979 | { |
| 980 | GGML_ABORT("fatal error" ); |
| 981 | } |
| 982 | } |
| 983 | } |
| 984 | |
| 985 | float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { |
| 986 | if (!ggml_is_contiguous(tensor)) { |
| 987 | int64_t id[4] = { 0, 0, 0, 0 }; |
| 988 | ggml_unravel_index(tensor, i, i0: &id[0], i1: &id[1], i2: &id[2], i3: &id[3]); |
| 989 | return ggml_get_f32_nd(tensor, i0: id[0], i1: id[1], i2: id[2], i3: id[3]); |
| 990 | } |
| 991 | switch (tensor->type) { |
| 992 | case GGML_TYPE_I8: |
| 993 | { |
| 994 | return ((int8_t *)(tensor->data))[i]; |
| 995 | } |
| 996 | case GGML_TYPE_I16: |
| 997 | { |
| 998 | return ((int16_t *)(tensor->data))[i]; |
| 999 | } |
| 1000 | case GGML_TYPE_I32: |
| 1001 | { |
| 1002 | return ((int32_t *)(tensor->data))[i]; |
| 1003 | } |
| 1004 | case GGML_TYPE_F16: |
| 1005 | { |
| 1006 | return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]); |
| 1007 | } |
| 1008 | case GGML_TYPE_BF16: |
| 1009 | { |
| 1010 | return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]); |
| 1011 | } |
| 1012 | case GGML_TYPE_F32: |
| 1013 | { |
| 1014 | return ((float *)(tensor->data))[i]; |
| 1015 | } |
| 1016 | default: |
| 1017 | { |
| 1018 | GGML_ABORT("fatal error" ); |
| 1019 | } |
| 1020 | } |
| 1021 | } |
| 1022 | |
| 1023 | void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) { |
| 1024 | if (!ggml_is_contiguous(tensor)) { |
| 1025 | int64_t id[4] = { 0, 0, 0, 0 }; |
| 1026 | ggml_unravel_index(tensor, i, i0: &id[0], i1: &id[1], i2: &id[2], i3: &id[3]); |
| 1027 | ggml_set_f32_nd(tensor, i0: id[0], i1: id[1], i2: id[2], i3: id[3], value); |
| 1028 | return; |
| 1029 | } |
| 1030 | switch (tensor->type) { |
| 1031 | case GGML_TYPE_I8: |
| 1032 | { |
| 1033 | ((int8_t *)(tensor->data))[i] = value; |
| 1034 | } break; |
| 1035 | case GGML_TYPE_I16: |
| 1036 | { |
| 1037 | ((int16_t *)(tensor->data))[i] = value; |
| 1038 | } break; |
| 1039 | case GGML_TYPE_I32: |
| 1040 | { |
| 1041 | ((int32_t *)(tensor->data))[i] = value; |
| 1042 | } break; |
| 1043 | case GGML_TYPE_F16: |
| 1044 | { |
| 1045 | ((ggml_fp16_t *)(tensor->data))[i] = GGML_CPU_FP32_TO_FP16(value); |
| 1046 | } break; |
| 1047 | case GGML_TYPE_BF16: |
| 1048 | { |
| 1049 | ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value); |
| 1050 | } break; |
| 1051 | case GGML_TYPE_F32: |
| 1052 | { |
| 1053 | ((float *)(tensor->data))[i] = value; |
| 1054 | } break; |
| 1055 | default: |
| 1056 | { |
| 1057 | GGML_ABORT("fatal error" ); |
| 1058 | } |
| 1059 | } |
| 1060 | } |
| 1061 | |
| 1062 | float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) { |
| 1063 | void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; |
| 1064 | switch (tensor->type) { |
| 1065 | case GGML_TYPE_I8: |
| 1066 | return ((int8_t *) data)[0]; |
| 1067 | case GGML_TYPE_I16: |
| 1068 | return ((int16_t *) data)[0]; |
| 1069 | case GGML_TYPE_I32: |
| 1070 | return ((int32_t *) data)[0]; |
| 1071 | case GGML_TYPE_F16: |
| 1072 | return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *) data)[0]); |
| 1073 | case GGML_TYPE_BF16: |
| 1074 | return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]); |
| 1075 | case GGML_TYPE_F32: |
| 1076 | return ((float *) data)[0]; |
| 1077 | default: |
| 1078 | GGML_ABORT("fatal error" ); |
| 1079 | } |
| 1080 | } |
| 1081 | |
| 1082 | void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) { |
| 1083 | void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; |
| 1084 | switch (tensor->type) { |
| 1085 | case GGML_TYPE_I8: |
| 1086 | { |
| 1087 | ((int8_t *)(data))[0] = value; |
| 1088 | } break; |
| 1089 | case GGML_TYPE_I16: |
| 1090 | { |
| 1091 | ((int16_t *)(data))[0] = value; |
| 1092 | } break; |
| 1093 | case GGML_TYPE_I32: |
| 1094 | { |
| 1095 | ((int32_t *)(data))[0] = value; |
| 1096 | } break; |
| 1097 | case GGML_TYPE_F16: |
| 1098 | { |
| 1099 | ((ggml_fp16_t *)(data))[0] = GGML_CPU_FP32_TO_FP16(value); |
| 1100 | } break; |
| 1101 | case GGML_TYPE_BF16: |
| 1102 | { |
| 1103 | ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value); |
| 1104 | } break; |
| 1105 | case GGML_TYPE_F32: |
| 1106 | { |
| 1107 | ((float *)(data))[0] = value; |
| 1108 | } break; |
| 1109 | default: |
| 1110 | { |
| 1111 | GGML_ABORT("fatal error" ); |
| 1112 | } |
| 1113 | } |
| 1114 | } |
| 1115 | |
| 1116 | //////////////////////////////////////////////////////////////////////////////// |
| 1117 | |
| 1118 | // ggml_compute_forward_mul_mat |
| 1119 | |
| 1120 | static void ggml_compute_forward_mul_mat_one_chunk( |
| 1121 | const struct ggml_compute_params * params, |
| 1122 | struct ggml_tensor * dst, |
| 1123 | const enum ggml_type type, |
| 1124 | const int64_t num_rows_per_vec_dot, |
| 1125 | const int64_t ir0_start, |
| 1126 | const int64_t ir0_end, |
| 1127 | const int64_t ir1_start, |
| 1128 | const int64_t ir1_end) { |
| 1129 | |
| 1130 | const struct ggml_tensor * src0 = dst->src[0]; |
| 1131 | const struct ggml_tensor * src1 = dst->src[1]; |
| 1132 | |
| 1133 | GGML_TENSOR_BINARY_OP_LOCALS |
| 1134 | |
| 1135 | const bool src1_cont = ggml_is_contiguous(tensor: src1); |
| 1136 | |
| 1137 | ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot; |
| 1138 | enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type; |
| 1139 | |
| 1140 | // broadcast factors |
| 1141 | const int64_t r2 = ne12 / ne02; |
| 1142 | const int64_t r3 = ne13 / ne03; |
| 1143 | |
| 1144 | //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end); |
| 1145 | |
| 1146 | // threads with no work simply yield (not sure if it helps) |
| 1147 | if (ir0_start >= ir0_end || ir1_start >= ir1_end) { |
| 1148 | return; |
| 1149 | } |
| 1150 | |
| 1151 | const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; |
| 1152 | const size_t row_size = ggml_row_size(type: vec_dot_type, ne: ne10); |
| 1153 | |
| 1154 | assert(ne12 % ne02 == 0); |
| 1155 | assert(ne13 % ne03 == 0); |
| 1156 | |
| 1157 | // block-tiling attempt |
| 1158 | const int64_t blck_0 = 16; |
| 1159 | const int64_t blck_1 = 16; |
| 1160 | |
| 1161 | const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11; |
| 1162 | |
| 1163 | // attempt to reduce false-sharing (does not seem to make a difference) |
| 1164 | // 16 * 2, accounting for mmla kernels |
| 1165 | float tmp[32]; |
| 1166 | |
| 1167 | for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) { |
| 1168 | for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) { |
| 1169 | for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) { |
| 1170 | const int64_t i13 = (ir1 / (ne12 * ne1)); |
| 1171 | const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1; |
| 1172 | const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1); |
| 1173 | |
| 1174 | // broadcast src0 into src1 |
| 1175 | const int64_t i03 = i13 / r3; |
| 1176 | const int64_t i02 = i12 / r2; |
| 1177 | |
| 1178 | const int64_t i1 = i11; |
| 1179 | const int64_t i2 = i12; |
| 1180 | const int64_t i3 = i13; |
| 1181 | |
| 1182 | const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03); |
| 1183 | |
| 1184 | // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides |
| 1185 | // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using |
| 1186 | // the original src1 data pointer, so we should index using the indices directly |
| 1187 | // TODO: this is a bit of a hack, we should probably have a better way to handle this |
| 1188 | const char * src1_col = (const char*)wdata + |
| 1189 | (src1_cont || src1->type != vec_dot_type |
| 1190 | ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size |
| 1191 | : (i11 * nb11 + i12 * nb12 + i13 * nb13)); |
| 1192 | float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3)); |
| 1193 | |
| 1194 | //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) { |
| 1195 | // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col); |
| 1196 | //} |
| 1197 | |
| 1198 | for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) { |
| 1199 | vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot); |
| 1200 | } |
| 1201 | |
| 1202 | for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) { |
| 1203 | memcpy(dest: &dst_col[iir0 + cn * nb1 / nb0], src: tmp + (cn * 16), n: (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float)); |
| 1204 | } |
| 1205 | } |
| 1206 | } |
| 1207 | } |
| 1208 | } |
| 1209 | |
| 1210 | void ggml_compute_forward_mul_mat( |
| 1211 | const struct ggml_compute_params * params, |
| 1212 | struct ggml_tensor * dst) { |
| 1213 | |
| 1214 | const struct ggml_tensor * src0 = dst->src[0]; |
| 1215 | const struct ggml_tensor * src1 = dst->src[1]; |
| 1216 | |
| 1217 | GGML_TENSOR_BINARY_OP_LOCALS |
| 1218 | |
| 1219 | const int ith = params->ith; |
| 1220 | const int nth = params->nth; |
| 1221 | |
| 1222 | enum ggml_type const vec_dot_type = type_traits_cpu[src0->type].vec_dot_type; |
| 1223 | ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float; |
| 1224 | int64_t const vec_dot_num_rows = type_traits_cpu[src0->type].nrows; |
| 1225 | |
| 1226 | GGML_ASSERT(ne0 == ne01); |
| 1227 | GGML_ASSERT(ne1 == ne11); |
| 1228 | GGML_ASSERT(ne2 == ne12); |
| 1229 | GGML_ASSERT(ne3 == ne13); |
| 1230 | |
| 1231 | // we don't support permuted src0 or src1 |
| 1232 | GGML_ASSERT(nb00 == ggml_type_size(src0->type)); |
| 1233 | GGML_ASSERT(nb10 == ggml_type_size(src1->type)); |
| 1234 | |
| 1235 | // dst cannot be transposed or permuted |
| 1236 | GGML_ASSERT(nb0 == sizeof(float)); |
| 1237 | GGML_ASSERT(nb0 <= nb1); |
| 1238 | GGML_ASSERT(nb1 <= nb2); |
| 1239 | GGML_ASSERT(nb2 <= nb3); |
| 1240 | |
| 1241 | // nb01 >= nb00 - src0 is not transposed |
| 1242 | // compute by src0 rows |
| 1243 | |
| 1244 | // TODO: extract to "extra_op" |
| 1245 | #if GGML_USE_LLAMAFILE |
| 1246 | // broadcast factors |
| 1247 | const int64_t r2 = ne12 / ne02; |
| 1248 | const int64_t r3 = ne13 / ne03; |
| 1249 | |
| 1250 | const bool src1_cont = ggml_is_contiguous(tensor: src1); |
| 1251 | |
| 1252 | if (src1_cont) { |
| 1253 | for (int64_t i13 = 0; i13 < ne13; i13++) |
| 1254 | for (int64_t i12 = 0; i12 < ne12; i12++) |
| 1255 | if (!llamafile_sgemm(params, |
| 1256 | ne01, ne11, ne00/ggml_blck_size(type: src0->type), |
| 1257 | (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, |
| 1258 | nb01/ggml_type_size(type: src0->type), |
| 1259 | (const char *)src1->data + i12*nb12 + i13*nb13, |
| 1260 | nb11/ggml_type_size(type: src1->type), |
| 1261 | (char *)dst->data + i12*nb2 + i13*nb3, |
| 1262 | nb1/ggml_type_size(type: dst->type), |
| 1263 | src0->type, |
| 1264 | src1->type, |
| 1265 | dst->type)) |
| 1266 | goto UseGgmlGemm1; |
| 1267 | return; |
| 1268 | } |
| 1269 | UseGgmlGemm1:; |
| 1270 | #endif |
| 1271 | |
| 1272 | if (src1->type != vec_dot_type) { |
| 1273 | char * wdata = params->wdata; |
| 1274 | |
| 1275 | const size_t nbw0 = ggml_type_size(type: vec_dot_type); |
| 1276 | const size_t nbw1 = ggml_row_size(type: vec_dot_type, ne: ne10); |
| 1277 | const size_t nbw2 = nbw1*ne11; |
| 1278 | const size_t nbw3 = nbw2*ne12; |
| 1279 | |
| 1280 | assert(params->wsize >= ne13*nbw3); |
| 1281 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
| 1282 | |
| 1283 | #if 0 |
| 1284 | for (int64_t i13 = 0; i13 < ne13; ++i13) { |
| 1285 | for (int64_t i12 = 0; i12 < ne12; ++i12) { |
| 1286 | for (int64_t i11 = ith; i11 < ne11; i11 += nth) { |
| 1287 | from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), |
| 1288 | (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1), |
| 1289 | ne10); |
| 1290 | } |
| 1291 | } |
| 1292 | } |
| 1293 | #else |
| 1294 | for (int64_t i13 = 0; i13 < ne13; ++i13) { |
| 1295 | for (int64_t i12 = 0; i12 < ne12; ++i12) { |
| 1296 | for (int64_t i11 = 0; i11 < ne11; ++i11) { |
| 1297 | size_t bs = ggml_blck_size(type: vec_dot_type); |
| 1298 | int64_t ne10_block_start = (ith * ne10/bs) / nth; |
| 1299 | int64_t ne10_block_end = ((ith + 1) * ne10/bs) / nth; |
| 1300 | from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + ne10_block_start*bs*nb10), |
| 1301 | (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1 + ne10_block_start*nbw0), |
| 1302 | (ne10_block_end - ne10_block_start) * bs); |
| 1303 | } |
| 1304 | } |
| 1305 | } |
| 1306 | #endif |
| 1307 | } |
| 1308 | |
| 1309 | if (ith == 0) { |
| 1310 | // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start. |
| 1311 | atomic_store_explicit(¶ms->threadpool->current_chunk, nth, memory_order_relaxed); |
| 1312 | } |
| 1313 | |
| 1314 | ggml_barrier(tp: params->threadpool); |
| 1315 | |
| 1316 | #if GGML_USE_LLAMAFILE |
| 1317 | if (src1->type != vec_dot_type) { |
| 1318 | const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; |
| 1319 | const size_t row_size = ggml_row_size(type: vec_dot_type, ne: ne10); |
| 1320 | |
| 1321 | for (int64_t i13 = 0; i13 < ne13; i13++) |
| 1322 | for (int64_t i12 = 0; i12 < ne12; i12++) |
| 1323 | if (!llamafile_sgemm(params, |
| 1324 | ne01, ne11, ne00/ggml_blck_size(type: src0->type), |
| 1325 | (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, |
| 1326 | nb01/ggml_type_size(type: src0->type), |
| 1327 | (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size, |
| 1328 | row_size/ggml_type_size(type: vec_dot_type), |
| 1329 | (char *)dst->data + i12*nb2 + i13*nb3, |
| 1330 | nb1/ggml_type_size(type: dst->type), |
| 1331 | src0->type, |
| 1332 | vec_dot_type, |
| 1333 | dst->type)) |
| 1334 | goto UseGgmlGemm2; |
| 1335 | return; |
| 1336 | } |
| 1337 | UseGgmlGemm2:; |
| 1338 | #endif |
| 1339 | |
| 1340 | // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers) |
| 1341 | const int64_t nr0 = ne0; |
| 1342 | |
| 1343 | // This is the size of the rest of the dimensions of the result |
| 1344 | const int64_t nr1 = ne1 * ne2 * ne3; |
| 1345 | |
| 1346 | // Now select a reasonable chunk size. |
| 1347 | int chunk_size = 16; |
| 1348 | |
| 1349 | // We need to step up the size if it's small |
| 1350 | if (nr0 == 1 || nr1 == 1) { |
| 1351 | chunk_size = 64; |
| 1352 | } |
| 1353 | |
| 1354 | // distribute the work across the inner or outer loop based on which one is larger |
| 1355 | // The number of chunks in the 0/1 dim. |
| 1356 | // CEIL(nr0/chunk_size) |
| 1357 | int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size; |
| 1358 | int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size; |
| 1359 | |
| 1360 | // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread. |
| 1361 | // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggml-org/llama.cpp/pull/6915 |
| 1362 | // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that. |
| 1363 | if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) { |
| 1364 | // distribute the thread work across the inner or outer loop based on which one is larger |
| 1365 | nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows |
| 1366 | nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows |
| 1367 | } |
| 1368 | |
| 1369 | // The number of elements in each chunk |
| 1370 | const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0; |
| 1371 | const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1; |
| 1372 | |
| 1373 | // The first chunk comes from our thread_id, the rest will get auto-assigned. |
| 1374 | int current_chunk = ith; |
| 1375 | |
| 1376 | while (current_chunk < nchunk0 * nchunk1) { |
| 1377 | const int64_t ith0 = current_chunk % nchunk0; |
| 1378 | const int64_t ith1 = current_chunk / nchunk0; |
| 1379 | |
| 1380 | const int64_t ir0_start = dr0 * ith0; |
| 1381 | const int64_t ir0_end = MIN(ir0_start + dr0, nr0); |
| 1382 | |
| 1383 | const int64_t ir1_start = dr1 * ith1; |
| 1384 | const int64_t ir1_end = MIN(ir1_start + dr1, nr1); |
| 1385 | |
| 1386 | // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols |
| 1387 | int64_t num_rows_per_vec_dot = vec_dot_num_rows; |
| 1388 | |
| 1389 | // these checks are needed to avoid crossing dim1 boundaries |
| 1390 | // can be optimized, but the logic would become more complicated, so keeping it like this for simplicity |
| 1391 | if ((nr0 % 2 != 0) || (ne11 % 2 != 0) || ((ir0_end - ir0_start) % 2 != 0) || ((ir1_end - ir1_start) % 2 != 0)) { |
| 1392 | num_rows_per_vec_dot = 1; |
| 1393 | } |
| 1394 | ggml_compute_forward_mul_mat_one_chunk(params, dst, type: src0->type, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end); |
| 1395 | |
| 1396 | if (nth >= nchunk0 * nchunk1) { |
| 1397 | break; |
| 1398 | } |
| 1399 | |
| 1400 | current_chunk = atomic_fetch_add_explicit(¶ms->threadpool->current_chunk, 1, memory_order_relaxed); |
| 1401 | } |
| 1402 | } |
| 1403 | |
| 1404 | // ggml_compute_forward_mul_mat_id |
| 1405 | |
| 1406 | #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ids->ne[0]*ids->ne[1] + (i1)] |
| 1407 | |
| 1408 | struct mmid_row_mapping { |
| 1409 | int32_t i1; |
| 1410 | int32_t i2; |
| 1411 | }; |
| 1412 | |
| 1413 | static void ggml_compute_forward_mul_mat_id_one_chunk( |
| 1414 | struct ggml_tensor * dst, |
| 1415 | const struct ggml_tensor * src0, |
| 1416 | const struct ggml_tensor * src1, |
| 1417 | const struct ggml_tensor * ids, |
| 1418 | const int64_t cur_a, |
| 1419 | const int64_t ir0_start, |
| 1420 | const int64_t ir0_end, |
| 1421 | const int64_t ir1_start, |
| 1422 | const int64_t ir1_end, |
| 1423 | const char * src0_cur, |
| 1424 | const struct mmid_row_mapping * matrix_rows, |
| 1425 | const size_t row_size, |
| 1426 | const bool src1_cont, |
| 1427 | const void * wdata) { |
| 1428 | |
| 1429 | GGML_TENSOR_BINARY_OP_LOCALS |
| 1430 | |
| 1431 | const enum ggml_type type = src0->type; |
| 1432 | |
| 1433 | ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot; |
| 1434 | enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type; |
| 1435 | |
| 1436 | const int64_t blck_0 = 16; |
| 1437 | const int64_t blck_1 = 16; |
| 1438 | |
| 1439 | float tmp[16]; |
| 1440 | |
| 1441 | for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) { |
| 1442 | for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) { |
| 1443 | for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ++ir1) { |
| 1444 | const int64_t _i12 = ir1; // logical row index for this expert |
| 1445 | |
| 1446 | struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12); |
| 1447 | const int id = row_mapping.i1; // selected expert index |
| 1448 | |
| 1449 | const int64_t i11 = id % ne11; |
| 1450 | const int64_t i12 = row_mapping.i2; // row index in src1 |
| 1451 | |
| 1452 | const int64_t i1 = id; // selected expert index |
| 1453 | const int64_t i2 = i12; // row |
| 1454 | |
| 1455 | // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides |
| 1456 | // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using |
| 1457 | // the original src1 data pointer, so we should index using the indices directly |
| 1458 | // TODO: this is a bit of a hack, we should probably have a better way to handle this |
| 1459 | const char * src1_col = (const char *) wdata + |
| 1460 | (src1_cont || src1->type != vec_dot_type |
| 1461 | ? (i11 + i12*ne11)*row_size |
| 1462 | : (i11*nb11 + i12*nb12)); |
| 1463 | |
| 1464 | float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2)); |
| 1465 | |
| 1466 | for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) { |
| 1467 | vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1); |
| 1468 | } |
| 1469 | |
| 1470 | memcpy(dest: &dst_col[iir0], src: tmp, n: (MIN(iir0 + blck_0, ir0_end) - iir0)*sizeof(float)); |
| 1471 | } |
| 1472 | } |
| 1473 | } |
| 1474 | } |
| 1475 | |
| 1476 | static void * incr_ptr_aligned(void ** p, size_t size, size_t align) { |
| 1477 | |
| 1478 | void * ptr = *p; |
| 1479 | ptr = (void *) GGML_PAD((uintptr_t) ptr, align); |
| 1480 | *p = (void *) ((char *) ptr + size); |
| 1481 | return ptr; |
| 1482 | } |
| 1483 | |
| 1484 | static void ggml_compute_forward_mul_mat_id( |
| 1485 | const struct ggml_compute_params * params, |
| 1486 | struct ggml_tensor * dst) { |
| 1487 | |
| 1488 | const struct ggml_tensor * src0 = dst->src[0]; |
| 1489 | const struct ggml_tensor * src1 = dst->src[1]; |
| 1490 | const struct ggml_tensor * ids = dst->src[2]; |
| 1491 | |
| 1492 | GGML_TENSOR_BINARY_OP_LOCALS |
| 1493 | |
| 1494 | const int ith = params->ith; |
| 1495 | const int nth = params->nth; |
| 1496 | |
| 1497 | const enum ggml_type type = src0->type; |
| 1498 | |
| 1499 | const bool src1_cont = ggml_is_contiguous(tensor: src1); |
| 1500 | |
| 1501 | enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type; |
| 1502 | ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float; |
| 1503 | |
| 1504 | // we don't support permuted src0 or src1 |
| 1505 | GGML_ASSERT(nb00 == ggml_type_size(type)); |
| 1506 | GGML_ASSERT(nb10 == ggml_type_size(src1->type)); |
| 1507 | |
| 1508 | // dst cannot be transposed or permuted |
| 1509 | GGML_ASSERT(nb0 == sizeof(float)); |
| 1510 | GGML_ASSERT(nb0 <= nb1); |
| 1511 | GGML_ASSERT(nb1 <= nb2); |
| 1512 | GGML_ASSERT(nb2 <= nb3); |
| 1513 | |
| 1514 | // row groups |
| 1515 | const int n_ids = ids->ne[0]; // n_expert_used |
| 1516 | const int n_as = ne02; // n_expert |
| 1517 | |
| 1518 | void * wdata_cur = params->wdata; |
| 1519 | |
| 1520 | if (src1->type != vec_dot_type) { |
| 1521 | incr_ptr_aligned(p: &wdata_cur, size: ggml_row_size(type: vec_dot_type, ne: ggml_nelements(tensor: src1)), align: sizeof(int64_t)); |
| 1522 | } |
| 1523 | |
| 1524 | int64_t * matrix_row_counts = // [n_as] |
| 1525 | incr_ptr_aligned(p: &wdata_cur, size: n_as*sizeof(int64_t), align: sizeof(int64_t)); |
| 1526 | |
| 1527 | struct mmid_row_mapping * matrix_rows = // [n_as][ids->ne[0]*ids->ne[1]] |
| 1528 | incr_ptr_aligned(p: &wdata_cur, size: n_as*ids->ne[0]*ids->ne[1]*sizeof(struct mmid_row_mapping), align: sizeof(int64_t)); |
| 1529 | |
| 1530 | char (*atomic_current_chunk)[CACHE_LINE_SIZE] = // [n_as] |
| 1531 | incr_ptr_aligned(p: &wdata_cur, CACHE_LINE_SIZE * n_as, CACHE_LINE_SIZE); |
| 1532 | |
| 1533 | GGML_ASSERT(params->wsize >= (size_t)((char *) wdata_cur - (char *) params->wdata)); |
| 1534 | |
| 1535 | if (src1->type != vec_dot_type) { |
| 1536 | char * wdata = params->wdata; |
| 1537 | |
| 1538 | const size_t nbw0 = ggml_type_size(type: vec_dot_type); |
| 1539 | const size_t nbw1 = ggml_row_size(type: vec_dot_type, ne: ne10); |
| 1540 | const size_t nbw2 = nbw1*ne11; |
| 1541 | const size_t nbw3 = nbw2*ne12; |
| 1542 | |
| 1543 | assert(params->wsize >= ne13*nbw3); |
| 1544 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
| 1545 | |
| 1546 | #if 0 |
| 1547 | for (int64_t i13 = 0; i13 < ne13; ++i13) { |
| 1548 | for (int64_t i12 = ith; i12 < ne12; i12 += nth) { |
| 1549 | for (int64_t i11 = 0; i11 < ne11; ++i11) { |
| 1550 | from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), |
| 1551 | (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1), |
| 1552 | ne10); |
| 1553 | } |
| 1554 | } |
| 1555 | } |
| 1556 | #else |
| 1557 | for (int64_t i13 = 0; i13 < ne13; ++i13) { |
| 1558 | for (int64_t i12 = 0; i12 < ne12; ++i12) { |
| 1559 | for (int64_t i11 = 0; i11 < ne11; ++i11) { |
| 1560 | size_t bs = ggml_blck_size(type: vec_dot_type); |
| 1561 | int64_t ne10_block_start = (ith * ne10/bs) / nth; |
| 1562 | int64_t ne10_block_end = ((ith + 1) * ne10/bs) / nth; |
| 1563 | from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + ne10_block_start*bs*nb10), |
| 1564 | (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1 + ne10_block_start*nbw0), |
| 1565 | (ne10_block_end - ne10_block_start) * bs); |
| 1566 | } |
| 1567 | } |
| 1568 | } |
| 1569 | #endif |
| 1570 | } |
| 1571 | |
| 1572 | if (ith == 0) { |
| 1573 | // initialize matrix_row_counts |
| 1574 | memset(s: matrix_row_counts, c: 0, n: n_as*sizeof(int64_t)); |
| 1575 | |
| 1576 | // group rows by src0 matrix |
| 1577 | for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) { |
| 1578 | for (int id = 0; id < n_ids; ++id) { |
| 1579 | const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]); |
| 1580 | |
| 1581 | assert(i02 >= 0 && i02 < n_as); |
| 1582 | |
| 1583 | MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1}; |
| 1584 | matrix_row_counts[i02] += 1; |
| 1585 | } |
| 1586 | } |
| 1587 | } |
| 1588 | |
| 1589 | // reset current_chunk |
| 1590 | for (int cur_a = ith; cur_a < n_as; cur_a += nth) { |
| 1591 | atomic_int * current_chunk_ctr = (atomic_int *)(atomic_current_chunk + cur_a); |
| 1592 | *current_chunk_ctr = nth; |
| 1593 | } |
| 1594 | |
| 1595 | ggml_barrier(tp: params->threadpool); |
| 1596 | |
| 1597 | for (int cur_a = 0; cur_a < n_as; ++cur_a) { |
| 1598 | const int64_t cne1 = matrix_row_counts[cur_a]; |
| 1599 | |
| 1600 | if (cne1 == 0) { |
| 1601 | continue; |
| 1602 | } |
| 1603 | |
| 1604 | const char * src0_cur = (const char *) src0->data + cur_a * nb02; |
| 1605 | const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; |
| 1606 | const size_t row_size = ggml_row_size(type: vec_dot_type, ne: ne10); |
| 1607 | |
| 1608 | const int64_t nr0 = ne01; |
| 1609 | const int64_t nr1 = cne1; |
| 1610 | |
| 1611 | int chunk_size = 16; |
| 1612 | if (nr0 == 1 || nr1 == 1) { |
| 1613 | chunk_size = 64; |
| 1614 | } |
| 1615 | |
| 1616 | // disable for NUMA |
| 1617 | const bool disable_chunking = ggml_is_numa(); |
| 1618 | |
| 1619 | int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size; |
| 1620 | int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size; |
| 1621 | |
| 1622 | if (nchunk0 * nchunk1 < nth * 4 || disable_chunking) { |
| 1623 | nchunk0 = nr0 > nr1 ? nth : 1; |
| 1624 | nchunk1 = nr0 > nr1 ? 1 : nth; |
| 1625 | } |
| 1626 | |
| 1627 | const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0; |
| 1628 | const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1; |
| 1629 | |
| 1630 | int current_chunk = ith; |
| 1631 | |
| 1632 | atomic_int * current_chunk_ctr = (atomic_int *)(atomic_current_chunk + cur_a); |
| 1633 | |
| 1634 | while (current_chunk < nchunk0 * nchunk1) { |
| 1635 | const int64_t ith0 = current_chunk % nchunk0; |
| 1636 | const int64_t ith1 = current_chunk / nchunk0; |
| 1637 | |
| 1638 | const int64_t ir0_start = dr0 * ith0; |
| 1639 | const int64_t ir0_end = MIN(ir0_start + dr0, nr0); |
| 1640 | |
| 1641 | const int64_t ir1_start = dr1 * ith1; |
| 1642 | const int64_t ir1_end = MIN(ir1_start + dr1, nr1); |
| 1643 | |
| 1644 | ggml_compute_forward_mul_mat_id_one_chunk( |
| 1645 | dst, src0, src1, ids, cur_a, |
| 1646 | ir0_start, ir0_end, ir1_start, ir1_end, |
| 1647 | src0_cur, matrix_rows, row_size, src1_cont, wdata |
| 1648 | ); |
| 1649 | |
| 1650 | if (nth >= nchunk0 * nchunk1) { |
| 1651 | break; |
| 1652 | } |
| 1653 | |
| 1654 | current_chunk = atomic_fetch_add_explicit(current_chunk_ctr, 1, memory_order_relaxed); |
| 1655 | } |
| 1656 | } |
| 1657 | } |
| 1658 | |
| 1659 | ///////////////////////////////// |
| 1660 | |
| 1661 | static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { |
| 1662 | GGML_ASSERT(params); |
| 1663 | |
| 1664 | if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) { |
| 1665 | return; |
| 1666 | } |
| 1667 | |
| 1668 | // extra_buffer op? |
| 1669 | if (ggml_cpu_extra_compute_forward(params, op: tensor)) { |
| 1670 | return; |
| 1671 | } |
| 1672 | |
| 1673 | switch (tensor->op) { |
| 1674 | case GGML_OP_DUP: |
| 1675 | { |
| 1676 | ggml_compute_forward_dup(params, dst: tensor); |
| 1677 | } break; |
| 1678 | case GGML_OP_ADD: |
| 1679 | { |
| 1680 | ggml_compute_forward_add(params, dst: tensor); |
| 1681 | } break; |
| 1682 | case GGML_OP_ADD_ID: |
| 1683 | { |
| 1684 | ggml_compute_forward_add_id(params, dst: tensor); |
| 1685 | } break; |
| 1686 | case GGML_OP_ADD1: |
| 1687 | { |
| 1688 | ggml_compute_forward_add1(params, dst: tensor); |
| 1689 | } break; |
| 1690 | case GGML_OP_ACC: |
| 1691 | { |
| 1692 | ggml_compute_forward_acc(params, dst: tensor); |
| 1693 | } break; |
| 1694 | case GGML_OP_SUB: |
| 1695 | { |
| 1696 | ggml_compute_forward_sub(params, dst: tensor); |
| 1697 | } break; |
| 1698 | case GGML_OP_MUL: |
| 1699 | { |
| 1700 | ggml_compute_forward_mul(params, dst: tensor); |
| 1701 | } break; |
| 1702 | case GGML_OP_DIV: |
| 1703 | { |
| 1704 | ggml_compute_forward_div(params, dst: tensor); |
| 1705 | } break; |
| 1706 | case GGML_OP_SQR: |
| 1707 | { |
| 1708 | ggml_compute_forward_sqr(params, dst: tensor); |
| 1709 | } break; |
| 1710 | case GGML_OP_SQRT: |
| 1711 | { |
| 1712 | ggml_compute_forward_sqrt(params, dst: tensor); |
| 1713 | } break; |
| 1714 | case GGML_OP_LOG: |
| 1715 | { |
| 1716 | ggml_compute_forward_log(params, dst: tensor); |
| 1717 | } break; |
| 1718 | case GGML_OP_SIN: |
| 1719 | { |
| 1720 | ggml_compute_forward_sin(params, dst: tensor); |
| 1721 | } break; |
| 1722 | case GGML_OP_COS: |
| 1723 | { |
| 1724 | ggml_compute_forward_cos(params, dst: tensor); |
| 1725 | } break; |
| 1726 | case GGML_OP_SUM: |
| 1727 | { |
| 1728 | ggml_compute_forward_sum(params, dst: tensor); |
| 1729 | } break; |
| 1730 | case GGML_OP_SUM_ROWS: |
| 1731 | { |
| 1732 | ggml_compute_forward_sum_rows(params, dst: tensor); |
| 1733 | } break; |
| 1734 | case GGML_OP_MEAN: |
| 1735 | { |
| 1736 | ggml_compute_forward_mean(params, dst: tensor); |
| 1737 | } break; |
| 1738 | case GGML_OP_ARGMAX: |
| 1739 | { |
| 1740 | ggml_compute_forward_argmax(params, dst: tensor); |
| 1741 | } break; |
| 1742 | case GGML_OP_COUNT_EQUAL: |
| 1743 | { |
| 1744 | ggml_compute_forward_count_equal(params, dst: tensor); |
| 1745 | } break; |
| 1746 | case GGML_OP_REPEAT: |
| 1747 | { |
| 1748 | ggml_compute_forward_repeat(params, dst: tensor); |
| 1749 | } break; |
| 1750 | case GGML_OP_REPEAT_BACK: |
| 1751 | { |
| 1752 | ggml_compute_forward_repeat_back(params, dst: tensor); |
| 1753 | } break; |
| 1754 | case GGML_OP_CONCAT: |
| 1755 | { |
| 1756 | ggml_compute_forward_concat(params, dst: tensor); |
| 1757 | } break; |
| 1758 | case GGML_OP_SILU_BACK: |
| 1759 | { |
| 1760 | ggml_compute_forward_silu_back(params, dst: tensor); |
| 1761 | } break; |
| 1762 | case GGML_OP_NORM: |
| 1763 | { |
| 1764 | ggml_compute_forward_norm(params, dst: tensor); |
| 1765 | } break; |
| 1766 | case GGML_OP_RMS_NORM: |
| 1767 | { |
| 1768 | ggml_compute_forward_rms_norm(params, dst: tensor); |
| 1769 | } break; |
| 1770 | case GGML_OP_RMS_NORM_BACK: |
| 1771 | { |
| 1772 | ggml_compute_forward_rms_norm_back(params, dst: tensor); |
| 1773 | } break; |
| 1774 | case GGML_OP_GROUP_NORM: |
| 1775 | { |
| 1776 | ggml_compute_forward_group_norm(params, dst: tensor); |
| 1777 | } break; |
| 1778 | case GGML_OP_L2_NORM: |
| 1779 | { |
| 1780 | ggml_compute_forward_l2_norm(params, dst: tensor); |
| 1781 | } break; |
| 1782 | case GGML_OP_MUL_MAT: |
| 1783 | { |
| 1784 | ggml_compute_forward_mul_mat(params, dst: tensor); |
| 1785 | } break; |
| 1786 | case GGML_OP_MUL_MAT_ID: |
| 1787 | { |
| 1788 | ggml_compute_forward_mul_mat_id(params, dst: tensor); |
| 1789 | } break; |
| 1790 | case GGML_OP_OUT_PROD: |
| 1791 | { |
| 1792 | ggml_compute_forward_out_prod(params, dst: tensor); |
| 1793 | } break; |
| 1794 | case GGML_OP_SCALE: |
| 1795 | { |
| 1796 | ggml_compute_forward_scale(params, dst: tensor); |
| 1797 | } break; |
| 1798 | case GGML_OP_SET: |
| 1799 | { |
| 1800 | ggml_compute_forward_set(params, dst: tensor); |
| 1801 | } break; |
| 1802 | case GGML_OP_CPY: |
| 1803 | { |
| 1804 | ggml_compute_forward_cpy(params, dst: tensor); |
| 1805 | } break; |
| 1806 | case GGML_OP_CONT: |
| 1807 | { |
| 1808 | ggml_compute_forward_cont(params, dst: tensor); |
| 1809 | } break; |
| 1810 | case GGML_OP_RESHAPE: |
| 1811 | { |
| 1812 | ggml_compute_forward_reshape(params, dst: tensor); |
| 1813 | } break; |
| 1814 | case GGML_OP_VIEW: |
| 1815 | { |
| 1816 | ggml_compute_forward_view(params, dst: tensor); |
| 1817 | } break; |
| 1818 | case GGML_OP_PERMUTE: |
| 1819 | { |
| 1820 | ggml_compute_forward_permute(params, dst: tensor); |
| 1821 | } break; |
| 1822 | case GGML_OP_TRANSPOSE: |
| 1823 | { |
| 1824 | ggml_compute_forward_transpose(params, dst: tensor); |
| 1825 | } break; |
| 1826 | case GGML_OP_GET_ROWS: |
| 1827 | { |
| 1828 | ggml_compute_forward_get_rows(params, dst: tensor); |
| 1829 | } break; |
| 1830 | case GGML_OP_GET_ROWS_BACK: |
| 1831 | { |
| 1832 | ggml_compute_forward_get_rows_back(params, dst: tensor); |
| 1833 | } break; |
| 1834 | case GGML_OP_SET_ROWS: |
| 1835 | { |
| 1836 | ggml_compute_forward_set_rows(params, dst: tensor); |
| 1837 | } break; |
| 1838 | case GGML_OP_DIAG: |
| 1839 | { |
| 1840 | ggml_compute_forward_diag(params, dst: tensor); |
| 1841 | } break; |
| 1842 | case GGML_OP_DIAG_MASK_INF: |
| 1843 | { |
| 1844 | ggml_compute_forward_diag_mask_inf(params, dst: tensor); |
| 1845 | } break; |
| 1846 | case GGML_OP_DIAG_MASK_ZERO: |
| 1847 | { |
| 1848 | ggml_compute_forward_diag_mask_zero(params, dst: tensor); |
| 1849 | } break; |
| 1850 | case GGML_OP_SOFT_MAX: |
| 1851 | { |
| 1852 | ggml_compute_forward_soft_max(params, dst: tensor); |
| 1853 | } break; |
| 1854 | case GGML_OP_SOFT_MAX_BACK: |
| 1855 | { |
| 1856 | ggml_compute_forward_soft_max_ext_back(params, dst: tensor); |
| 1857 | } break; |
| 1858 | case GGML_OP_ROPE: |
| 1859 | { |
| 1860 | ggml_compute_forward_rope(params, dst: tensor); |
| 1861 | } break; |
| 1862 | case GGML_OP_ROPE_BACK: |
| 1863 | { |
| 1864 | ggml_compute_forward_rope_back(params, dst: tensor); |
| 1865 | } break; |
| 1866 | case GGML_OP_CLAMP: |
| 1867 | { |
| 1868 | ggml_compute_forward_clamp(params, dst: tensor); |
| 1869 | } break; |
| 1870 | case GGML_OP_CONV_TRANSPOSE_1D: |
| 1871 | { |
| 1872 | ggml_compute_forward_conv_transpose_1d(params, dst: tensor); |
| 1873 | } break; |
| 1874 | case GGML_OP_IM2COL: |
| 1875 | { |
| 1876 | ggml_compute_forward_im2col(params, dst: tensor); |
| 1877 | } break; |
| 1878 | case GGML_OP_IM2COL_BACK: |
| 1879 | { |
| 1880 | ggml_compute_forward_im2col_back_f32(params, dst: tensor); |
| 1881 | } break; |
| 1882 | case GGML_OP_IM2COL_3D: |
| 1883 | { |
| 1884 | ggml_compute_forward_im2col_3d(params, dst: tensor); |
| 1885 | } break; |
| 1886 | case GGML_OP_CONV_2D: |
| 1887 | { |
| 1888 | ggml_compute_forward_conv_2d(params, dst: tensor); |
| 1889 | } break; |
| 1890 | case GGML_OP_CONV_3D: |
| 1891 | { |
| 1892 | ggml_compute_forward_conv_3d(params, dst: tensor); |
| 1893 | } break; |
| 1894 | case GGML_OP_CONV_2D_DW: |
| 1895 | { |
| 1896 | ggml_compute_forward_conv_2d_dw(params, dst: tensor); |
| 1897 | } break; |
| 1898 | case GGML_OP_CONV_TRANSPOSE_2D: |
| 1899 | { |
| 1900 | ggml_compute_forward_conv_transpose_2d(params, dst: tensor); |
| 1901 | } break; |
| 1902 | case GGML_OP_POOL_1D: |
| 1903 | { |
| 1904 | ggml_compute_forward_pool_1d(params, dst: tensor); |
| 1905 | } break; |
| 1906 | case GGML_OP_POOL_2D: |
| 1907 | { |
| 1908 | ggml_compute_forward_pool_2d(params, dst: tensor); |
| 1909 | } break; |
| 1910 | case GGML_OP_POOL_2D_BACK: |
| 1911 | { |
| 1912 | ggml_compute_forward_pool_2d_back(params, dst: tensor); |
| 1913 | } break; |
| 1914 | case GGML_OP_UPSCALE: |
| 1915 | { |
| 1916 | ggml_compute_forward_upscale(params, dst: tensor); |
| 1917 | } break; |
| 1918 | case GGML_OP_PAD: |
| 1919 | { |
| 1920 | ggml_compute_forward_pad(params, dst: tensor); |
| 1921 | } break; |
| 1922 | case GGML_OP_PAD_REFLECT_1D: |
| 1923 | { |
| 1924 | ggml_compute_forward_pad_reflect_1d(params, dst: tensor); |
| 1925 | } break; |
| 1926 | case GGML_OP_ROLL: |
| 1927 | { |
| 1928 | ggml_compute_forward_roll(params, dst: tensor); |
| 1929 | } break; |
| 1930 | case GGML_OP_ARANGE: |
| 1931 | { |
| 1932 | ggml_compute_forward_arange(params, dst: tensor); |
| 1933 | } break; |
| 1934 | case GGML_OP_TIMESTEP_EMBEDDING: |
| 1935 | { |
| 1936 | ggml_compute_forward_timestep_embedding(params, dst: tensor); |
| 1937 | } break; |
| 1938 | case GGML_OP_ARGSORT: |
| 1939 | { |
| 1940 | ggml_compute_forward_argsort(params, dst: tensor); |
| 1941 | } break; |
| 1942 | case GGML_OP_LEAKY_RELU: |
| 1943 | { |
| 1944 | ggml_compute_forward_leaky_relu(params, dst: tensor); |
| 1945 | } break; |
| 1946 | case GGML_OP_FLASH_ATTN_EXT: |
| 1947 | { |
| 1948 | ggml_compute_forward_flash_attn_ext(params, dst: tensor); |
| 1949 | } break; |
| 1950 | case GGML_OP_FLASH_ATTN_BACK: |
| 1951 | { |
| 1952 | int32_t t = ggml_get_op_params_i32(tensor, i: 0); |
| 1953 | GGML_ASSERT(t == 0 || t == 1); |
| 1954 | bool masked = t != 0; |
| 1955 | ggml_compute_forward_flash_attn_back(params, masked, dst: tensor); |
| 1956 | } break; |
| 1957 | case GGML_OP_SSM_CONV: |
| 1958 | { |
| 1959 | ggml_compute_forward_ssm_conv(params, dst: tensor); |
| 1960 | } break; |
| 1961 | case GGML_OP_SSM_SCAN: |
| 1962 | { |
| 1963 | ggml_compute_forward_ssm_scan(params, dst: tensor); |
| 1964 | } break; |
| 1965 | case GGML_OP_WIN_PART: |
| 1966 | { |
| 1967 | ggml_compute_forward_win_part(params, dst: tensor); |
| 1968 | } break; |
| 1969 | case GGML_OP_WIN_UNPART: |
| 1970 | { |
| 1971 | ggml_compute_forward_win_unpart(params, dst: tensor); |
| 1972 | } break; |
| 1973 | case GGML_OP_UNARY: |
| 1974 | { |
| 1975 | ggml_compute_forward_unary(params, dst: tensor); |
| 1976 | } break; |
| 1977 | case GGML_OP_GLU: |
| 1978 | { |
| 1979 | ggml_compute_forward_glu(params, dst: tensor); |
| 1980 | } break; |
| 1981 | case GGML_OP_GET_REL_POS: |
| 1982 | { |
| 1983 | ggml_compute_forward_get_rel_pos(params, dst: tensor); |
| 1984 | } break; |
| 1985 | case GGML_OP_ADD_REL_POS: |
| 1986 | { |
| 1987 | ggml_compute_forward_add_rel_pos(params, dst: tensor); |
| 1988 | } break; |
| 1989 | case GGML_OP_RWKV_WKV6: |
| 1990 | { |
| 1991 | ggml_compute_forward_rwkv_wkv6(params, dst: tensor); |
| 1992 | } break; |
| 1993 | case GGML_OP_GATED_LINEAR_ATTN: |
| 1994 | { |
| 1995 | ggml_compute_forward_gla(params, dst: tensor); |
| 1996 | } break; |
| 1997 | case GGML_OP_RWKV_WKV7: |
| 1998 | { |
| 1999 | ggml_compute_forward_rwkv_wkv7(params, dst: tensor); |
| 2000 | } break; |
| 2001 | case GGML_OP_MAP_CUSTOM1: |
| 2002 | { |
| 2003 | ggml_compute_forward_map_custom1(params, dst: tensor); |
| 2004 | } |
| 2005 | break; |
| 2006 | case GGML_OP_MAP_CUSTOM2: |
| 2007 | { |
| 2008 | ggml_compute_forward_map_custom2(params, dst: tensor); |
| 2009 | } |
| 2010 | break; |
| 2011 | case GGML_OP_MAP_CUSTOM3: |
| 2012 | { |
| 2013 | ggml_compute_forward_map_custom3(params, dst: tensor); |
| 2014 | } |
| 2015 | break; |
| 2016 | case GGML_OP_CUSTOM: |
| 2017 | { |
| 2018 | ggml_compute_forward_custom(params, dst: tensor); |
| 2019 | } |
| 2020 | break; |
| 2021 | case GGML_OP_CROSS_ENTROPY_LOSS: |
| 2022 | { |
| 2023 | ggml_compute_forward_cross_entropy_loss(params, dst: tensor); |
| 2024 | } |
| 2025 | break; |
| 2026 | case GGML_OP_CROSS_ENTROPY_LOSS_BACK: |
| 2027 | { |
| 2028 | ggml_compute_forward_cross_entropy_loss_back(params, dst: tensor); |
| 2029 | } |
| 2030 | break; |
| 2031 | case GGML_OP_OPT_STEP_ADAMW: |
| 2032 | { |
| 2033 | ggml_compute_forward_opt_step_adamw(params, dst: tensor); |
| 2034 | } |
| 2035 | break; |
| 2036 | case GGML_OP_OPT_STEP_SGD: |
| 2037 | { |
| 2038 | ggml_compute_forward_opt_step_sgd(params, dst: tensor); |
| 2039 | } |
| 2040 | break; |
| 2041 | case GGML_OP_NONE: |
| 2042 | { |
| 2043 | // nop |
| 2044 | } break; |
| 2045 | case GGML_OP_COUNT: |
| 2046 | { |
| 2047 | GGML_ABORT("fatal error" ); |
| 2048 | } |
| 2049 | } |
| 2050 | } |
| 2051 | |
| 2052 | // Android's libc implementation "bionic" does not support setting affinity |
| 2053 | #if defined(__gnu_linux__) |
| 2054 | static void set_numa_thread_affinity(int thread_n) { |
| 2055 | if (!ggml_is_numa()) { |
| 2056 | return; |
| 2057 | } |
| 2058 | |
| 2059 | int node_num; |
| 2060 | int rv; |
| 2061 | size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus); |
| 2062 | |
| 2063 | switch(g_state.numa.numa_strategy) { |
| 2064 | case GGML_NUMA_STRATEGY_DISTRIBUTE: |
| 2065 | // run thread on node_num thread_n / (threads per node) |
| 2066 | node_num = thread_n % g_state.numa.n_nodes; |
| 2067 | break; |
| 2068 | case GGML_NUMA_STRATEGY_ISOLATE: |
| 2069 | // run thread on current_node |
| 2070 | node_num = g_state.numa.current_node; |
| 2071 | break; |
| 2072 | case GGML_NUMA_STRATEGY_NUMACTL: |
| 2073 | // use the cpuset that numactl gave us |
| 2074 | rv = pthread_setaffinity_np(th: pthread_self(), cpusetsize: setsize, cpuset: &g_state.numa.cpuset); |
| 2075 | if (rv) { |
| 2076 | fprintf(stderr, format: "warning: pthread_setaffinity_np() failed: %s\n" ,strerror(errnum: rv)); |
| 2077 | } |
| 2078 | return; |
| 2079 | default: |
| 2080 | return; |
| 2081 | } |
| 2082 | |
| 2083 | struct ggml_numa_node * node = &g_state.numa.nodes[node_num]; |
| 2084 | |
| 2085 | cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus); |
| 2086 | CPU_ZERO_S(setsize, cpus); |
| 2087 | for (size_t i = 0; i < node->n_cpus; ++i) { |
| 2088 | CPU_SET_S(node->cpus[i], setsize, cpus); |
| 2089 | } |
| 2090 | |
| 2091 | rv = pthread_setaffinity_np(th: pthread_self(), cpusetsize: setsize, cpuset: cpus); |
| 2092 | if (rv) { |
| 2093 | fprintf(stderr, format: "warning: pthread_setaffinity_np() failed: %s\n" , strerror(errnum: rv)); |
| 2094 | } |
| 2095 | |
| 2096 | CPU_FREE(cpus); |
| 2097 | } |
| 2098 | |
| 2099 | static void clear_numa_thread_affinity(void) { |
| 2100 | if (!ggml_is_numa()) { |
| 2101 | return; |
| 2102 | } |
| 2103 | |
| 2104 | size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus); |
| 2105 | |
| 2106 | cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus); |
| 2107 | CPU_ZERO_S(setsize, cpus); |
| 2108 | for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) { |
| 2109 | CPU_SET_S(i, setsize, cpus); |
| 2110 | } |
| 2111 | |
| 2112 | int rv = pthread_setaffinity_np(th: pthread_self(), cpusetsize: setsize, cpuset: cpus); |
| 2113 | if (rv) { |
| 2114 | fprintf(stderr, format: "warning: pthread_setaffinity_np() failed: %s\n" , strerror(errnum: rv)); |
| 2115 | } |
| 2116 | |
| 2117 | CPU_FREE(cpus); |
| 2118 | } |
| 2119 | #else |
| 2120 | // TODO: Windows etc. |
| 2121 | // (the linux implementation may also work on BSD, someone should test) |
| 2122 | static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); } |
| 2123 | static void clear_numa_thread_affinity(void) {} |
| 2124 | #endif |
| 2125 | |
| 2126 | static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) { |
| 2127 | int n_tasks = 0; |
| 2128 | |
| 2129 | if (ggml_is_empty(tensor: node)) { |
| 2130 | // no need to multi-thread a no-op |
| 2131 | n_tasks = 1; |
| 2132 | return n_tasks; |
| 2133 | } |
| 2134 | |
| 2135 | switch (node->op) { |
| 2136 | case GGML_OP_CPY: |
| 2137 | case GGML_OP_DUP: |
| 2138 | case GGML_OP_CONT: |
| 2139 | case GGML_OP_ADD: |
| 2140 | case GGML_OP_ADD_ID: |
| 2141 | case GGML_OP_ADD1: |
| 2142 | case GGML_OP_ACC: |
| 2143 | { |
| 2144 | n_tasks = n_threads; |
| 2145 | } break; |
| 2146 | case GGML_OP_SUB: |
| 2147 | case GGML_OP_SQR: |
| 2148 | case GGML_OP_SQRT: |
| 2149 | case GGML_OP_LOG: |
| 2150 | case GGML_OP_SIN: |
| 2151 | case GGML_OP_COS: |
| 2152 | case GGML_OP_SUM: |
| 2153 | case GGML_OP_SUM_ROWS: |
| 2154 | case GGML_OP_MEAN: |
| 2155 | case GGML_OP_ARGMAX: |
| 2156 | { |
| 2157 | n_tasks = 1; |
| 2158 | } break; |
| 2159 | case GGML_OP_COUNT_EQUAL: |
| 2160 | { |
| 2161 | n_tasks = n_threads; |
| 2162 | } break; |
| 2163 | case GGML_OP_REPEAT: |
| 2164 | case GGML_OP_REPEAT_BACK: |
| 2165 | case GGML_OP_LEAKY_RELU: |
| 2166 | { |
| 2167 | n_tasks = 1; |
| 2168 | } break; |
| 2169 | case GGML_OP_UNARY: |
| 2170 | switch (ggml_get_unary_op(tensor: node)) { |
| 2171 | case GGML_UNARY_OP_ABS: |
| 2172 | case GGML_UNARY_OP_SGN: |
| 2173 | case GGML_UNARY_OP_NEG: |
| 2174 | case GGML_UNARY_OP_STEP: |
| 2175 | case GGML_UNARY_OP_TANH: |
| 2176 | case GGML_UNARY_OP_ELU: |
| 2177 | case GGML_UNARY_OP_RELU: |
| 2178 | case GGML_UNARY_OP_SIGMOID: |
| 2179 | case GGML_UNARY_OP_HARDSWISH: |
| 2180 | case GGML_UNARY_OP_HARDSIGMOID: |
| 2181 | case GGML_UNARY_OP_EXP: |
| 2182 | case GGML_UNARY_OP_FLOOR: |
| 2183 | case GGML_UNARY_OP_CEIL: |
| 2184 | case GGML_UNARY_OP_ROUND: |
| 2185 | case GGML_UNARY_OP_TRUNC: |
| 2186 | { |
| 2187 | n_tasks = 1; |
| 2188 | } break; |
| 2189 | |
| 2190 | case GGML_UNARY_OP_GELU: |
| 2191 | case GGML_UNARY_OP_GELU_ERF: |
| 2192 | case GGML_UNARY_OP_GELU_QUICK: |
| 2193 | case GGML_UNARY_OP_SILU: |
| 2194 | case GGML_UNARY_OP_XIELU: |
| 2195 | { |
| 2196 | n_tasks = n_threads; |
| 2197 | } break; |
| 2198 | default: |
| 2199 | GGML_ABORT("fatal error" ); |
| 2200 | } |
| 2201 | break; |
| 2202 | case GGML_OP_GLU: |
| 2203 | switch (ggml_get_glu_op(tensor: node)) { |
| 2204 | case GGML_GLU_OP_REGLU: |
| 2205 | case GGML_GLU_OP_GEGLU: |
| 2206 | case GGML_GLU_OP_SWIGLU: |
| 2207 | case GGML_GLU_OP_SWIGLU_OAI: |
| 2208 | case GGML_GLU_OP_GEGLU_ERF: |
| 2209 | case GGML_GLU_OP_GEGLU_QUICK: |
| 2210 | { |
| 2211 | n_tasks = n_threads; |
| 2212 | } break; |
| 2213 | default: |
| 2214 | GGML_ABORT("fatal error" ); |
| 2215 | } |
| 2216 | break; |
| 2217 | case GGML_OP_SILU_BACK: |
| 2218 | case GGML_OP_MUL: |
| 2219 | case GGML_OP_DIV: |
| 2220 | case GGML_OP_NORM: |
| 2221 | case GGML_OP_RMS_NORM: |
| 2222 | case GGML_OP_RMS_NORM_BACK: |
| 2223 | case GGML_OP_L2_NORM: |
| 2224 | case GGML_OP_GROUP_NORM: |
| 2225 | case GGML_OP_CONCAT: |
| 2226 | case GGML_OP_MUL_MAT: |
| 2227 | case GGML_OP_MUL_MAT_ID: |
| 2228 | case GGML_OP_OUT_PROD: |
| 2229 | { |
| 2230 | n_tasks = n_threads; |
| 2231 | } break; |
| 2232 | case GGML_OP_GET_ROWS: |
| 2233 | case GGML_OP_SET_ROWS: |
| 2234 | { |
| 2235 | // FIXME: get_rows can use additional threads, but the cost of launching additional threads |
| 2236 | // decreases performance with GPU offloading |
| 2237 | //n_tasks = n_threads; |
| 2238 | n_tasks = 1; |
| 2239 | } break; |
| 2240 | case GGML_OP_SCALE: |
| 2241 | case GGML_OP_SET: |
| 2242 | case GGML_OP_RESHAPE: |
| 2243 | case GGML_OP_VIEW: |
| 2244 | case GGML_OP_PERMUTE: |
| 2245 | case GGML_OP_TRANSPOSE: |
| 2246 | case GGML_OP_GET_ROWS_BACK: |
| 2247 | case GGML_OP_DIAG: |
| 2248 | { |
| 2249 | n_tasks = 1; |
| 2250 | } break; |
| 2251 | case GGML_OP_DIAG_MASK_ZERO: |
| 2252 | case GGML_OP_DIAG_MASK_INF: |
| 2253 | case GGML_OP_SOFT_MAX_BACK: |
| 2254 | case GGML_OP_ROPE: |
| 2255 | case GGML_OP_ROPE_BACK: |
| 2256 | case GGML_OP_ADD_REL_POS: |
| 2257 | { |
| 2258 | n_tasks = n_threads; |
| 2259 | } break; |
| 2260 | case GGML_OP_CLAMP: |
| 2261 | { |
| 2262 | n_tasks = 1; //TODO |
| 2263 | } break; |
| 2264 | case GGML_OP_SOFT_MAX: |
| 2265 | { |
| 2266 | n_tasks = MIN(n_threads, ggml_nrows(node->src[0])); |
| 2267 | } break; |
| 2268 | case GGML_OP_IM2COL: |
| 2269 | case GGML_OP_IM2COL_BACK: |
| 2270 | case GGML_OP_IM2COL_3D: |
| 2271 | case GGML_OP_CONV_2D: |
| 2272 | case GGML_OP_CONV_3D: |
| 2273 | case GGML_OP_CONV_2D_DW: |
| 2274 | case GGML_OP_CONV_TRANSPOSE_1D: |
| 2275 | case GGML_OP_CONV_TRANSPOSE_2D: |
| 2276 | { |
| 2277 | n_tasks = n_threads; |
| 2278 | } break; |
| 2279 | case GGML_OP_POOL_1D: |
| 2280 | case GGML_OP_POOL_2D: |
| 2281 | case GGML_OP_POOL_2D_BACK: |
| 2282 | { |
| 2283 | n_tasks = 1; |
| 2284 | } break; |
| 2285 | case GGML_OP_UPSCALE: |
| 2286 | case GGML_OP_PAD: |
| 2287 | case GGML_OP_PAD_REFLECT_1D: |
| 2288 | case GGML_OP_ROLL: |
| 2289 | case GGML_OP_ARANGE: |
| 2290 | case GGML_OP_TIMESTEP_EMBEDDING: |
| 2291 | case GGML_OP_ARGSORT: |
| 2292 | case GGML_OP_FLASH_ATTN_EXT: |
| 2293 | case GGML_OP_FLASH_ATTN_BACK: |
| 2294 | case GGML_OP_SSM_CONV: |
| 2295 | case GGML_OP_SSM_SCAN: |
| 2296 | case GGML_OP_RWKV_WKV6: |
| 2297 | case GGML_OP_GATED_LINEAR_ATTN: |
| 2298 | case GGML_OP_RWKV_WKV7: |
| 2299 | { |
| 2300 | n_tasks = n_threads; |
| 2301 | } break; |
| 2302 | case GGML_OP_WIN_PART: |
| 2303 | case GGML_OP_WIN_UNPART: |
| 2304 | case GGML_OP_GET_REL_POS: |
| 2305 | { |
| 2306 | n_tasks = 1; |
| 2307 | } break; |
| 2308 | case GGML_OP_MAP_CUSTOM1: |
| 2309 | { |
| 2310 | struct ggml_map_custom1_op_params p; |
| 2311 | memcpy(dest: &p, src: node->op_params, n: sizeof(p)); |
| 2312 | if (p.n_tasks == GGML_N_TASKS_MAX) { |
| 2313 | n_tasks = n_threads; |
| 2314 | } else { |
| 2315 | n_tasks = MIN(p.n_tasks, n_threads); |
| 2316 | } |
| 2317 | } break; |
| 2318 | case GGML_OP_MAP_CUSTOM2: |
| 2319 | { |
| 2320 | struct ggml_map_custom2_op_params p; |
| 2321 | memcpy(dest: &p, src: node->op_params, n: sizeof(p)); |
| 2322 | if (p.n_tasks == GGML_N_TASKS_MAX) { |
| 2323 | n_tasks = n_threads; |
| 2324 | } else { |
| 2325 | n_tasks = MIN(p.n_tasks, n_threads); |
| 2326 | } |
| 2327 | } break; |
| 2328 | case GGML_OP_MAP_CUSTOM3: |
| 2329 | { |
| 2330 | struct ggml_map_custom3_op_params p; |
| 2331 | memcpy(dest: &p, src: node->op_params, n: sizeof(p)); |
| 2332 | if (p.n_tasks == GGML_N_TASKS_MAX) { |
| 2333 | n_tasks = n_threads; |
| 2334 | } else { |
| 2335 | n_tasks = MIN(p.n_tasks, n_threads); |
| 2336 | } |
| 2337 | } break; |
| 2338 | case GGML_OP_CUSTOM: |
| 2339 | { |
| 2340 | struct ggml_custom_op_params p; |
| 2341 | memcpy(dest: &p, src: node->op_params, n: sizeof(p)); |
| 2342 | if (p.n_tasks == GGML_N_TASKS_MAX) { |
| 2343 | n_tasks = n_threads; |
| 2344 | } else { |
| 2345 | n_tasks = MIN(p.n_tasks, n_threads); |
| 2346 | } |
| 2347 | } break; |
| 2348 | case GGML_OP_CROSS_ENTROPY_LOSS: |
| 2349 | case GGML_OP_CROSS_ENTROPY_LOSS_BACK: |
| 2350 | case GGML_OP_OPT_STEP_ADAMW: |
| 2351 | case GGML_OP_OPT_STEP_SGD: |
| 2352 | { |
| 2353 | n_tasks = n_threads; |
| 2354 | } break; |
| 2355 | case GGML_OP_NONE: |
| 2356 | { |
| 2357 | n_tasks = 1; |
| 2358 | } break; |
| 2359 | case GGML_OP_COUNT: |
| 2360 | { |
| 2361 | GGML_ABORT("fatal error" ); |
| 2362 | } |
| 2363 | default: |
| 2364 | { |
| 2365 | fprintf(stderr, format: "%s: op not implemented: " , __func__); |
| 2366 | if (node->op < GGML_OP_COUNT) { |
| 2367 | fprintf(stderr, format: "%s\n" , ggml_op_name(op: node->op)); |
| 2368 | } else { |
| 2369 | fprintf(stderr, format: "%d\n" , node->op); |
| 2370 | } |
| 2371 | GGML_ABORT("fatal error" ); |
| 2372 | } |
| 2373 | } |
| 2374 | |
| 2375 | assert(n_tasks > 0); |
| 2376 | |
| 2377 | return n_tasks; |
| 2378 | } |
| 2379 | |
| 2380 | static thread_ret_t ggml_graph_compute_secondary_thread(void* data); |
| 2381 | |
| 2382 | #if defined(_WIN32) |
| 2383 | #include "windows.h" |
| 2384 | |
| 2385 | // TODO: support > 64 CPUs |
| 2386 | static bool ggml_thread_apply_affinity(bool * mask) { |
| 2387 | HANDLE h = GetCurrentThread(); |
| 2388 | uint64_t bitmask = 0ULL; |
| 2389 | |
| 2390 | assert(GGML_MAX_N_THREADS >= 64); |
| 2391 | |
| 2392 | for (int32_t i = 0; i < 8; i++) { |
| 2393 | int32_t idx = i * 8; |
| 2394 | uint8_t val = 0; |
| 2395 | val |= mask[idx + 0] << 0; |
| 2396 | val |= mask[idx + 1] << 1; |
| 2397 | val |= mask[idx + 2] << 2; |
| 2398 | val |= mask[idx + 3] << 3; |
| 2399 | val |= mask[idx + 4] << 4; |
| 2400 | val |= mask[idx + 5] << 5; |
| 2401 | val |= mask[idx + 6] << 6; |
| 2402 | val |= mask[idx + 7] << 7; |
| 2403 | bitmask |= (uint64_t)val << idx; |
| 2404 | } |
| 2405 | |
| 2406 | for (int32_t i = 64; i < GGML_MAX_N_THREADS; i++) { |
| 2407 | if (mask[i]) { |
| 2408 | fprintf(stderr, "warn: setting thread-affinity for > 64 CPUs isn't supported on windows!\n" ); |
| 2409 | break; |
| 2410 | } |
| 2411 | } |
| 2412 | |
| 2413 | DWORD_PTR m = (DWORD_PTR)bitmask; |
| 2414 | |
| 2415 | m = SetThreadAffinityMask(h, m); |
| 2416 | |
| 2417 | return m != 0; |
| 2418 | } |
| 2419 | |
| 2420 | static bool ggml_thread_apply_priority(int32_t prio) { |
| 2421 | // Note that on Windows the Process Priority Class must be updated in order to set Thread priority. |
| 2422 | // This is up to the applications. |
| 2423 | DWORD p = THREAD_PRIORITY_NORMAL; |
| 2424 | switch (prio) { |
| 2425 | case GGML_SCHED_PRIO_LOW: p = THREAD_PRIORITY_BELOW_NORMAL; break; |
| 2426 | case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break; |
| 2427 | case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break; |
| 2428 | case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break; |
| 2429 | case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break; |
| 2430 | } |
| 2431 | |
| 2432 | if (prio != GGML_SCHED_PRIO_LOW) { |
| 2433 | // Tell Windows that this thread should not be throttled (needs its own CPU core). |
| 2434 | // Newer Windows 11 versions aggresively park (offline) CPU cores and often place |
| 2435 | // all our threads onto the first 4 cores which results in terrible performance with |
| 2436 | // n_threads > 4 |
| 2437 | #if _WIN32_WINNT >= 0x0602 |
| 2438 | THREAD_POWER_THROTTLING_STATE t; |
| 2439 | ZeroMemory(&t, sizeof(t)); |
| 2440 | t.Version = THREAD_POWER_THROTTLING_CURRENT_VERSION; |
| 2441 | t.ControlMask = THREAD_POWER_THROTTLING_EXECUTION_SPEED; |
| 2442 | t.StateMask = 0; |
| 2443 | |
| 2444 | if (!SetThreadInformation(GetCurrentThread(), ThreadPowerThrottling, &t, sizeof(t))) { |
| 2445 | GGML_LOG_DEBUG("failed to disable thread power throttling %d : (%d)\n" , prio, (int) GetLastError()); |
| 2446 | return false; |
| 2447 | } |
| 2448 | #endif |
| 2449 | } |
| 2450 | |
| 2451 | if (prio == GGML_SCHED_PRIO_NORMAL) { |
| 2452 | // Keep inherited policy/priority |
| 2453 | return true; |
| 2454 | } |
| 2455 | |
| 2456 | if (!SetThreadPriority(GetCurrentThread(), p)) { |
| 2457 | fprintf(stderr, "warn: failed to set thread priority %d : (%d)\n" , prio, (int) GetLastError()); |
| 2458 | return false; |
| 2459 | } |
| 2460 | |
| 2461 | return true; |
| 2462 | } |
| 2463 | |
| 2464 | #elif defined(__APPLE__) |
| 2465 | #include <sys/types.h> |
| 2466 | #include <sys/resource.h> |
| 2467 | |
| 2468 | static bool ggml_thread_apply_affinity(const bool * mask) { |
| 2469 | // Not supported on Apple platforms |
| 2470 | UNUSED(mask); |
| 2471 | return true; |
| 2472 | } |
| 2473 | |
| 2474 | static bool ggml_thread_apply_priority(int32_t prio) { |
| 2475 | struct sched_param p; |
| 2476 | int32_t policy = SCHED_OTHER; |
| 2477 | switch (prio) { |
| 2478 | // TODO: there seems to be no way to set lower prio on Apple platforms |
| 2479 | case GGML_SCHED_PRIO_LOW: policy = SCHED_OTHER; p.sched_priority = 0; break; |
| 2480 | case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break; |
| 2481 | case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break; |
| 2482 | case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break; |
| 2483 | case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break; |
| 2484 | } |
| 2485 | |
| 2486 | if (prio == GGML_SCHED_PRIO_NORMAL) { |
| 2487 | // Keep inherited policy/priority |
| 2488 | return true; |
| 2489 | } |
| 2490 | |
| 2491 | int32_t err = pthread_setschedparam(pthread_self(), policy, &p); |
| 2492 | if (err != 0) { |
| 2493 | fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n" , prio, strerror(err), err); |
| 2494 | return false; |
| 2495 | } |
| 2496 | |
| 2497 | return true; |
| 2498 | } |
| 2499 | |
| 2500 | #elif defined(__gnu_linux__) |
| 2501 | // TODO: this may not work on BSD, to be verified |
| 2502 | |
| 2503 | static bool ggml_thread_apply_affinity(const bool * mask) { |
| 2504 | cpu_set_t cpuset; |
| 2505 | int err; |
| 2506 | |
| 2507 | CPU_ZERO(&cpuset); |
| 2508 | |
| 2509 | for (uint32_t i = 0; i < GGML_MAX_N_THREADS; i++) { |
| 2510 | if (mask[i]) { |
| 2511 | GGML_PRINT_DEBUG("Thread %lx: adding %d to cpuset\n" , pthread_self(), i); |
| 2512 | CPU_SET(i, &cpuset); |
| 2513 | } |
| 2514 | } |
| 2515 | |
| 2516 | #ifdef __ANDROID__ |
| 2517 | err = sched_setaffinity(0, sizeof(cpuset), &cpuset); |
| 2518 | if (err < 0) { |
| 2519 | err = errno; |
| 2520 | } |
| 2521 | #else |
| 2522 | err = pthread_setaffinity_np(th: pthread_self(), cpusetsize: sizeof(cpuset), cpuset: &cpuset); |
| 2523 | #endif |
| 2524 | if (err != 0) { |
| 2525 | fprintf(stderr, format: "warn: failed to set affinity mask 0x%llx : %s (%d)\n" , (unsigned long long)mask, strerror(errnum: err), err); |
| 2526 | return false; |
| 2527 | } |
| 2528 | |
| 2529 | return true; |
| 2530 | } |
| 2531 | |
| 2532 | static bool ggml_thread_apply_priority(int32_t prio) { |
| 2533 | struct sched_param p; |
| 2534 | int32_t policy = SCHED_OTHER; |
| 2535 | switch (prio) { |
| 2536 | case GGML_SCHED_PRIO_LOW: policy = SCHED_BATCH; p.sched_priority = 0; break; |
| 2537 | case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break; |
| 2538 | case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break; |
| 2539 | case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break; |
| 2540 | case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break; |
| 2541 | } |
| 2542 | |
| 2543 | if (prio == GGML_SCHED_PRIO_NORMAL) { |
| 2544 | // Keep inherited policy/priority |
| 2545 | return true; |
| 2546 | } |
| 2547 | |
| 2548 | int32_t err = pthread_setschedparam(target_thread: pthread_self(), policy: policy, param: &p); |
| 2549 | if (err != 0) { |
| 2550 | fprintf(stderr, format: "warn: failed to set thread priority %d : %s (%d)\n" , prio, strerror(errnum: err), err); |
| 2551 | return false; |
| 2552 | } |
| 2553 | |
| 2554 | return true; |
| 2555 | } |
| 2556 | |
| 2557 | #else // unsupported platforms |
| 2558 | |
| 2559 | static bool ggml_thread_apply_affinity(const bool * mask) { |
| 2560 | UNUSED(mask); |
| 2561 | return true; |
| 2562 | } |
| 2563 | |
| 2564 | static bool ggml_thread_apply_priority(int32_t prio) { |
| 2565 | UNUSED(prio); |
| 2566 | return true; |
| 2567 | } |
| 2568 | |
| 2569 | #endif |
| 2570 | |
| 2571 | static bool ggml_thread_cpumask_is_valid(const bool * mask) { |
| 2572 | for (int i = 0; i < GGML_MAX_N_THREADS; i++) { |
| 2573 | if (mask[i]) { return true; } |
| 2574 | } |
| 2575 | return false; |
| 2576 | } |
| 2577 | |
| 2578 | static void ggml_thread_cpumask_next(const bool * global_mask, bool * local_mask, bool strict, int32_t* iter) { |
| 2579 | if (!strict) { |
| 2580 | memcpy(dest: local_mask, src: global_mask, GGML_MAX_N_THREADS); |
| 2581 | return; |
| 2582 | } else { |
| 2583 | memset(s: local_mask, c: 0, GGML_MAX_N_THREADS); |
| 2584 | int32_t base_idx = *iter; |
| 2585 | for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) { |
| 2586 | int32_t idx = base_idx + i; |
| 2587 | if (idx >= GGML_MAX_N_THREADS) { |
| 2588 | // Just a cheaper modulo |
| 2589 | idx -= GGML_MAX_N_THREADS; |
| 2590 | } |
| 2591 | if (global_mask[idx]) { |
| 2592 | local_mask[idx] = 1; |
| 2593 | *iter = idx + 1; |
| 2594 | return; |
| 2595 | } |
| 2596 | } |
| 2597 | } |
| 2598 | } |
| 2599 | |
| 2600 | void ggml_threadpool_free(struct ggml_threadpool* threadpool) { |
| 2601 | if (!threadpool) return; |
| 2602 | |
| 2603 | const int n_threads = threadpool->n_threads_max; |
| 2604 | |
| 2605 | #ifndef GGML_USE_OPENMP |
| 2606 | struct ggml_compute_state* workers = threadpool->workers; |
| 2607 | |
| 2608 | ggml_mutex_lock(&threadpool->mutex); |
| 2609 | |
| 2610 | threadpool->stop = true; |
| 2611 | threadpool->pause = false; |
| 2612 | |
| 2613 | ggml_cond_broadcast(&threadpool->cond); |
| 2614 | ggml_mutex_unlock(&threadpool->mutex); |
| 2615 | |
| 2616 | for (int j = 1; j < n_threads; j++) { |
| 2617 | int32_t rc = ggml_thread_join(workers[j].thrd, NULL); |
| 2618 | GGML_ASSERT(rc == GGML_EXIT_SUCCESS || rc == GGML_EXIT_ABORTED); |
| 2619 | UNUSED(rc); |
| 2620 | } |
| 2621 | |
| 2622 | ggml_mutex_destroy(&threadpool->mutex); |
| 2623 | ggml_cond_destroy(&threadpool->cond); |
| 2624 | #endif // GGML_USE_OPENMP |
| 2625 | |
| 2626 | const size_t workers_size = sizeof(struct ggml_compute_state) * n_threads; |
| 2627 | ggml_aligned_free(ptr: threadpool->workers, size: workers_size); |
| 2628 | ggml_aligned_free(ptr: threadpool, size: sizeof(struct ggml_threadpool)); |
| 2629 | } |
| 2630 | |
| 2631 | #ifndef GGML_USE_OPENMP |
| 2632 | // pause/resume must be called under mutex |
| 2633 | static void ggml_threadpool_pause_locked(struct ggml_threadpool * threadpool) { |
| 2634 | GGML_PRINT_DEBUG("Pausing threadpool\n" ); |
| 2635 | threadpool->pause = true; |
| 2636 | ggml_cond_broadcast(&threadpool->cond); |
| 2637 | } |
| 2638 | |
| 2639 | static void ggml_threadpool_resume_locked(struct ggml_threadpool * threadpool) { |
| 2640 | GGML_PRINT_DEBUG("Resuming threadpool\n" ); |
| 2641 | threadpool->pause = false; |
| 2642 | ggml_cond_broadcast(&threadpool->cond); |
| 2643 | } |
| 2644 | #endif |
| 2645 | |
| 2646 | void ggml_threadpool_pause(struct ggml_threadpool * threadpool) { |
| 2647 | #ifndef GGML_USE_OPENMP |
| 2648 | ggml_mutex_lock(&threadpool->mutex); |
| 2649 | if (!threadpool->pause) { |
| 2650 | ggml_threadpool_pause_locked(threadpool); |
| 2651 | } |
| 2652 | ggml_mutex_unlock(&threadpool->mutex); |
| 2653 | #else |
| 2654 | UNUSED(threadpool); |
| 2655 | #endif |
| 2656 | } |
| 2657 | |
| 2658 | void ggml_threadpool_resume(struct ggml_threadpool * threadpool) { |
| 2659 | #ifndef GGML_USE_OPENMP |
| 2660 | ggml_mutex_lock(&threadpool->mutex); |
| 2661 | if (threadpool->pause) { |
| 2662 | ggml_threadpool_resume_locked(threadpool); |
| 2663 | } |
| 2664 | ggml_mutex_unlock(&threadpool->mutex); |
| 2665 | #else |
| 2666 | UNUSED(threadpool); |
| 2667 | #endif |
| 2668 | } |
| 2669 | |
| 2670 | struct ggml_cplan ggml_graph_plan( |
| 2671 | const struct ggml_cgraph * cgraph, |
| 2672 | int n_threads, |
| 2673 | struct ggml_threadpool * threadpool) { |
| 2674 | |
| 2675 | if (threadpool == NULL) { |
| 2676 | //GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads); |
| 2677 | } |
| 2678 | if (n_threads <= 0) { |
| 2679 | n_threads = threadpool ? threadpool->n_threads_max : GGML_DEFAULT_N_THREADS; |
| 2680 | } |
| 2681 | |
| 2682 | size_t work_size = 0; |
| 2683 | |
| 2684 | struct ggml_cplan cplan; |
| 2685 | memset(s: &cplan, c: 0, n: sizeof(struct ggml_cplan)); |
| 2686 | |
| 2687 | int max_tasks = 1; |
| 2688 | |
| 2689 | // thread scheduling for the different operations + work buffer size estimation |
| 2690 | for (int i = 0; i < cgraph->n_nodes; i++) { |
| 2691 | struct ggml_tensor * node = cgraph->nodes[i]; |
| 2692 | |
| 2693 | const int n_tasks = ggml_get_n_tasks(node, n_threads); |
| 2694 | |
| 2695 | max_tasks = MAX(max_tasks, n_tasks); |
| 2696 | |
| 2697 | size_t cur = 0; |
| 2698 | |
| 2699 | if (!ggml_cpu_extra_work_size(n_threads, op: node, size: &cur)) { |
| 2700 | switch (node->op) { |
| 2701 | case GGML_OP_CPY: |
| 2702 | case GGML_OP_DUP: |
| 2703 | { |
| 2704 | if (ggml_is_quantized(type: node->type) || |
| 2705 | // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32 |
| 2706 | (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) || |
| 2707 | (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16) || |
| 2708 | // conversion between F32 and I32 |
| 2709 | (node->src[0]->type == GGML_TYPE_F32 && node->src[1] && node->src[1]->type == GGML_TYPE_I32) || |
| 2710 | (node->src[0]->type == GGML_TYPE_I32 && node->src[1] && node->src[1]->type == GGML_TYPE_F32)) { |
| 2711 | cur = ggml_type_size(type: GGML_TYPE_F32) * node->ne[0] * n_tasks; |
| 2712 | } |
| 2713 | } break; |
| 2714 | case GGML_OP_ADD: |
| 2715 | case GGML_OP_ADD_ID: |
| 2716 | case GGML_OP_ADD1: |
| 2717 | { |
| 2718 | if (ggml_is_quantized(type: node->src[0]->type)) { |
| 2719 | cur = ggml_type_size(type: GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks; |
| 2720 | } |
| 2721 | } break; |
| 2722 | case GGML_OP_ACC: |
| 2723 | { |
| 2724 | if (ggml_is_quantized(type: node->src[0]->type)) { |
| 2725 | cur = ggml_type_size(type: GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks; |
| 2726 | } |
| 2727 | } break; |
| 2728 | case GGML_OP_COUNT_EQUAL: |
| 2729 | { |
| 2730 | cur = ggml_type_size(type: node->type)*n_tasks; |
| 2731 | } break; |
| 2732 | case GGML_OP_MUL_MAT: |
| 2733 | { |
| 2734 | const enum ggml_type vec_dot_type = type_traits_cpu[node->src[0]->type].vec_dot_type; |
| 2735 | |
| 2736 | if (node->src[1]->type != vec_dot_type) { |
| 2737 | cur = ggml_row_size(type: vec_dot_type, ne: ggml_nelements(tensor: node->src[1])); |
| 2738 | } |
| 2739 | } break; |
| 2740 | case GGML_OP_MUL_MAT_ID: |
| 2741 | { |
| 2742 | cur = 0; |
| 2743 | const struct ggml_tensor * src0 = node->src[0]; |
| 2744 | const struct ggml_tensor * src1 = node->src[1]; |
| 2745 | const struct ggml_tensor * ids = node->src[2]; |
| 2746 | const enum ggml_type vec_dot_type = type_traits_cpu[src0->type].vec_dot_type; |
| 2747 | const int n_as = src0->ne[2]; |
| 2748 | // src1 |
| 2749 | if (src1->type != vec_dot_type) { |
| 2750 | cur += ggml_row_size(type: vec_dot_type, ne: ggml_nelements(tensor: src1)) + sizeof(int64_t); |
| 2751 | } |
| 2752 | // matrix_row_counts |
| 2753 | cur += n_as * sizeof(int64_t) + sizeof(int64_t); |
| 2754 | // matrix_rows |
| 2755 | cur += n_as*ids->ne[0]*ids->ne[1]*sizeof(struct mmid_row_mapping) + sizeof(int64_t); |
| 2756 | // atomic_current_chunk |
| 2757 | cur += CACHE_LINE_SIZE*n_as + CACHE_LINE_SIZE; |
| 2758 | } break; |
| 2759 | case GGML_OP_OUT_PROD: |
| 2760 | { |
| 2761 | if (ggml_is_quantized(type: node->src[0]->type)) { |
| 2762 | cur = ggml_type_size(type: GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks; |
| 2763 | } |
| 2764 | } break; |
| 2765 | case GGML_OP_SOFT_MAX: |
| 2766 | case GGML_OP_ROPE: |
| 2767 | case GGML_OP_ROPE_BACK: |
| 2768 | { |
| 2769 | cur = ggml_type_size(type: GGML_TYPE_F32) * node->ne[0] * n_tasks; |
| 2770 | } break; |
| 2771 | case GGML_OP_CONV_TRANSPOSE_1D: |
| 2772 | { |
| 2773 | GGML_ASSERT(node->src[0]->ne[3] == 1); |
| 2774 | GGML_ASSERT(node->src[1]->ne[2] == 1); |
| 2775 | GGML_ASSERT(node->src[1]->ne[3] == 1); |
| 2776 | |
| 2777 | const int64_t ne00 = node->src[0]->ne[0]; // K |
| 2778 | const int64_t ne01 = node->src[0]->ne[1]; // Cout |
| 2779 | const int64_t ne02 = node->src[0]->ne[2]; // Cin |
| 2780 | const int64_t ne10 = node->src[1]->ne[0]; // L |
| 2781 | const int64_t ne11 = node->src[1]->ne[1]; // Cin |
| 2782 | |
| 2783 | if ((node->src[0]->type == GGML_TYPE_F16 || |
| 2784 | node->src[0]->type == GGML_TYPE_BF16) && |
| 2785 | node->src[1]->type == GGML_TYPE_F32) { |
| 2786 | cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02; |
| 2787 | cur += sizeof(ggml_fp16_t)*ne10*ne11; |
| 2788 | } else if (node->src[0]->type == GGML_TYPE_F32 && |
| 2789 | node->src[1]->type == GGML_TYPE_F32) { |
| 2790 | cur += sizeof(float)*ne00*ne01*ne02; |
| 2791 | cur += sizeof(float)*ne10*ne11; |
| 2792 | } else { |
| 2793 | GGML_ABORT("fatal error" ); |
| 2794 | } |
| 2795 | } break; |
| 2796 | case GGML_OP_CONV_2D: |
| 2797 | case GGML_OP_CONV_3D: |
| 2798 | { |
| 2799 | cur = GGML_IM2COL_WORK_SIZE; |
| 2800 | } break; |
| 2801 | case GGML_OP_CONV_TRANSPOSE_2D: |
| 2802 | { |
| 2803 | const int64_t ne00 = node->src[0]->ne[0]; // W |
| 2804 | const int64_t ne01 = node->src[0]->ne[1]; // H |
| 2805 | const int64_t ne02 = node->src[0]->ne[2]; // Channels Out |
| 2806 | const int64_t ne03 = node->src[0]->ne[3]; // Channels In |
| 2807 | |
| 2808 | const int64_t ne10 = node->src[1]->ne[0]; // W |
| 2809 | const int64_t ne11 = node->src[1]->ne[1]; // H |
| 2810 | const int64_t ne12 = node->src[1]->ne[2]; // Channels In |
| 2811 | |
| 2812 | cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03; |
| 2813 | cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12; |
| 2814 | } break; |
| 2815 | case GGML_OP_FLASH_ATTN_EXT: |
| 2816 | { |
| 2817 | const int64_t ne10 = node->src[1]->ne[0]; // DK |
| 2818 | const int64_t ne20 = node->src[2]->ne[0]; // DV |
| 2819 | |
| 2820 | cur = sizeof(float)*(1*ne10 + 2*ne20)*n_tasks; // 1x head size K + 2x head size V (per thread) |
| 2821 | } break; |
| 2822 | case GGML_OP_FLASH_ATTN_BACK: |
| 2823 | { |
| 2824 | const int64_t D = node->src[0]->ne[0]; |
| 2825 | const int64_t ne11 = ggml_up(n: node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL); |
| 2826 | const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back |
| 2827 | if (node->src[1]->type == GGML_TYPE_F32) { |
| 2828 | cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1) |
| 2829 | cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2 |
| 2830 | } else if (node->src[1]->type == GGML_TYPE_F16) { |
| 2831 | cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1) |
| 2832 | cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2 |
| 2833 | } else if (node->src[1]->type == GGML_TYPE_BF16) { |
| 2834 | cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1) |
| 2835 | cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2 |
| 2836 | } |
| 2837 | } break; |
| 2838 | |
| 2839 | case GGML_OP_CROSS_ENTROPY_LOSS: |
| 2840 | { |
| 2841 | cur = ggml_type_size(type: node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks); |
| 2842 | } break; |
| 2843 | case GGML_OP_COUNT: |
| 2844 | { |
| 2845 | GGML_ABORT("fatal error" ); |
| 2846 | } |
| 2847 | default: |
| 2848 | break; |
| 2849 | } |
| 2850 | } |
| 2851 | |
| 2852 | work_size = MAX(work_size, cur); |
| 2853 | } |
| 2854 | |
| 2855 | if (work_size > 0) { |
| 2856 | work_size += CACHE_LINE_SIZE*(n_threads); |
| 2857 | } |
| 2858 | |
| 2859 | cplan.threadpool = threadpool; |
| 2860 | cplan.n_threads = MIN(max_tasks, n_threads); |
| 2861 | cplan.work_size = work_size; |
| 2862 | cplan.work_data = NULL; |
| 2863 | |
| 2864 | return cplan; |
| 2865 | } |
| 2866 | |
| 2867 | static thread_ret_t ggml_graph_compute_thread(void * data) { |
| 2868 | struct ggml_compute_state * state = (struct ggml_compute_state *) data; |
| 2869 | struct ggml_threadpool * tp = state->threadpool; |
| 2870 | |
| 2871 | const struct ggml_cgraph * cgraph = tp->cgraph; |
| 2872 | const struct ggml_cplan * cplan = tp->cplan; |
| 2873 | |
| 2874 | set_numa_thread_affinity(state->ith); |
| 2875 | |
| 2876 | struct ggml_compute_params params = { |
| 2877 | /*.ith =*/ state->ith, |
| 2878 | /*.nth =*/ atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed), |
| 2879 | /*.wsize =*/ cplan->work_size, |
| 2880 | /*.wdata =*/ cplan->work_data, |
| 2881 | /*.threadpool=*/ tp, |
| 2882 | }; |
| 2883 | |
| 2884 | for (int node_n = 0; node_n < cgraph->n_nodes && atomic_load_explicit(&tp->abort, memory_order_relaxed) != node_n; node_n++) { |
| 2885 | struct ggml_tensor * node = cgraph->nodes[node_n]; |
| 2886 | |
| 2887 | ggml_compute_forward(params: ¶ms, tensor: node); |
| 2888 | |
| 2889 | if (state->ith == 0 && cplan->abort_callback && |
| 2890 | cplan->abort_callback(cplan->abort_callback_data)) { |
| 2891 | atomic_store_explicit(&tp->abort, node_n + 1, memory_order_relaxed); |
| 2892 | tp->ec = GGML_STATUS_ABORTED; |
| 2893 | } |
| 2894 | |
| 2895 | if (node_n + 1 < cgraph->n_nodes) { |
| 2896 | ggml_barrier(tp: state->threadpool); |
| 2897 | } |
| 2898 | } |
| 2899 | |
| 2900 | ggml_barrier(tp: state->threadpool); |
| 2901 | |
| 2902 | return 0; |
| 2903 | } |
| 2904 | |
| 2905 | #ifndef GGML_USE_OPENMP |
| 2906 | |
| 2907 | // check if thread is active |
| 2908 | static inline bool ggml_graph_compute_thread_active(struct ggml_compute_state * state) { |
| 2909 | struct ggml_threadpool * threadpool = state->threadpool; |
| 2910 | int n_threads = atomic_load_explicit(&threadpool->n_threads_cur, memory_order_relaxed); |
| 2911 | return (state->ith < n_threads); |
| 2912 | } |
| 2913 | |
| 2914 | // check if thread is ready to proceed (exit from polling or sleeping) |
| 2915 | static inline bool ggml_graph_compute_thread_ready(struct ggml_compute_state * state) { |
| 2916 | struct ggml_threadpool * threadpool = state->threadpool; |
| 2917 | |
| 2918 | if (state->pending || threadpool->stop || threadpool->pause) { return true; } |
| 2919 | |
| 2920 | // check for new graph/work |
| 2921 | int new_graph = atomic_load_explicit(&threadpool->n_graph, memory_order_relaxed); |
| 2922 | if (new_graph != state->last_graph) { |
| 2923 | state->pending = ggml_graph_compute_thread_active(state); |
| 2924 | state->last_graph = new_graph; |
| 2925 | } |
| 2926 | |
| 2927 | return state->pending; |
| 2928 | } |
| 2929 | |
| 2930 | // sync thread state after polling |
| 2931 | static inline void ggml_graph_compute_thread_sync(struct ggml_compute_state * state) { |
| 2932 | // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead |
| 2933 | #ifdef GGML_TSAN_ENABLED |
| 2934 | atomic_fetch_add_explicit(&state->threadpool->n_graph, 0, memory_order_seq_cst); |
| 2935 | #else |
| 2936 | atomic_thread_fence(memory_order_seq_cst); |
| 2937 | #endif |
| 2938 | UNUSED(state); |
| 2939 | } |
| 2940 | |
| 2941 | static inline bool ggml_graph_compute_poll_for_work(struct ggml_compute_state * state) { |
| 2942 | struct ggml_threadpool * threadpool = state->threadpool; |
| 2943 | |
| 2944 | // Skip polling for unused threads |
| 2945 | if (!ggml_graph_compute_thread_active(state)) { |
| 2946 | return state->pending; |
| 2947 | } |
| 2948 | |
| 2949 | // This seems to make 0 ... 100 a decent range for polling level across modern processors. |
| 2950 | // Perhaps, we can adjust it dynamically based on load and things. |
| 2951 | const uint64_t n_rounds = 1024UL * 128 * threadpool->poll; |
| 2952 | |
| 2953 | for (uint64_t i=0; !ggml_graph_compute_thread_ready(state) && i < n_rounds; i++) { |
| 2954 | // No new work. Keep polling. |
| 2955 | ggml_thread_cpu_relax(); |
| 2956 | } |
| 2957 | |
| 2958 | return state->pending; |
| 2959 | } |
| 2960 | |
| 2961 | static inline bool ggml_graph_compute_check_for_work(struct ggml_compute_state * state) { |
| 2962 | struct ggml_threadpool * threadpool = state->threadpool; |
| 2963 | |
| 2964 | if (ggml_graph_compute_poll_for_work(state)) { |
| 2965 | ggml_graph_compute_thread_sync(state); |
| 2966 | return state->pending; |
| 2967 | } |
| 2968 | |
| 2969 | ggml_mutex_lock_shared(&threadpool->mutex); |
| 2970 | while (!ggml_graph_compute_thread_ready(state)) { |
| 2971 | // No new work. Wait for the signal. |
| 2972 | GGML_PRINT_DEBUG("thread #%d waiting for work (sleeping)\n" , state->ith); |
| 2973 | ggml_cond_wait(&threadpool->cond, &threadpool->mutex); |
| 2974 | } |
| 2975 | ggml_mutex_unlock_shared(&threadpool->mutex); |
| 2976 | |
| 2977 | return state->pending; |
| 2978 | } |
| 2979 | |
| 2980 | static thread_ret_t ggml_graph_compute_secondary_thread(void* data) { |
| 2981 | struct ggml_compute_state * state = (struct ggml_compute_state *) data; |
| 2982 | struct ggml_threadpool * threadpool = state->threadpool; |
| 2983 | |
| 2984 | ggml_thread_apply_priority(threadpool->prio); |
| 2985 | if (ggml_thread_cpumask_is_valid(state->cpumask)) { |
| 2986 | ggml_thread_apply_affinity(state->cpumask); |
| 2987 | } |
| 2988 | |
| 2989 | while (true) { |
| 2990 | // Check if we need to sleep |
| 2991 | while (threadpool->pause) { |
| 2992 | GGML_PRINT_DEBUG("thread #%d inside pause loop\n" , state->ith); |
| 2993 | ggml_mutex_lock_shared(&threadpool->mutex); |
| 2994 | if (threadpool->pause) { |
| 2995 | ggml_cond_wait(&threadpool->cond, &threadpool->mutex); |
| 2996 | } |
| 2997 | GGML_PRINT_DEBUG("thread #%d resuming after wait\n" , state->ith); |
| 2998 | ggml_mutex_unlock_shared(&threadpool->mutex); |
| 2999 | } |
| 3000 | |
| 3001 | // This needs to be checked for after the cond_wait |
| 3002 | if (threadpool->stop) break; |
| 3003 | |
| 3004 | // Check if there is new work |
| 3005 | // The main thread is the only one that can dispatch new work |
| 3006 | |
| 3007 | ggml_graph_compute_check_for_work(state); |
| 3008 | if (state->pending) { |
| 3009 | state->pending = false; |
| 3010 | |
| 3011 | ggml_graph_compute_thread(state); |
| 3012 | } |
| 3013 | } |
| 3014 | |
| 3015 | return (thread_ret_t) 0; |
| 3016 | } |
| 3017 | |
| 3018 | // Start processing new graph |
| 3019 | static void ggml_graph_compute_kickoff(struct ggml_threadpool * threadpool, int n_threads) |
| 3020 | { |
| 3021 | // Always take the mutex here because the worker threads are doing hybrid poll/wait |
| 3022 | |
| 3023 | ggml_mutex_lock(&threadpool->mutex); |
| 3024 | |
| 3025 | GGML_PRINT_DEBUG("threadpool: n_threads_cur %d n_threads %d\n" , threadpool->n_threads_cur, n_threads); |
| 3026 | |
| 3027 | // Update the number of active threads |
| 3028 | atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed); |
| 3029 | |
| 3030 | // Indicate the graph is ready to be processed |
| 3031 | // We need the full seq-cst fence here because of the polling threads (used in thread_sync) |
| 3032 | atomic_fetch_add_explicit(&threadpool->n_graph, 1, memory_order_seq_cst); |
| 3033 | |
| 3034 | if (threadpool->pause) { |
| 3035 | // Update main thread prio and affinity to match the threadpool settings |
| 3036 | ggml_thread_apply_priority(threadpool->prio); |
| 3037 | if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) { |
| 3038 | ggml_thread_apply_affinity(threadpool->workers[0].cpumask); |
| 3039 | } |
| 3040 | |
| 3041 | // resume does cond broadcast |
| 3042 | ggml_threadpool_resume_locked(threadpool); |
| 3043 | } else { |
| 3044 | ggml_cond_broadcast(&threadpool->cond); |
| 3045 | } |
| 3046 | |
| 3047 | ggml_mutex_unlock(&threadpool->mutex); |
| 3048 | } |
| 3049 | |
| 3050 | #endif // GGML_USE_OPENMP |
| 3051 | |
| 3052 | static struct ggml_threadpool * ggml_threadpool_new_impl( |
| 3053 | struct ggml_threadpool_params * tpp, |
| 3054 | struct ggml_cgraph * cgraph, |
| 3055 | struct ggml_cplan * cplan) { |
| 3056 | |
| 3057 | struct ggml_threadpool * threadpool = |
| 3058 | ggml_aligned_malloc(size: sizeof(struct ggml_threadpool)); |
| 3059 | { |
| 3060 | threadpool->cgraph = cgraph; |
| 3061 | threadpool->cplan = cplan; |
| 3062 | threadpool->n_graph = 0; |
| 3063 | threadpool->n_barrier = 0; |
| 3064 | threadpool->n_barrier_passed = 0; |
| 3065 | threadpool->current_chunk = 0; |
| 3066 | threadpool->stop = false; |
| 3067 | threadpool->pause = tpp->paused; |
| 3068 | threadpool->abort = -1; |
| 3069 | threadpool->workers = NULL; |
| 3070 | threadpool->n_threads_max = tpp->n_threads; |
| 3071 | threadpool->n_threads_cur = tpp->n_threads; |
| 3072 | threadpool->poll = tpp->poll; |
| 3073 | threadpool->prio = tpp->prio; |
| 3074 | threadpool->ec = GGML_STATUS_SUCCESS; |
| 3075 | } |
| 3076 | |
| 3077 | // Allocate and init workers state |
| 3078 | const size_t workers_size = sizeof(struct ggml_compute_state) * tpp->n_threads; |
| 3079 | struct ggml_compute_state * workers = ggml_aligned_malloc(size: workers_size); |
| 3080 | |
| 3081 | memset(s: workers, c: 0, n: workers_size); |
| 3082 | for (int j = 0; j < tpp->n_threads; j++) { |
| 3083 | workers[j].threadpool = threadpool; |
| 3084 | workers[j].ith = j; |
| 3085 | } |
| 3086 | |
| 3087 | threadpool->workers = workers; |
| 3088 | |
| 3089 | #ifdef GGML_USE_OPENMP |
| 3090 | int32_t cpumask_iter = 0; |
| 3091 | |
| 3092 | // Compute CPU masks for each thread |
| 3093 | for (int j = 0; j < tpp->n_threads; j++) { |
| 3094 | ggml_thread_cpumask_next(global_mask: tpp->cpumask, local_mask: workers[j].cpumask, strict: tpp->strict_cpu, iter: &cpumask_iter); |
| 3095 | } |
| 3096 | #else // GGML_USE_OPENMP |
| 3097 | ggml_mutex_init(&threadpool->mutex); |
| 3098 | ggml_cond_init(&threadpool->cond); |
| 3099 | |
| 3100 | // Spin the threads for all workers, and update CPU placements. |
| 3101 | // Place the main thread last (towards the higher numbered CPU cores). |
| 3102 | |
| 3103 | int32_t cpumask_iter = 0; |
| 3104 | |
| 3105 | for (int j = 1; j < tpp->n_threads; j++) { |
| 3106 | ggml_thread_cpumask_next(tpp->cpumask, workers[j].cpumask, tpp->strict_cpu, &cpumask_iter); |
| 3107 | |
| 3108 | int32_t rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_secondary_thread, &workers[j]); |
| 3109 | GGML_ASSERT(rc == 0); |
| 3110 | } |
| 3111 | |
| 3112 | ggml_thread_cpumask_next(tpp->cpumask, workers[0].cpumask, tpp->strict_cpu, &cpumask_iter); |
| 3113 | |
| 3114 | if (!threadpool->pause) { |
| 3115 | // Update main thread prio and affinity at the start, otherwise we'll do it in resume |
| 3116 | ggml_thread_apply_priority(threadpool->prio); |
| 3117 | if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) { |
| 3118 | ggml_thread_apply_affinity(threadpool->workers[0].cpumask); |
| 3119 | } |
| 3120 | } |
| 3121 | #endif // GGML_USE_OPENMP |
| 3122 | |
| 3123 | return threadpool; |
| 3124 | } |
| 3125 | |
| 3126 | struct ggml_threadpool * ggml_threadpool_new(struct ggml_threadpool_params * tpp) { |
| 3127 | return ggml_threadpool_new_impl(tpp, NULL, NULL); |
| 3128 | } |
| 3129 | |
| 3130 | enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) { |
| 3131 | ggml_cpu_init(); |
| 3132 | |
| 3133 | GGML_ASSERT(cplan); |
| 3134 | GGML_ASSERT(cplan->n_threads > 0); |
| 3135 | GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL); |
| 3136 | |
| 3137 | int n_threads = cplan->n_threads; |
| 3138 | struct ggml_threadpool * threadpool = cplan->threadpool; |
| 3139 | |
| 3140 | bool disposable_threadpool = false; |
| 3141 | |
| 3142 | if (threadpool == NULL) { |
| 3143 | //GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads); |
| 3144 | disposable_threadpool = true; |
| 3145 | |
| 3146 | struct ggml_threadpool_params ttp = ggml_threadpool_params_default(n_threads); |
| 3147 | threadpool = ggml_threadpool_new_impl(tpp: &ttp, cgraph, cplan); |
| 3148 | } else { |
| 3149 | // Reset some of the parameters that need resetting |
| 3150 | // No worker threads should be accessing the parameters below at this stage |
| 3151 | threadpool->cgraph = cgraph; |
| 3152 | threadpool->cplan = cplan; |
| 3153 | threadpool->current_chunk = 0; |
| 3154 | threadpool->abort = -1; |
| 3155 | threadpool->ec = GGML_STATUS_SUCCESS; |
| 3156 | } |
| 3157 | |
| 3158 | #ifdef GGML_USE_OPENMP |
| 3159 | if (n_threads > 1) { |
| 3160 | #pragma omp parallel num_threads(n_threads) |
| 3161 | { |
| 3162 | #pragma omp single |
| 3163 | { |
| 3164 | // update the number of threads from the actual number of threads that we got from OpenMP |
| 3165 | n_threads = omp_get_num_threads(); |
| 3166 | atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed); |
| 3167 | } |
| 3168 | |
| 3169 | // Apply thread CPU mask and priority |
| 3170 | int ith = omp_get_thread_num(); |
| 3171 | |
| 3172 | ggml_thread_apply_priority(prio: threadpool->prio); |
| 3173 | if (ggml_thread_cpumask_is_valid(mask: threadpool->workers[ith].cpumask)) { |
| 3174 | ggml_thread_apply_affinity(mask: threadpool->workers[ith].cpumask); |
| 3175 | } |
| 3176 | ggml_graph_compute_thread(data: &threadpool->workers[ith]); |
| 3177 | } |
| 3178 | } else { |
| 3179 | atomic_store_explicit(&threadpool->n_threads_cur, 1, memory_order_relaxed); |
| 3180 | ggml_graph_compute_thread(data: &threadpool->workers[0]); |
| 3181 | } |
| 3182 | #else |
| 3183 | if (n_threads > threadpool->n_threads_max) { |
| 3184 | GGML_LOG_WARN("cplan requested more threads (%d) than available (%d)\n" , n_threads, threadpool->n_threads_max); |
| 3185 | n_threads = threadpool->n_threads_max; |
| 3186 | } |
| 3187 | |
| 3188 | // Kick all threads to start the new graph |
| 3189 | ggml_graph_compute_kickoff(threadpool, n_threads); |
| 3190 | |
| 3191 | // This is a work thread too |
| 3192 | ggml_graph_compute_thread(&threadpool->workers[0]); |
| 3193 | #endif |
| 3194 | |
| 3195 | // don't leave affinity set on the main thread |
| 3196 | clear_numa_thread_affinity(); |
| 3197 | |
| 3198 | enum ggml_status ret = threadpool->ec; |
| 3199 | |
| 3200 | if (disposable_threadpool) { |
| 3201 | ggml_threadpool_free(threadpool); |
| 3202 | } |
| 3203 | |
| 3204 | return ret; |
| 3205 | } |
| 3206 | |
| 3207 | enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) { |
| 3208 | struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads, NULL); |
| 3209 | |
| 3210 | cplan.work_data = (uint8_t *)ggml_new_buffer(ctx, nbytes: cplan.work_size); |
| 3211 | |
| 3212 | return ggml_graph_compute(cgraph, cplan: &cplan); |
| 3213 | } |
| 3214 | |
| 3215 | void ggml_cpu_fp32_to_fp32(const float * x, float * y, int64_t n) { |
| 3216 | memcpy(dest: y, src: x, n: n * sizeof(float)); |
| 3217 | } |
| 3218 | |
| 3219 | void ggml_cpu_fp32_to_fp16(const float * x, ggml_fp16_t * y, int64_t n) { |
| 3220 | int64_t i = 0; |
| 3221 | #if defined(__F16C__) |
| 3222 | #if defined(__AVX512F__) |
| 3223 | for (; i + 15 < n; i += 16) { |
| 3224 | __m512 x_vec = _mm512_loadu_ps(x + i); |
| 3225 | __m256i y_vec = _mm512_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT); |
| 3226 | _mm256_storeu_si256((__m256i *)(y + i), y_vec); |
| 3227 | } |
| 3228 | #endif |
| 3229 | for (; i + 7 < n; i += 8) { |
| 3230 | __m256 x_vec = _mm256_loadu_ps(p: x + i); |
| 3231 | __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT); |
| 3232 | _mm_storeu_si128(p: (__m128i *)(y + i), b: y_vec); |
| 3233 | } |
| 3234 | for (; i + 3 < n; i += 4) { |
| 3235 | __m128 x_vec = _mm_loadu_ps(p: x + i); |
| 3236 | __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT); |
| 3237 | _mm_storel_epi64(p: (__m128i *)(y + i), a: y_vec); |
| 3238 | } |
| 3239 | #elif defined(__riscv_zvfh) |
| 3240 | for (int vl; i < n; i += vl) { |
| 3241 | vl = __riscv_vsetvl_e32m2(n - i); |
| 3242 | vfloat32m2_t vx = __riscv_vle32_v_f32m2(&x[i], vl); |
| 3243 | vfloat16m1_t vy = __riscv_vfncvt_f_f_w_f16m1(vx, vl); |
| 3244 | __riscv_vse16_v_f16m1((_Float16 *)&y[i], vy, vl); |
| 3245 | } |
| 3246 | #endif |
| 3247 | for (; i < n; ++i) { |
| 3248 | y[i] = GGML_CPU_FP32_TO_FP16(x[i]); |
| 3249 | } |
| 3250 | } |
| 3251 | |
| 3252 | void ggml_cpu_fp16_to_fp32(const ggml_fp16_t * x, float * y, int64_t n) { |
| 3253 | int64_t i = 0; |
| 3254 | #if defined(__F16C__) |
| 3255 | #if defined(__AVX512F__) |
| 3256 | for (; i + 15 < n; i += 16) { |
| 3257 | __m256i x_vec = _mm256_loadu_si256((const __m256i *)(x + i)); |
| 3258 | __m512 y_vec = _mm512_cvtph_ps(x_vec); |
| 3259 | _mm512_storeu_ps(y + i, y_vec); |
| 3260 | } |
| 3261 | #endif |
| 3262 | for (; i + 7 < n; i += 8) { |
| 3263 | __m128i x_vec = _mm_loadu_si128(p: (const __m128i *)(x + i)); |
| 3264 | __m256 y_vec = _mm256_cvtph_ps(a: x_vec); |
| 3265 | _mm256_storeu_ps(p: y + i, a: y_vec); |
| 3266 | } |
| 3267 | for (; i + 3 < n; i += 4) { |
| 3268 | __m128i x_vec = _mm_loadl_epi64(p: (const __m128i *)(x + i)); |
| 3269 | __m128 y_vec = _mm_cvtph_ps(a: x_vec); |
| 3270 | _mm_storeu_ps(p: y + i, a: y_vec); |
| 3271 | } |
| 3272 | #endif |
| 3273 | |
| 3274 | for (; i < n; ++i) { |
| 3275 | y[i] = GGML_CPU_FP16_TO_FP32(x[i]); |
| 3276 | } |
| 3277 | } |
| 3278 | |
| 3279 | void ggml_cpu_fp32_to_bf16(const float * x, ggml_bf16_t * y, int64_t n) { |
| 3280 | int64_t i = 0; |
| 3281 | for (; i < n; ++i) { |
| 3282 | y[i] = GGML_FP32_TO_BF16(x[i]); |
| 3283 | } |
| 3284 | } |
| 3285 | |
| 3286 | void ggml_cpu_fp32_to_i32(const float * x, int32_t * y, int64_t n) { |
| 3287 | int64_t i = 0; |
| 3288 | for (; i < n; ++i) { |
| 3289 | y[i] = x[i]; |
| 3290 | } |
| 3291 | } |
| 3292 | |
| 3293 | void ggml_cpu_bf16_to_fp32(const ggml_bf16_t * x, float * y, int64_t n) { |
| 3294 | int64_t i = 0; |
| 3295 | #if defined(__AVX2__) |
| 3296 | #if defined(__AVX512F__) |
| 3297 | for (; i + 15 < n; i += 16) { |
| 3298 | _mm512_storeu_ps(y + i, |
| 3299 | _mm512_castsi512_ps( |
| 3300 | _mm512_slli_epi32( |
| 3301 | _mm512_cvtepu16_epi32( |
| 3302 | _mm256_loadu_si256( |
| 3303 | (const __m256i *)(x + i))), |
| 3304 | 16))); |
| 3305 | } |
| 3306 | #endif |
| 3307 | for (; i + 7 < n; i += 8) { |
| 3308 | _mm256_storeu_ps(p: y + i, |
| 3309 | a: _mm256_castsi256_ps( |
| 3310 | a: _mm256_slli_epi32( |
| 3311 | a: _mm256_cvtepu16_epi32( |
| 3312 | V: _mm_loadu_si128( |
| 3313 | p: (const __m128i *)(x + i))), |
| 3314 | count: 16))); |
| 3315 | } |
| 3316 | #endif |
| 3317 | for (; i < n; i++) { |
| 3318 | y[i] = GGML_BF16_TO_FP32(x[i]); |
| 3319 | } |
| 3320 | } |
| 3321 | |
| 3322 | int ggml_cpu_has_avx(void) { |
| 3323 | #if defined(__AVX__) |
| 3324 | return 1; |
| 3325 | #else |
| 3326 | return 0; |
| 3327 | #endif |
| 3328 | } |
| 3329 | |
| 3330 | int ggml_cpu_has_avx_vnni(void) { |
| 3331 | #if defined(__AVXVNNI__) |
| 3332 | return 1; |
| 3333 | #else |
| 3334 | return 0; |
| 3335 | #endif |
| 3336 | } |
| 3337 | |
| 3338 | int ggml_cpu_has_avx2(void) { |
| 3339 | #if defined(__AVX2__) |
| 3340 | return 1; |
| 3341 | #else |
| 3342 | return 0; |
| 3343 | #endif |
| 3344 | } |
| 3345 | |
| 3346 | int ggml_cpu_has_avx512(void) { |
| 3347 | #if defined(__AVX512F__) |
| 3348 | return 1; |
| 3349 | #else |
| 3350 | return 0; |
| 3351 | #endif |
| 3352 | } |
| 3353 | |
| 3354 | int ggml_cpu_has_avx512_vbmi(void) { |
| 3355 | #if defined(__AVX512VBMI__) |
| 3356 | return 1; |
| 3357 | #else |
| 3358 | return 0; |
| 3359 | #endif |
| 3360 | } |
| 3361 | |
| 3362 | int ggml_cpu_has_avx512_vnni(void) { |
| 3363 | #if defined(__AVX512VNNI__) |
| 3364 | return 1; |
| 3365 | #else |
| 3366 | return 0; |
| 3367 | #endif |
| 3368 | } |
| 3369 | |
| 3370 | int ggml_cpu_has_avx512_bf16(void) { |
| 3371 | #if defined(__AVX512BF16__) |
| 3372 | return 1; |
| 3373 | #else |
| 3374 | return 0; |
| 3375 | #endif |
| 3376 | } |
| 3377 | |
| 3378 | int ggml_cpu_has_amx_int8(void) { |
| 3379 | #if defined(__AMX_INT8__) |
| 3380 | return 1; |
| 3381 | #else |
| 3382 | return 0; |
| 3383 | #endif |
| 3384 | } |
| 3385 | |
| 3386 | int ggml_cpu_has_bmi2(void) { |
| 3387 | #if defined(__BMI2__) |
| 3388 | return 1; |
| 3389 | #else |
| 3390 | return 0; |
| 3391 | #endif |
| 3392 | } |
| 3393 | |
| 3394 | int ggml_cpu_has_fma(void) { |
| 3395 | #if defined(__FMA__) |
| 3396 | return 1; |
| 3397 | #else |
| 3398 | return 0; |
| 3399 | #endif |
| 3400 | } |
| 3401 | |
| 3402 | int ggml_cpu_has_arm_fma(void) { |
| 3403 | #if defined(__ARM_FEATURE_FMA) |
| 3404 | return 1; |
| 3405 | #else |
| 3406 | return 0; |
| 3407 | #endif |
| 3408 | } |
| 3409 | |
| 3410 | int ggml_cpu_has_riscv_v(void) { |
| 3411 | #if defined(__riscv_v_intrinsic) |
| 3412 | return 1; |
| 3413 | #else |
| 3414 | return 0; |
| 3415 | #endif |
| 3416 | } |
| 3417 | |
| 3418 | int ggml_cpu_has_f16c(void) { |
| 3419 | #if defined(__F16C__) |
| 3420 | return 1; |
| 3421 | #else |
| 3422 | return 0; |
| 3423 | #endif |
| 3424 | } |
| 3425 | |
| 3426 | int ggml_cpu_has_fp16_va(void) { |
| 3427 | #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) |
| 3428 | return 1; |
| 3429 | #else |
| 3430 | return 0; |
| 3431 | #endif |
| 3432 | } |
| 3433 | |
| 3434 | int ggml_cpu_has_wasm_simd(void) { |
| 3435 | #if defined(__wasm_simd128__) |
| 3436 | return 1; |
| 3437 | #else |
| 3438 | return 0; |
| 3439 | #endif |
| 3440 | } |
| 3441 | |
| 3442 | int ggml_cpu_has_llamafile(void) { |
| 3443 | #if defined(GGML_USE_LLAMAFILE) |
| 3444 | return 1; |
| 3445 | #else |
| 3446 | return 0; |
| 3447 | #endif |
| 3448 | } |
| 3449 | |
| 3450 | int ggml_cpu_has_sse3(void) { |
| 3451 | #if defined(__SSE3__) |
| 3452 | return 1; |
| 3453 | #else |
| 3454 | return 0; |
| 3455 | #endif |
| 3456 | } |
| 3457 | |
| 3458 | int ggml_cpu_has_ssse3(void) { |
| 3459 | #if defined(__SSSE3__) |
| 3460 | return 1; |
| 3461 | #else |
| 3462 | return 0; |
| 3463 | #endif |
| 3464 | } |
| 3465 | |
| 3466 | int ggml_cpu_has_vsx(void) { |
| 3467 | #if defined(__POWER9_VECTOR__) |
| 3468 | return 1; |
| 3469 | #else |
| 3470 | return 0; |
| 3471 | #endif |
| 3472 | } |
| 3473 | |
| 3474 | int ggml_cpu_has_vxe(void) { |
| 3475 | #if defined(__VXE__) || defined(__VXE2__) |
| 3476 | return 1; |
| 3477 | #else |
| 3478 | return 0; |
| 3479 | #endif |
| 3480 | } |
| 3481 | |
| 3482 | int ggml_cpu_has_neon(void) { |
| 3483 | #if defined(__ARM_ARCH) && defined(__ARM_NEON) |
| 3484 | return 1; |
| 3485 | #else |
| 3486 | return 0; |
| 3487 | #endif |
| 3488 | } |
| 3489 | |
| 3490 | int ggml_cpu_has_dotprod(void) { |
| 3491 | #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_DOTPROD) |
| 3492 | return 1; |
| 3493 | #else |
| 3494 | return 0; |
| 3495 | #endif |
| 3496 | } |
| 3497 | |
| 3498 | int ggml_cpu_has_sve(void) { |
| 3499 | #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SVE) |
| 3500 | return 1; |
| 3501 | #else |
| 3502 | return 0; |
| 3503 | #endif |
| 3504 | } |
| 3505 | |
| 3506 | int ggml_cpu_has_matmul_int8(void) { |
| 3507 | #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_MATMUL_INT8) |
| 3508 | return 1; |
| 3509 | #else |
| 3510 | return 0; |
| 3511 | #endif |
| 3512 | } |
| 3513 | |
| 3514 | int ggml_cpu_get_sve_cnt(void) { |
| 3515 | #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SVE) |
| 3516 | return ggml_arm_arch_features.sve_cnt; |
| 3517 | #else |
| 3518 | return 0; |
| 3519 | #endif |
| 3520 | } |
| 3521 | |
| 3522 | int ggml_cpu_has_sme(void) { |
| 3523 | #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SME) |
| 3524 | return 1; |
| 3525 | #else |
| 3526 | return 0; |
| 3527 | #endif |
| 3528 | } |
| 3529 | |
| 3530 | void ggml_cpu_init(void) { |
| 3531 | // needed to initialize ggml_time |
| 3532 | { |
| 3533 | struct ggml_init_params params = { 0, NULL, false }; |
| 3534 | struct ggml_context * ctx = ggml_init(params); |
| 3535 | ggml_free(ctx); |
| 3536 | } |
| 3537 | |
| 3538 | ggml_critical_section_start(); |
| 3539 | |
| 3540 | static bool is_first_call = true; |
| 3541 | |
| 3542 | if (is_first_call) { |
| 3543 | // initialize GELU, Quick GELU, SILU and EXP F32 tables |
| 3544 | { |
| 3545 | const uint64_t t_start = ggml_time_us(); UNUSED(t_start); |
| 3546 | |
| 3547 | for (int i = 0; i < (1 << 16); ++i) { |
| 3548 | union { |
| 3549 | uint16_t u16; |
| 3550 | ggml_fp16_t fp16; |
| 3551 | } u = {i}; |
| 3552 | float f = GGML_COMPUTE_FP16_TO_FP32(u.fp16); |
| 3553 | ggml_table_f32_f16[i] = f; |
| 3554 | ggml_table_gelu_f16[i] = GGML_CPU_FP32_TO_FP16(ggml_gelu_f32(f)); |
| 3555 | ggml_table_gelu_quick_f16[i] = GGML_CPU_FP32_TO_FP16(ggml_gelu_quick_f32(f)); |
| 3556 | } |
| 3557 | |
| 3558 | const uint64_t t_end = ggml_time_us(); UNUSED(t_end); |
| 3559 | |
| 3560 | GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n" , __func__, (t_end - t_start)/1000.0); |
| 3561 | |
| 3562 | #ifdef GGML_USE_OPENMP |
| 3563 | //if (!getenv("OMP_WAIT_POLICY")) { |
| 3564 | // // set the wait policy to active, so that OpenMP threads don't sleep |
| 3565 | // setenv("OMP_WAIT_POLICY", "active", 0) |
| 3566 | //} |
| 3567 | |
| 3568 | if (!getenv(name: "KMP_BLOCKTIME" )) { |
| 3569 | // set the time to wait before sleeping a thread |
| 3570 | // this is less aggressive than setting the wait policy to active, but should achieve similar results in most cases |
| 3571 | #ifdef _WIN32 |
| 3572 | _putenv_s("KMP_BLOCKTIME" , "200" ); // 200ms |
| 3573 | #else |
| 3574 | setenv(name: "KMP_BLOCKTIME" , value: "200" , replace: 0); // 200ms |
| 3575 | #endif |
| 3576 | } |
| 3577 | #endif |
| 3578 | } |
| 3579 | |
| 3580 | #if defined(__ARM_ARCH) |
| 3581 | ggml_init_arm_arch_features(); |
| 3582 | #endif |
| 3583 | |
| 3584 | is_first_call = false; |
| 3585 | } |
| 3586 | |
| 3587 | ggml_critical_section_end(); |
| 3588 | } |
| 3589 | |