| 1 | // Copyright 2024 Mozilla Foundation |
| 2 | // |
| 3 | // Permission is hereby granted, free of charge, to any person obtaining |
| 4 | // a copy of this software and associated documentation files (the |
| 5 | // "Software"), to deal in the Software without restriction, including |
| 6 | // without limitation the rights to use, copy, modify, merge, publish, |
| 7 | // distribute, sublicense, and/or sell copies of the Software, and to |
| 8 | // permit persons to whom the Software is furnished to do so, subject to |
| 9 | // the following conditions: |
| 10 | // |
| 11 | // The above copyright notice and this permission notice shall be |
| 12 | // included in all copies or substantial portions of the Software. |
| 13 | // |
| 14 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 15 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 16 | // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 17 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| 18 | // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| 19 | // ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 20 | // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 21 | // SOFTWARE. |
| 22 | |
| 23 | // |
| 24 | // _ _ ___ _ _ ___ |
| 25 | // | |_(_)_ _ _ _| _ ) | /_\ / __| |
| 26 | // | _| | ' \ || | _ \ |__ / _ \\__ \. |
| 27 | // \__|_|_||_\_, |___/____/_/ \_\___/ |
| 28 | // |__/ |
| 29 | // |
| 30 | // BASIC LINEAR ALGEBRA SUBPROGRAMS |
| 31 | // |
| 32 | // |
| 33 | // This file implements multithreaded CPU matrix multiplication for the |
| 34 | // common contiguous use case C = Aᵀ * B. These kernels are designed to |
| 35 | // have excellent performance[1] for matrices that fit in the CPU cache |
| 36 | // without imposing any overhead such as cache filling or malloc calls. |
| 37 | // |
| 38 | // This implementation does not guarantee any upper bound with rounding |
| 39 | // errors, which grow along with k. Our goal's to maximally exploit the |
| 40 | // hardware for performance, and then use whatever resources remain for |
| 41 | // improving numerical accuracy. |
| 42 | // |
| 43 | // [1] J. Tunney, ‘LLaMA Now Goes Faster on CPUs’, Mar. 2024. [Online]. |
| 44 | // Available: https://justine.lol/matmul/. [Accessed: 29-Mar-2024]. |
| 45 | |
| 46 | #if defined(__GNUC__) |
| 47 | #pragma GCC diagnostic ignored "-Wpedantic" |
| 48 | #pragma GCC diagnostic ignored "-Wignored-attributes" |
| 49 | #endif |
| 50 | |
| 51 | #include "sgemm.h" |
| 52 | #include "ggml-impl.h" |
| 53 | #include "ggml-cpu-impl.h" |
| 54 | #include "ggml-quants.h" |
| 55 | #include "simd-mappings.h" |
| 56 | |
| 57 | #include <array> |
| 58 | #include <type_traits> |
| 59 | |
| 60 | #ifdef _MSC_VER |
| 61 | #define NOINLINE __declspec(noinline) |
| 62 | #else |
| 63 | #define NOINLINE __attribute__((__noinline__)) |
| 64 | #endif |
| 65 | |
| 66 | #if defined(__ARM_NEON) || defined(__AVX512F__) || defined(__VXE__) || defined(__VXE2__) |
| 67 | #define VECTOR_REGISTERS 32 |
| 68 | #else |
| 69 | #define VECTOR_REGISTERS 16 |
| 70 | #endif |
| 71 | |
| 72 | #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1) |
| 73 | |
| 74 | namespace { |
| 75 | |
| 76 | inline float unhalf(ggml_fp16_t d) { |
| 77 | return GGML_CPU_FP16_TO_FP32(d); |
| 78 | } |
| 79 | |
| 80 | //////////////////////////////////////////////////////////////////////////////////////////////////// |
| 81 | // VECTORIZED ARITHMETIC OPERATIONS |
| 82 | |
| 83 | #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) |
| 84 | inline __m128 add(__m128 x, __m128 y) { return _mm_add_ps(a: x, b: y); } |
| 85 | inline __m128 sub(__m128 x, __m128 y) { return _mm_sub_ps(a: x, b: y); } |
| 86 | inline __m128 mul(__m128 x, __m128 y) { return _mm_mul_ps(a: x, b: y); } |
| 87 | #endif // __SSE__ |
| 88 | |
| 89 | #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) |
| 90 | inline __m256 add(__m256 x, __m256 y) { return _mm256_add_ps(a: x, b: y); } |
| 91 | inline __m256 sub(__m256 x, __m256 y) { return _mm256_sub_ps(a: x, b: y); } |
| 92 | inline __m256 mul(__m256 x, __m256 y) { return _mm256_mul_ps(a: x, b: y); } |
| 93 | #endif // __AVX__ |
| 94 | |
| 95 | #if defined(__AVX512F__) |
| 96 | inline __m512 add(__m512 x, __m512 y) { return _mm512_add_ps(x, y); } |
| 97 | inline __m512 sub(__m512 x, __m512 y) { return _mm512_sub_ps(x, y); } |
| 98 | inline __m512 mul(__m512 x, __m512 y) { return _mm512_mul_ps(x, y); } |
| 99 | #endif // __AVX512F__ |
| 100 | |
| 101 | #if defined(__ARM_NEON) |
| 102 | inline float32x4_t add(float32x4_t x, float32x4_t y) { return vaddq_f32(x, y); } |
| 103 | inline float32x4_t sub(float32x4_t x, float32x4_t y) { return vsubq_f32(x, y); } |
| 104 | inline float32x4_t mul(float32x4_t x, float32x4_t y) { return vmulq_f32(x, y); } |
| 105 | #endif // __ARM_NEON |
| 106 | |
| 107 | #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) |
| 108 | inline float16x8_t add(float16x8_t x, float16x8_t y) { return vaddq_f16(x, y); } |
| 109 | inline float16x8_t sub(float16x8_t x, float16x8_t y) { return vsubq_f16(x, y); } |
| 110 | inline float16x8_t mul(float16x8_t x, float16x8_t y) { return vmulq_f16(x, y); } |
| 111 | #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC |
| 112 | |
| 113 | #if defined(__VXE__) || defined(__VXE2__) |
| 114 | inline float32x4_t add(float32x4_t x, float32x4_t y) { return vec_add(x, y); } |
| 115 | inline float32x4_t sub(float32x4_t x, float32x4_t y) { return vec_sub(x, y); } |
| 116 | inline float32x4_t mul(float32x4_t x, float32x4_t y) { return vec_mul(x, y); } |
| 117 | #endif |
| 118 | |
| 119 | #if defined(__MMA__) |
| 120 | typedef vector unsigned char vec_t; |
| 121 | typedef __vector_quad acc_t; |
| 122 | #endif |
| 123 | //////////////////////////////////////////////////////////////////////////////////////////////////// |
| 124 | // VECTORIZED FUSED MULTIPLY ADD |
| 125 | |
| 126 | /** |
| 127 | * Computes a * b + c. |
| 128 | */ |
| 129 | template <typename T, typename U> |
| 130 | inline U madd(T a, T b, U c) { |
| 131 | return add(mul(a, b), c); |
| 132 | } |
| 133 | |
| 134 | #if defined(__FMA__) |
| 135 | #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) |
| 136 | template <> |
| 137 | inline __m256 madd(__m256 a, __m256 b, __m256 c) { |
| 138 | return _mm256_fmadd_ps(A: a, B: b, C: c); |
| 139 | } |
| 140 | #endif |
| 141 | #if defined(__AVX512F__) |
| 142 | template <> |
| 143 | inline __m512 madd(__m512 a, __m512 b, __m512 c) { |
| 144 | return _mm512_fmadd_ps(a, b, c); |
| 145 | } |
| 146 | #endif |
| 147 | #if defined(__AVX512BF16__) |
| 148 | template <> |
| 149 | inline __m512 madd(__m512bh a, __m512bh b, __m512 c) { |
| 150 | return _mm512_dpbf16_ps(c, a, b); |
| 151 | } |
| 152 | template <> |
| 153 | inline __m256 madd(__m256bh a, __m256bh b, __m256 c) { |
| 154 | return _mm256_dpbf16_ps(c, a, b); |
| 155 | } |
| 156 | #endif |
| 157 | #endif |
| 158 | |
| 159 | #if defined(__ARM_FEATURE_FMA) |
| 160 | template <> |
| 161 | inline float32x4_t madd(float32x4_t a, float32x4_t b, float32x4_t c) { |
| 162 | return vfmaq_f32(c, b, a); |
| 163 | } |
| 164 | #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER) |
| 165 | template <> |
| 166 | inline float16x8_t madd(float16x8_t a, float16x8_t b, float16x8_t c) { |
| 167 | return vfmaq_f16(c, b, a); |
| 168 | } |
| 169 | #endif |
| 170 | #endif |
| 171 | |
| 172 | #if defined(__VXE__) || defined(__VXE2__) |
| 173 | template <> |
| 174 | inline float32x4_t madd(float32x4_t a, float32x4_t b, float32x4_t c) { |
| 175 | return vec_madd(a, b, c); |
| 176 | } |
| 177 | #endif |
| 178 | |
| 179 | //////////////////////////////////////////////////////////////////////////////////////////////////// |
| 180 | // VECTORIZED HORIZONTAL SUM |
| 181 | |
| 182 | #if defined(__ARM_NEON) |
| 183 | inline float hsum(float32x4_t x) { |
| 184 | return vaddvq_f32(x); |
| 185 | } |
| 186 | #endif // __ARM_NEON |
| 187 | |
| 188 | #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER) |
| 189 | inline float hsum(float16x8_t x) { |
| 190 | return vaddvq_f32(vaddq_f32(vcvt_f32_f16(vget_low_f16(x)), |
| 191 | vcvt_f32_f16(vget_high_f16(x)))); |
| 192 | } |
| 193 | #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC |
| 194 | |
| 195 | #if defined(__VXE__) || defined(__VXE2__) |
| 196 | inline float hsum(float32x4_t x) { |
| 197 | float32x4_t tmp = x + vec_reve(x); |
| 198 | return tmp[0] + tmp[1]; |
| 199 | } |
| 200 | #endif |
| 201 | |
| 202 | #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) |
| 203 | inline float hsum(__m128 x) { |
| 204 | #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) |
| 205 | x = _mm_add_ps(a: x, b: _mm_movehl_ps(a: x, b: x)); |
| 206 | x = _mm_add_ss(a: x, b: _mm_movehdup_ps(a: x)); |
| 207 | #else |
| 208 | __m128 t; |
| 209 | t = _mm_shuffle_ps(x, x, _MM_SHUFFLE(2, 3, 0, 1)); |
| 210 | x = _mm_add_ps(x, t); |
| 211 | t = _mm_movehl_ps(t, x); |
| 212 | x = _mm_add_ss(x, t); |
| 213 | #endif |
| 214 | return _mm_cvtss_f32(a: x); |
| 215 | } |
| 216 | #endif |
| 217 | |
| 218 | #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) |
| 219 | inline float hsum(__m256 x) { |
| 220 | return hsum(x: _mm_add_ps(_mm256_extractf128_ps(x, 1), |
| 221 | b: _mm256_castps256_ps128(a: x))); |
| 222 | } |
| 223 | #endif // __AVX__ |
| 224 | |
| 225 | #if defined(__AVX512F__) |
| 226 | inline float hsum(__m512 x) { |
| 227 | return _mm512_reduce_add_ps(x); |
| 228 | } |
| 229 | #endif // __AVX512F__ |
| 230 | |
| 231 | //////////////////////////////////////////////////////////////////////////////////////////////////// |
| 232 | // VECTORIZED MEMORY LOADING |
| 233 | |
| 234 | template <typename T, typename U> T load(const U *); |
| 235 | |
| 236 | #if defined(__ARM_NEON) |
| 237 | template <> inline float32x4_t load(const float *p) { |
| 238 | return vld1q_f32(p); |
| 239 | } |
| 240 | #if !defined(_MSC_VER) |
| 241 | // FIXME: this should check for __ARM_FEATURE_FP16_VECTOR_ARITHMETIC |
| 242 | template <> inline float16x8_t load(const ggml_fp16_t *p) { |
| 243 | return vld1q_f16((const float16_t *)p); |
| 244 | } |
| 245 | template <> inline float32x4_t load(const ggml_fp16_t *p) { |
| 246 | return vcvt_f32_f16(vld1_f16((const float16_t *)p)); |
| 247 | } |
| 248 | #endif // _MSC_VER |
| 249 | #endif // __ARM_NEON |
| 250 | |
| 251 | #if defined(__VXE__) || defined(__VXE2__) |
| 252 | template <> inline float32x4_t load(const ggml_fp16_t * p) { |
| 253 | float tmp[4]; |
| 254 | |
| 255 | for (int i = 0; i < 4; i++) { |
| 256 | tmp[i] = GGML_CPU_FP16_TO_FP32(p[i]); |
| 257 | } |
| 258 | |
| 259 | return vec_xl(0, (const float *)(tmp)); |
| 260 | } |
| 261 | template <> inline float32x4_t load(const float * p) { |
| 262 | return vec_xl(0, p); |
| 263 | } |
| 264 | #endif |
| 265 | |
| 266 | #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) |
| 267 | template <> inline __m128 load(const float *p) { |
| 268 | return _mm_loadu_ps(p: p); |
| 269 | } |
| 270 | #endif // __SSE__ |
| 271 | |
| 272 | #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) |
| 273 | template <> inline __m256 load(const float *p) { |
| 274 | return _mm256_loadu_ps(p: p); |
| 275 | } |
| 276 | #endif // __AVX__ |
| 277 | |
| 278 | #if defined(__AVX2__) || defined(__AVX512F__) |
| 279 | template <> inline __m256 load(const ggml_bf16_t *p) { |
| 280 | return _mm256_castsi256_ps( |
| 281 | a: _mm256_slli_epi32(a: _mm256_cvtepu16_epi32(V: _mm_loadu_si128(p: (const __m128i *)p)), count: 16)); |
| 282 | } |
| 283 | #endif // __AVX2__ |
| 284 | |
| 285 | #if defined(__F16C__) |
| 286 | template <> inline __m256 load(const ggml_fp16_t *p) { |
| 287 | return _mm256_cvtph_ps(a: _mm_loadu_si128(p: (const __m128i *)p)); |
| 288 | } |
| 289 | #endif // __F16C__ |
| 290 | |
| 291 | #if defined(__AVX512F__) |
| 292 | template <> inline __m512 load(const float *p) { |
| 293 | return _mm512_loadu_ps(p); |
| 294 | } |
| 295 | template <> inline __m512 load(const ggml_fp16_t *p) { |
| 296 | return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)p)); |
| 297 | } |
| 298 | template <> inline __m512 load(const ggml_bf16_t *p) { |
| 299 | return _mm512_castsi512_ps( |
| 300 | _mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)p)), 16)); |
| 301 | } |
| 302 | #endif // __AVX512F__ |
| 303 | |
| 304 | #if defined(__AVX512BF16__) |
| 305 | template <> inline __m512bh load(const ggml_bf16_t *p) { |
| 306 | return (__m512bh)_mm512_loadu_ps((const float *)p); |
| 307 | } |
| 308 | template <> inline __m256bh load(const ggml_bf16_t *p) { |
| 309 | return (__m256bh)_mm256_loadu_ps((const float *)p); |
| 310 | } |
| 311 | template <> inline __m512bh load(const float *p) { |
| 312 | return _mm512_cvtne2ps_pbh(_mm512_loadu_ps(p + 16), _mm512_loadu_ps(p)); |
| 313 | } |
| 314 | template <> inline __m256bh load(const float *p) { |
| 315 | return _mm512_cvtneps_pbh(_mm512_loadu_ps(p)); |
| 316 | } |
| 317 | #endif |
| 318 | |
| 319 | //////////////////////////////////////////////////////////////////////////////////////////////////// |
| 320 | // FLOATING POINT MATRIX MULTIPLICATION |
| 321 | |
| 322 | template <int M> |
| 323 | static inline int64_t BLOCK_SIZE(size_t m) { |
| 324 | const int64_t NB_BLOC_M = (m + M - 1) / M; |
| 325 | return (m % NB_BLOC_M == 0) ? m / NB_BLOC_M : (m / NB_BLOC_M) + 1; |
| 326 | } |
| 327 | |
| 328 | static constexpr inline int64_t BLOC_POS(int64_t ib, int64_t ibN, int64_t bloc_size) { |
| 329 | return ib < ibN ? ib * bloc_size : ibN * bloc_size + (ib - ibN) * (bloc_size - 1); |
| 330 | } |
| 331 | |
| 332 | template <int KN, typename D, typename V, typename TA, typename TB, typename TC> |
| 333 | class tinyBLAS { |
| 334 | public: |
| 335 | tinyBLAS(const ggml_compute_params * params, int64_t k, |
| 336 | const TA *A, int64_t lda, |
| 337 | const TB *B, int64_t ldb, |
| 338 | TC *C, int64_t ldc) |
| 339 | : params(params), A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc) { |
| 340 | } |
| 341 | |
| 342 | bool matmul(int64_t m, int64_t n) { |
| 343 | if (k % KN != 0) |
| 344 | return false; |
| 345 | // compute RM for only need tile with size RM&RM-1 |
| 346 | #if VECTOR_REGISTERS == 32 |
| 347 | if (m % 16 == 0 && (m/16 >= params->nth)) { |
| 348 | const int64_t SIZE_N = BLOCK_SIZE<6>(n); |
| 349 | mnpack<4, 6, 4>(m, n, SIZE_N, 12); |
| 350 | return true; |
| 351 | } |
| 352 | if (m % 8 == 0 ) { |
| 353 | const int64_t SIZE_N = BLOCK_SIZE<6>(n); |
| 354 | mnpack<4, 6, 2>(m, n, SIZE_N, 12); |
| 355 | return true; |
| 356 | } |
| 357 | if (m % 4 == 0) { |
| 358 | const int64_t SIZE_N = BLOCK_SIZE<6>(n); |
| 359 | mnpack<4, 6, 1>(m, n, SIZE_N, 12); |
| 360 | return true; |
| 361 | } |
| 362 | #else // VECTOR_REGISTERS == 16 |
| 363 | if (m % 16 == 0 && (m/16 >= params->nth)) { |
| 364 | const int64_t SIZE_N = BLOCK_SIZE<3>(m: n); |
| 365 | mnpack<4, 3, 4>(m, n, SIZE_N, 24); |
| 366 | return true; |
| 367 | } |
| 368 | if (m % 8 == 0 ) { |
| 369 | const int64_t SIZE_N = BLOCK_SIZE<3>(m: n); |
| 370 | mnpack<4, 3, 2>(m, n, SIZE_N, 24); |
| 371 | return true; |
| 372 | } |
| 373 | if (m % 4 == 0) { |
| 374 | const int64_t SIZE_N = BLOCK_SIZE<3>(m: n); |
| 375 | mnpack<4, 3, 1>(m, n, SIZE_N, 24); |
| 376 | return true; |
| 377 | } |
| 378 | #endif |
| 379 | return false; |
| 380 | } |
| 381 | |
| 382 | private: |
| 383 | template <int RM, int RN, int BM> |
| 384 | inline void mnpack(int64_t m, int64_t n, int64_t SIZE_N, int64_t BN) { |
| 385 | if (SIZE_N == RN) { |
| 386 | return gemm<RM, RN, BM>(m, n, BN); |
| 387 | } |
| 388 | if constexpr (RN > 1) { |
| 389 | return mnpack<RM, RN-1, BM>(m, n, SIZE_N, BN); |
| 390 | } else { |
| 391 | GGML_LOG_ERROR("mnpack<%d, %d> bloc size not supported\n" , RM, (int)SIZE_N); |
| 392 | GGML_ASSERT(false); // we have miss something. |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | template <int RM, int RN> |
| 397 | inline void gemm_bloc(int64_t ii, int64_t jj) { |
| 398 | D Cv[RN][RM] = {}; |
| 399 | for (int64_t l = 0; l < k; l += KN) { |
| 400 | // help compiler for op order. |
| 401 | if constexpr (RM <= RN) { |
| 402 | V Av[RM]; |
| 403 | for (int64_t i = 0; i < RM; ++i) { |
| 404 | Av[i] = load<V>(A + lda * (ii + i) + l); |
| 405 | } |
| 406 | for (int64_t j = 0; j < RN; ++j) { |
| 407 | V Bv = load<V>(B + ldb * (jj + j) + l); |
| 408 | for (int64_t i = 0; i < RM; ++i) { |
| 409 | Cv[j][i] = madd(Av[i], Bv, Cv[j][i]); |
| 410 | } |
| 411 | } |
| 412 | } else { |
| 413 | V Bv[RN]; |
| 414 | for (int64_t j = 0; j < RN; ++j) { |
| 415 | Bv[j] = load<V>(B + ldb * (jj + j) + l); |
| 416 | } |
| 417 | for (int64_t i = 0; i < RM; ++i) { |
| 418 | V Av = load<V>(A + lda * (ii + i) + l); |
| 419 | for (int64_t j = 0; j < RN; ++j) { |
| 420 | Cv[j][i] = madd(Av, Bv[j], Cv[j][i]); |
| 421 | } |
| 422 | } |
| 423 | } |
| 424 | } |
| 425 | for (int64_t j = 0; j < RN; ++j) |
| 426 | for (int64_t i = 0; i < RM; ++i) |
| 427 | C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]); |
| 428 | } |
| 429 | |
| 430 | template <int RM, int RN, int BM> |
| 431 | NOINLINE void gemm(int64_t m, int64_t n, int64_t BN) { |
| 432 | GGML_ASSERT(m % (RM * BM) == 0); |
| 433 | const int64_t ytiles = m / (RM * BM); |
| 434 | const int64_t xtiles = (n + RN -1) / RN; |
| 435 | const int64_t jj_RN = (xtiles - (xtiles * RN - n)); |
| 436 | |
| 437 | // "round" bloc_size to "nearest" BN |
| 438 | const int64_t NB_BN = xtiles < BN ? 1 : (xtiles + BN / 2) / BN; |
| 439 | const int64_t SIZE_BN = xtiles % NB_BN == 0 ? xtiles / NB_BN : xtiles / NB_BN + 1; |
| 440 | const int64_t jj_BN = (NB_BN - (NB_BN * SIZE_BN - xtiles)); |
| 441 | const int64_t nb_job = ytiles * NB_BN; |
| 442 | |
| 443 | if (params->ith == 0) { |
| 444 | GGML_ASSERT( jj_BN * SIZE_BN + (NB_BN - jj_BN) * (SIZE_BN - 1) == xtiles); |
| 445 | // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start. |
| 446 | ggml_threadpool_chunk_set(tp: params->threadpool, value: params->nth); |
| 447 | } |
| 448 | |
| 449 | ggml_barrier(tp: params->threadpool); |
| 450 | |
| 451 | int64_t job = params->ith; |
| 452 | while (job < nb_job) { |
| 453 | const int64_t ii = (job % ytiles) * RM * BM; |
| 454 | const int64_t jb = job / ytiles; |
| 455 | const int64_t jr0 = BLOC_POS(ib: jb , ibN: jj_BN, bloc_size: SIZE_BN); |
| 456 | const int64_t jrN = BLOC_POS(ib: jb+1, ibN: jj_BN, bloc_size: SIZE_BN); |
| 457 | |
| 458 | const int64_t jj0 = BLOC_POS(ib: jr0, ibN: jj_RN, bloc_size: RN); |
| 459 | const int64_t jj2 = BLOC_POS(ib: jrN, ibN: jj_RN, bloc_size: RN); |
| 460 | const int64_t jj1 = jj2 < jj_RN * RN ? jj2 : jj_RN * RN; |
| 461 | |
| 462 | for (int64_t bi = 0; bi < BM * RM; bi += RM) { |
| 463 | int64_t jj = jj0; |
| 464 | for (; jj < jj1; jj += RN) { |
| 465 | gemm_bloc<RM, RN>(ii + bi, jj); |
| 466 | } |
| 467 | if constexpr (RN > 1) { |
| 468 | for (; jj < jj2; jj += RN - 1) { |
| 469 | gemm_bloc<RM, RN-1>(ii + bi, jj); |
| 470 | } |
| 471 | } |
| 472 | GGML_ASSERT(jj == jj2); |
| 473 | } |
| 474 | |
| 475 | job = ggml_threadpool_chunk_add(tp: params->threadpool, value: 1); |
| 476 | } |
| 477 | |
| 478 | ggml_barrier(tp: params->threadpool); |
| 479 | return; |
| 480 | } |
| 481 | |
| 482 | const ggml_compute_params * params; |
| 483 | const TA *const A; |
| 484 | const TB *const B; |
| 485 | TC *const C; |
| 486 | const int64_t k; |
| 487 | const int64_t lda; |
| 488 | const int64_t ldb; |
| 489 | const int64_t ldc; |
| 490 | }; |
| 491 | |
| 492 | ////////////////////////////////////////////////////////////////////////////////////////// |
| 493 | // QUANT ZERO MATRIX MULTIPLICATION |
| 494 | |
| 495 | #if defined(__ARM_FEATURE_DOTPROD) |
| 496 | template <typename TA> |
| 497 | class tinyBLAS_Q0_ARM { |
| 498 | public: |
| 499 | tinyBLAS_Q0_ARM(int64_t k, |
| 500 | const TA *A, int64_t lda, |
| 501 | const block_q8_0 *B, int64_t ldb, |
| 502 | float *C, int64_t ldc, |
| 503 | int ith, int nth) |
| 504 | : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { |
| 505 | } |
| 506 | |
| 507 | void matmul(int64_t m, int64_t n) { |
| 508 | mnpack(0, m, 0, n); |
| 509 | } |
| 510 | |
| 511 | private: |
| 512 | NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) { |
| 513 | int64_t mc, nc, mp, np; |
| 514 | switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 3ll)) { |
| 515 | case 0x33: |
| 516 | mc = 3; |
| 517 | nc = 3; |
| 518 | gemm<3, 3>(m0, m, n0, n); |
| 519 | break; |
| 520 | case 0x32: |
| 521 | mc = 3; |
| 522 | nc = 2; |
| 523 | gemm<3, 2>(m0, m, n0, n); |
| 524 | break; |
| 525 | case 0x23: |
| 526 | mc = 2; |
| 527 | nc = 3; |
| 528 | gemm<2, 3>(m0, m, n0, n); |
| 529 | break; |
| 530 | case 0x22: |
| 531 | mc = 2; |
| 532 | nc = 2; |
| 533 | gemm<2, 2>(m0, m, n0, n); |
| 534 | break; |
| 535 | case 0x31: |
| 536 | mc = 3; |
| 537 | nc = 1; |
| 538 | gemm<3, 1>(m0, m, n0, n); |
| 539 | break; |
| 540 | case 0x13: |
| 541 | mc = 1; |
| 542 | nc = 3; |
| 543 | gemm<1, 3>(m0, m, n0, n); |
| 544 | break; |
| 545 | case 0x21: |
| 546 | mc = 2; |
| 547 | nc = 1; |
| 548 | gemm<2, 1>(m0, m, n0, n); |
| 549 | break; |
| 550 | case 0x12: |
| 551 | mc = 1; |
| 552 | nc = 2; |
| 553 | gemm<1, 2>(m0, m, n0, n); |
| 554 | break; |
| 555 | case 0x11: |
| 556 | mc = 1; |
| 557 | nc = 1; |
| 558 | gemm<1, 1>(m0, m, n0, n); |
| 559 | break; |
| 560 | default: |
| 561 | return; |
| 562 | } |
| 563 | mp = m0 + (m - m0) / mc * mc; |
| 564 | np = n0 + (n - n0) / nc * nc; |
| 565 | mnpack(mp, m, n0, np); |
| 566 | mnpack(m0, m, np, n); |
| 567 | } |
| 568 | |
| 569 | template <int RM, int RN> |
| 570 | NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) { |
| 571 | int64_t ytiles = (m - m0) / RM; |
| 572 | int64_t xtiles = (n - n0) / RN; |
| 573 | int64_t tiles = xtiles * ytiles; |
| 574 | int64_t duty = (tiles + nth - 1) / nth; |
| 575 | int64_t start = duty * ith; |
| 576 | int64_t end = start + duty; |
| 577 | if (end > tiles) |
| 578 | end = tiles; |
| 579 | for (int64_t job = start; job < end; ++job) { |
| 580 | int64_t ii = m0 + job / xtiles * RM; |
| 581 | int64_t jj = n0 + job % xtiles * RN; |
| 582 | float32x4_t Cv[RN][RM] = {}; |
| 583 | for (int64_t l = 0; l < k; ++l) |
| 584 | for (int64_t j = 0; j < RN; ++j) |
| 585 | for (int64_t i = 0; i < RM; ++i) |
| 586 | Cv[j][i] = vmlaq_n_f32(Cv[j][i], |
| 587 | vcvtq_f32_s32(vdotq_s32( |
| 588 | vdotq_s32(vdupq_n_s32(0), |
| 589 | load_lo(A + lda * (ii + i) + l), |
| 590 | load_lo(B + ldb * (jj + j) + l)), |
| 591 | load_hi(A + lda * (ii + i) + l), |
| 592 | load_hi(B + ldb * (jj + j) + l))), |
| 593 | unhalf(A[lda * (ii + i) + l].d) * |
| 594 | unhalf(B[ldb * (jj + j) + l].d)); |
| 595 | for (int64_t j = 0; j < RN; ++j) |
| 596 | for (int64_t i = 0; i < RM; ++i) |
| 597 | C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]); |
| 598 | } |
| 599 | } |
| 600 | |
| 601 | inline int8x16_t load_lo(const block_q8_0 *b) { |
| 602 | return vld1q_s8(b->qs); |
| 603 | } |
| 604 | |
| 605 | inline int8x16_t load_hi(const block_q8_0 *b) { |
| 606 | return vld1q_s8(b->qs + 16); |
| 607 | } |
| 608 | |
| 609 | inline int8x16_t load_lo(const block_q4_0 *b) { |
| 610 | return vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vld1q_u8(b->qs), |
| 611 | vdupq_n_u8(0x0f))), |
| 612 | vdupq_n_s8(0x8)); |
| 613 | } |
| 614 | |
| 615 | inline int8x16_t load_hi(const block_q4_0 *b) { |
| 616 | return vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(vld1q_u8(b->qs), 4)), |
| 617 | vdupq_n_s8(0x8)); |
| 618 | } |
| 619 | |
| 620 | const TA *const A; |
| 621 | const block_q8_0 *const B; |
| 622 | float *const C; |
| 623 | const int64_t k; |
| 624 | const int64_t lda; |
| 625 | const int64_t ldb; |
| 626 | const int64_t ldc; |
| 627 | const int ith; |
| 628 | const int nth; |
| 629 | }; |
| 630 | #endif // __ARM_FEATURE_DOTPROD |
| 631 | |
| 632 | #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__) |
| 633 | template <typename TA, typename TB, typename TC> |
| 634 | class tinyBLAS_Q0_AVX { |
| 635 | public: |
| 636 | tinyBLAS_Q0_AVX(int64_t k, |
| 637 | const TA *A, int64_t lda, |
| 638 | const TB *B, int64_t ldb, |
| 639 | TC *C, int64_t ldc, |
| 640 | int ith, int nth) |
| 641 | : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { |
| 642 | const int8_t kvalues_iq4nl[16] = { |
| 643 | -127, -104, -83, -65, |
| 644 | -49, -35, -22, -10, |
| 645 | 1, 13, 25, 38, |
| 646 | 53, 69, 89, 113 |
| 647 | }; |
| 648 | |
| 649 | iq4nlt = _mm_loadu_si128(p: (const __m128i *)kvalues_iq4nl); |
| 650 | } |
| 651 | |
| 652 | void matmul(int64_t m, int64_t n) { |
| 653 | mnpack(m0: 0, m, n0: 0, n); |
| 654 | } |
| 655 | |
| 656 | private: |
| 657 | void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) { |
| 658 | int64_t mc, nc, mp, np; |
| 659 | switch ((MIN(m - m0, 4) << 4) | MIN(n - n0, 4)) { |
| 660 | #if VECTOR_REGISTERS == 32 |
| 661 | case 0x44: |
| 662 | mc = 4; |
| 663 | nc = 4; |
| 664 | #if defined(__AVX2__) && defined(__F16C__) |
| 665 | gemm4xN<4>(m0, m, n0, n); |
| 666 | #else |
| 667 | gemm<4, 4>(m0, m, n0, n); |
| 668 | #endif |
| 669 | break; |
| 670 | case 0x43: |
| 671 | mc = 4; |
| 672 | nc = 3; |
| 673 | #if defined(__AVX2__) && defined(__F16C__) |
| 674 | gemm4xN<3>(m0, m, n0, n); |
| 675 | #else |
| 676 | gemm<4, 3>(m0, m, n0, n); |
| 677 | #endif |
| 678 | break; |
| 679 | case 0x34: |
| 680 | mc = 3; |
| 681 | nc = 4; |
| 682 | #if defined(__AVX2__) && defined(__F16C__) |
| 683 | gemmMx4<3>(m0, m, n0, n); |
| 684 | #else |
| 685 | gemm<3, 4>(m0, m, n0, n); |
| 686 | #endif |
| 687 | break; |
| 688 | case 0x33: |
| 689 | mc = 3; |
| 690 | nc = 3; |
| 691 | gemm<3, 3>(m0, m, n0, n); |
| 692 | break; |
| 693 | case 0x42: |
| 694 | mc = 4; |
| 695 | nc = 2; |
| 696 | #if defined(__AVX2__) && defined(__F16C__) |
| 697 | gemm4xN<2>(m0, m, n0, n); |
| 698 | #else |
| 699 | gemm<4, 2>(m0, m, n0, n); |
| 700 | #endif |
| 701 | break; |
| 702 | case 0x24: |
| 703 | mc = 2; |
| 704 | nc = 4; |
| 705 | #if defined(__AVX2__) && defined(__F16C__) |
| 706 | gemmMx4<2>(m0, m, n0, n); |
| 707 | #else |
| 708 | gemm<2, 4>(m0, m, n0, n); |
| 709 | #endif |
| 710 | break; |
| 711 | #else |
| 712 | case 0x44: |
| 713 | case 0x43: |
| 714 | case 0x42: |
| 715 | mc = 4; |
| 716 | nc = 2; |
| 717 | #if defined(__AVX2__) && defined(__F16C__) |
| 718 | gemm4xN<2>(m0, m, n0, n); |
| 719 | #else |
| 720 | gemm<4, 2>(m0, m, n0, n); |
| 721 | #endif |
| 722 | break; |
| 723 | case 0x34: |
| 724 | case 0x24: |
| 725 | mc = 2; |
| 726 | nc = 4; |
| 727 | #if defined(__AVX2__) && defined(__F16C__) |
| 728 | gemmMx4<2>(m0, m, n0, n); |
| 729 | #else |
| 730 | gemm<2, 4>(m0, m, n0, n); |
| 731 | #endif |
| 732 | break; |
| 733 | case 0x33: |
| 734 | #endif |
| 735 | case 0x32: |
| 736 | mc = 3; |
| 737 | nc = 2; |
| 738 | gemm<3, 2>(m0, m, n0, n); |
| 739 | break; |
| 740 | case 0x23: |
| 741 | mc = 2; |
| 742 | nc = 3; |
| 743 | gemm<2, 3>(m0, m, n0, n); |
| 744 | break; |
| 745 | case 0x41: |
| 746 | mc = 4; |
| 747 | nc = 1; |
| 748 | #if defined(__AVX2__) && defined(__F16C__) |
| 749 | gemm4xN<1>(m0, m, n0, n); |
| 750 | #else |
| 751 | gemm<4, 1>(m0, m, n0, n); |
| 752 | #endif |
| 753 | break; |
| 754 | case 0x22: |
| 755 | mc = 2; |
| 756 | nc = 2; |
| 757 | gemm<2, 2>(m0, m, n0, n); |
| 758 | break; |
| 759 | case 0x14: |
| 760 | mc = 1; |
| 761 | nc = 4; |
| 762 | #if defined(__AVX2__) && defined(__F16C__) |
| 763 | gemmMx4<1>(m0, m, n0, n); |
| 764 | #else |
| 765 | gemm<1, 4>(m0, m, n0, n); |
| 766 | #endif |
| 767 | break; |
| 768 | case 0x31: |
| 769 | mc = 3; |
| 770 | nc = 1; |
| 771 | gemm<3, 1>(m0, m, n0, n); |
| 772 | break; |
| 773 | case 0x13: |
| 774 | mc = 1; |
| 775 | nc = 3; |
| 776 | gemm<1, 3>(m0, m, n0, n); |
| 777 | break; |
| 778 | case 0x21: |
| 779 | mc = 2; |
| 780 | nc = 1; |
| 781 | gemm<2, 1>(m0, m, n0, n); |
| 782 | break; |
| 783 | case 0x12: |
| 784 | mc = 1; |
| 785 | nc = 2; |
| 786 | gemm<1, 2>(m0, m, n0, n); |
| 787 | break; |
| 788 | case 0x11: |
| 789 | mc = 1; |
| 790 | nc = 1; |
| 791 | gemm<1, 1>(m0, m, n0, n); |
| 792 | break; |
| 793 | default: |
| 794 | return; |
| 795 | } |
| 796 | mp = m0 + (m - m0) / mc * mc; |
| 797 | np = n0 + (n - n0) / nc * nc; |
| 798 | mnpack(m0: mp, m, n0, n: np); |
| 799 | mnpack(m0, m, n0: np, n); |
| 800 | } |
| 801 | |
| 802 | #if defined(__AVX2__) && defined(__F16C__) |
| 803 | // Templated functions for gemm of dimensions 4xN |
| 804 | template <int RN> |
| 805 | NOINLINE void gemm4xN(int64_t m0, int64_t m, int64_t n0, int64_t n) { |
| 806 | int64_t ytiles = (m - m0) / 4; |
| 807 | int64_t xtiles = (n - n0) / RN; |
| 808 | int64_t tiles = xtiles * ytiles; |
| 809 | int64_t duty = (tiles + nth - 1) / nth; |
| 810 | int64_t start = duty * ith; |
| 811 | int64_t end = start + duty; |
| 812 | if (end > tiles) |
| 813 | end = tiles; |
| 814 | for (int64_t job = start; job < end; ++job) { |
| 815 | int64_t ii = m0 + job / xtiles * 4; |
| 816 | int64_t jj = n0 + job % xtiles * RN; |
| 817 | __m256 Cv[RN][4] = {}; |
| 818 | for (int64_t l = 0; l < k; ++l) { |
| 819 | uint64_t a_delta = ((uint64_t)A[lda * (ii + 3) + l].d << 48) | ((uint64_t)A[lda * (ii + 2) + l].d << 32) | ((uint64_t)A[lda * (ii + 1) + l].d << 16) | (A[lda * (ii + 0) + l].d); |
| 820 | // Convert delta values for four blocks to float values |
| 821 | __m128 da = _mm_cvtph_ps(a: _mm_set_epi64x(q1: 0, q0: a_delta)); |
| 822 | __m256i avec0 = load(A + lda * (ii + 0) + l); |
| 823 | __m256i avec1 = load(A + lda * (ii + 1) + l); |
| 824 | __m256i avec2 = load(A + lda * (ii + 2) + l); |
| 825 | __m256i avec3 = load(A + lda * (ii + 3) + l); |
| 826 | for (int64_t j = 0; j < RN; ++j) { |
| 827 | __m128 db = _mm_set1_ps(unhalf(B[ldb * (jj + j) + l].d)); |
| 828 | // Computation of product of delta values for four blocks and replicate it across 256 bit lane |
| 829 | __m256 dvec = _mm256_castps128_ps256(a: _mm_mul_ps(a: da, b: db)); |
| 830 | dvec = _mm256_permute2f128_ps(dvec ,dvec, 0); |
| 831 | // Computation of dot product and multiplication with appropriate delta value products |
| 832 | Cv[j][0] = madd(_mm256_shuffle_ps(dvec, dvec, 0), |
| 833 | updot(u: _mm256_sign_epi8(a: avec0, b: avec0), |
| 834 | s: _mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec0)), |
| 835 | Cv[j][0]); |
| 836 | Cv[j][1] = madd(_mm256_shuffle_ps(dvec, dvec, 85), |
| 837 | updot(u: _mm256_sign_epi8(a: avec1, b: avec1), |
| 838 | s: _mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec1)), |
| 839 | Cv[j][1]); |
| 840 | Cv[j][2] = madd(_mm256_shuffle_ps(dvec, dvec, 170), |
| 841 | updot(u: _mm256_sign_epi8(a: avec2, b: avec2), |
| 842 | s: _mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec2)), |
| 843 | Cv[j][2]); |
| 844 | Cv[j][3] = madd(_mm256_shuffle_ps(dvec, dvec, 255), |
| 845 | updot(u: _mm256_sign_epi8(a: avec3, b: avec3), |
| 846 | s: _mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec3)), |
| 847 | Cv[j][3]); |
| 848 | } |
| 849 | } |
| 850 | |
| 851 | for (int64_t j = 0; j < RN; ++j) |
| 852 | for (int64_t i = 0; i < 4; ++i) |
| 853 | C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]); |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | // Templated functions for gemm of dimensions Mx4 |
| 858 | template <int RM> |
| 859 | NOINLINE void gemmMx4(int64_t m0, int64_t m, int64_t n0, int64_t n) { |
| 860 | int64_t ytiles = (m - m0) / RM; |
| 861 | int64_t xtiles = (n - n0) / 4; |
| 862 | int64_t tiles = xtiles * ytiles; |
| 863 | int64_t duty = (tiles + nth - 1) / nth; |
| 864 | int64_t start = duty * ith; |
| 865 | int64_t end = start + duty; |
| 866 | if (end > tiles) |
| 867 | end = tiles; |
| 868 | for (int64_t job = start; job < end; ++job) { |
| 869 | int64_t ii = m0 + job / xtiles * RM; |
| 870 | int64_t jj = n0 + job % xtiles * 4; |
| 871 | __m256 Cv[4][RM] = {}; |
| 872 | for (int64_t l = 0; l < k; ++l) { |
| 873 | uint64_t b_delta = ((uint64_t)B[ldb * (jj + 3) + l].d << 48) | ((uint64_t)B[ldb * (jj + 2) + l].d << 32) | ((uint64_t)B[ldb * (jj + 1) + l].d << 16) | (B[ldb * (jj + 0) + l].d); |
| 874 | // Convert delta values for four blocks to float values |
| 875 | __m128 db = _mm_cvtph_ps(a: _mm_set_epi64x(q1: 0, q0: b_delta)); |
| 876 | __m256i bvec0 = load(B + ldb * (jj + 0) + l); |
| 877 | __m256i bvec1 = load(B + ldb * (jj + 1) + l); |
| 878 | __m256i bvec2 = load(B + ldb * (jj + 2) + l); |
| 879 | __m256i bvec3 = load(B + ldb * (jj + 3) + l); |
| 880 | for (int64_t i = 0; i < RM; ++i) { |
| 881 | __m128 da = _mm_set1_ps(unhalf((A[lda * (ii + i) + l].d))); |
| 882 | // Computation of product of delta values for four blocks and replicate it across 256 bit lane |
| 883 | __m256 dvec = _mm256_castps128_ps256(a: _mm_mul_ps(a: da, b: db)); |
| 884 | dvec = _mm256_permute2f128_ps(dvec ,dvec, 0); |
| 885 | // Computation of dot product and multiplication with appropriate delta value products |
| 886 | Cv[0][i] = madd(_mm256_shuffle_ps(dvec, dvec, 0), |
| 887 | updot(u: _mm256_sign_epi8(load(A + lda * (ii + i) + l), |
| 888 | load(A + lda * (ii + i) + l)), |
| 889 | s: _mm256_sign_epi8(bvec0, load(A + lda * (ii + i) + l))), |
| 890 | Cv[0][i]); |
| 891 | Cv[1][i] = madd(_mm256_shuffle_ps(dvec, dvec, 85), |
| 892 | updot(u: _mm256_sign_epi8(load(A + lda * (ii + i) + l), |
| 893 | load(A + lda * (ii + i) + l)), |
| 894 | s: _mm256_sign_epi8(bvec1, load(A + lda * (ii + i) + l))), |
| 895 | Cv[1][i]); |
| 896 | Cv[2][i] = madd(_mm256_shuffle_ps(dvec, dvec, 170), |
| 897 | updot(u: _mm256_sign_epi8(load(A + lda * (ii + i) + l), |
| 898 | load(A + lda * (ii + i) + l)), |
| 899 | s: _mm256_sign_epi8(bvec2, load(A + lda * (ii + i) + l))), |
| 900 | Cv[2][i]); |
| 901 | Cv[3][i] = madd(_mm256_shuffle_ps(dvec, dvec, 255), |
| 902 | updot(u: _mm256_sign_epi8(load(A + lda * (ii + i) + l), |
| 903 | load(A + lda * (ii + i) + l)), |
| 904 | s: _mm256_sign_epi8(bvec3, load(A + lda * (ii + i) + l))), |
| 905 | Cv[3][i]); |
| 906 | } |
| 907 | } |
| 908 | for (int64_t j = 0; j < 4; ++j) |
| 909 | for (int64_t i = 0; i < RM; ++i) |
| 910 | C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]); |
| 911 | } |
| 912 | } |
| 913 | #endif |
| 914 | |
| 915 | template <int RM, int RN> |
| 916 | NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) { |
| 917 | int64_t ytiles = (m - m0) / RM; |
| 918 | int64_t xtiles = (n - n0) / RN; |
| 919 | int64_t tiles = xtiles * ytiles; |
| 920 | int64_t duty = (tiles + nth - 1) / nth; |
| 921 | int64_t start = duty * ith; |
| 922 | int64_t end = start + duty; |
| 923 | if (end > tiles) |
| 924 | end = tiles; |
| 925 | for (int64_t job = start; job < end; ++job) { |
| 926 | int64_t ii = m0 + job / xtiles * RM; |
| 927 | int64_t jj = n0 + job % xtiles * RN; |
| 928 | __m256 Cv[RN][RM] = {}; |
| 929 | for (int64_t l = 0; l < k; ++l) |
| 930 | for (int64_t j = 0; j < RN; ++j) |
| 931 | for (int64_t i = 0; i < RM; ++i) { |
| 932 | #if defined(__AVX2__) |
| 933 | __m256 udTmp = updot(u: _mm256_sign_epi8(load(A + lda * (ii + i) + l), |
| 934 | load(A + lda * (ii + i) + l)), |
| 935 | s: _mm256_sign_epi8(load(B + ldb * (jj + j) + l), |
| 936 | load(A + lda * (ii + i) + l))); |
| 937 | #else |
| 938 | __m128i ali0 = load0(A + lda * (ii + i) + l); |
| 939 | __m128i ali1 = load1(A + lda * (ii + i) + l); |
| 940 | __m128i blj0 = load0(B + ldb * (jj + j) + l); |
| 941 | __m128i blj1 = load1(B + ldb * (jj + j) + l); |
| 942 | |
| 943 | __m128i sepAA0 = _mm_sign_epi8(ali0, ali0); |
| 944 | __m128i sepAA1 = _mm_sign_epi8(ali1, ali1); |
| 945 | __m128i sepBA0 = _mm_sign_epi8(blj0, ali0); |
| 946 | __m128i sepBA1 = _mm_sign_epi8(blj1, ali1); |
| 947 | |
| 948 | // updot |
| 949 | const __m128i oneFill = _mm_set1_epi16(1); |
| 950 | __m128i mad0 = _mm_maddubs_epi16(sepAA0, sepBA0); |
| 951 | __m128i mad1 = _mm_maddubs_epi16(sepAA1, sepBA1); |
| 952 | __m256 udTmp = _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_madd_epi16(oneFill, mad1), _mm_madd_epi16(oneFill, mad0))); |
| 953 | #endif |
| 954 | Cv[j][i] = madd(_mm256_set1_ps(unhalf(A[lda * (ii + i) + l].d) * |
| 955 | unhalf(B[ldb * (jj + j) + l].d)), |
| 956 | udTmp, |
| 957 | Cv[j][i]); |
| 958 | } |
| 959 | for (int64_t j = 0; j < RN; ++j) |
| 960 | for (int64_t i = 0; i < RM; ++i) |
| 961 | C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]); |
| 962 | } |
| 963 | } |
| 964 | |
| 965 | inline __m256i load(const block_q8_0 *b) { |
| 966 | return _mm256_loadu_si256(p: (const __m256i *)b->qs); |
| 967 | } |
| 968 | |
| 969 | inline __m128i load0(const block_q8_0 *b) { |
| 970 | return _mm_loadu_si128(p: (const __m128i *)b->qs); |
| 971 | } |
| 972 | |
| 973 | inline __m128i load1(const block_q8_0 *b) { |
| 974 | return _mm_loadu_si128(p: ((const __m128i *)b->qs) + 1); |
| 975 | } |
| 976 | |
| 977 | inline __m256i load(const block_q4_0 *b) { |
| 978 | return _mm256_sub_epi8(a: denibble(p: b->qs), b: _mm256_set1_epi8(b: 8)); |
| 979 | } |
| 980 | |
| 981 | inline __m128i load0(const block_q4_0 *b) { |
| 982 | const __m128i x = _mm_loadu_si128(p: (const __m128i *)(b->qs)); |
| 983 | return _mm_sub_epi8(a: _mm_and_si128(a: _mm_set1_epi8(b: 15), b: x), b: _mm_set1_epi8(b: 8)); |
| 984 | } |
| 985 | |
| 986 | inline __m128i load1(const block_q4_0 *b) { |
| 987 | const __m128i x = _mm_loadu_si128(p: (const __m128i *)(b->qs)); |
| 988 | return _mm_sub_epi8(a: _mm_and_si128(a: _mm_set1_epi8(b: 15), b: _mm_srli_epi16(a: x, count: 4)), b: _mm_set1_epi8(b: 8)); |
| 989 | } |
| 990 | |
| 991 | inline __m256i load(const block_q5_0 *b) { |
| 992 | return _mm256_or_si256(a: denibble(p: b->qs), b: bittobyte(p: b->qh)); |
| 993 | } |
| 994 | |
| 995 | inline __m128i load0(const block_q5_0* b) { |
| 996 | const __m128i x = _mm_loadu_si128(p: (const __m128i *)(b->qs)); |
| 997 | uint32_t x32; |
| 998 | memcpy(dest: &x32, src: b->qh, n: sizeof(uint32_t)); |
| 999 | __m128i qxl = _mm_and_si128(a: _mm_set1_epi8(b: 15), b: x); |
| 1000 | __m128i bytesl = _mm_cmpeq_epi8(a: _mm_set1_epi64x(q: -1), |
| 1001 | b: _mm_or_si128(a: _mm_set1_epi64x(q: 0x7fbfdfeff7fbfdfe), |
| 1002 | b: _mm_shuffle_epi8(a: _mm_set1_epi32(i: x32), |
| 1003 | b: _mm_set_epi64x(q1: 0x0101010101010101, q0: 0x0000000000000000)))); |
| 1004 | bytesl = _mm_andnot_si128(a: bytesl, b: _mm_set1_epi8(b: (char)0xF0)); |
| 1005 | return _mm_or_si128(a: qxl, b: bytesl); |
| 1006 | } |
| 1007 | |
| 1008 | inline __m128i load1(const block_q5_0* b) { |
| 1009 | const __m128i x = _mm_loadu_si128(p: (const __m128i *)(b->qs)); |
| 1010 | uint32_t x32; |
| 1011 | memcpy(dest: &x32, src: b->qh, n: sizeof(uint32_t)); |
| 1012 | __m128i qxh = _mm_and_si128(a: _mm_set1_epi8(b: 15), b: _mm_srli_epi16(a: x, count: 4)); |
| 1013 | __m128i bytesh = _mm_cmpeq_epi8(a: _mm_set1_epi64x(q: -1), |
| 1014 | b: _mm_or_si128(a: _mm_set1_epi64x(q: 0x7fbfdfeff7fbfdfe), |
| 1015 | b: _mm_shuffle_epi8(a: _mm_set1_epi32(i: x32), |
| 1016 | b: _mm_set_epi64x(q1: 0x0303030303030303, q0: 0x0202020202020202)))); |
| 1017 | bytesh = _mm_andnot_si128(a: bytesh, b: _mm_set1_epi8(b: (char)0xF0)); |
| 1018 | return _mm_or_si128(a: qxh, b: bytesh); |
| 1019 | } |
| 1020 | |
| 1021 | inline __m256i load(const block_iq4_nl *b) { |
| 1022 | return MM256_SET_M128I(load1(b), load0(b)); |
| 1023 | } |
| 1024 | |
| 1025 | inline __m128i load0(const block_iq4_nl *b) { |
| 1026 | const __m128i x = _mm_loadu_si128(p: (const __m128i *)(b->qs)); |
| 1027 | return _mm_shuffle_epi8(a: iq4nlt, b: _mm_and_si128(a: _mm_set1_epi8(b: 15), b: x)); |
| 1028 | } |
| 1029 | |
| 1030 | inline __m128i load1(const block_iq4_nl *b) { |
| 1031 | const __m128i x = _mm_loadu_si128(p: (const __m128i *)(b->qs)); |
| 1032 | return _mm_shuffle_epi8(a: iq4nlt, b: _mm_and_si128(a: _mm_set1_epi8(b: 15), b: _mm_srli_epi16(a: x, count: 4))); |
| 1033 | } |
| 1034 | |
| 1035 | inline __m256 updot(__m256i u, __m256i s) { |
| 1036 | __m256i res; |
| 1037 | #if defined(__AVX512VNNI__) && defined(__AVX512VL__) |
| 1038 | res = _mm256_dpbusd_epi32(_mm256_setzero_si256(), u, s); |
| 1039 | #elif defined(__AVXVNNI__) |
| 1040 | res = _mm256_dpbusd_avx_epi32(S: _mm256_setzero_si256(), A: u, B: s); |
| 1041 | #else |
| 1042 | res = _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_maddubs_epi16(u, s)); |
| 1043 | #endif |
| 1044 | return _mm256_cvtepi32_ps(a: res); |
| 1045 | } |
| 1046 | |
| 1047 | static inline __m256i denibble(const uint8_t *p) { |
| 1048 | __m128i x = _mm_loadu_si128(p: (const __m128i *)p); |
| 1049 | return _mm256_and_si256(a: _mm256_set1_epi8(b: 15), |
| 1050 | _mm256_insertf128_si256(_mm256_castsi128_si256(x), |
| 1051 | _mm_srli_epi16(x, 4), 1)); |
| 1052 | } |
| 1053 | |
| 1054 | static inline __m256i bittobyte(const uint8_t *p) { |
| 1055 | uint32_t x32; |
| 1056 | memcpy(dest: &x32, src: p, n: sizeof(uint32_t)); |
| 1057 | __m256i bytes = _mm256_cmpeq_epi8(a: _mm256_set1_epi64x(q: -1), |
| 1058 | b: _mm256_or_si256(a: _mm256_set1_epi64x(q: 0x7fbfdfeff7fbfdfe), |
| 1059 | b: _mm256_shuffle_epi8(a: _mm256_set1_epi32(i: x32), |
| 1060 | b: _mm256_set_epi64x(a: 0x0303030303030303, b: 0x0202020202020202, |
| 1061 | c: 0x0101010101010101, d: 0x0000000000000000)))); |
| 1062 | return _mm256_andnot_si256(a: bytes, b: _mm256_set1_epi8(b: (char)0xF0)); |
| 1063 | } |
| 1064 | |
| 1065 | const TA *const A; |
| 1066 | const TB *const B; |
| 1067 | TC *const C; |
| 1068 | const int64_t k; |
| 1069 | const int64_t lda; |
| 1070 | const int64_t ldb; |
| 1071 | const int64_t ldc; |
| 1072 | const int ith; |
| 1073 | const int nth; |
| 1074 | __m128i iq4nlt; |
| 1075 | }; |
| 1076 | #endif // __AVX__ |
| 1077 | |
| 1078 | //PPC Implementation |
| 1079 | #if defined(__MMA__) |
| 1080 | |
| 1081 | #define SAVE_ACC(ACC, ii, jj) \ |
| 1082 | __builtin_mma_disassemble_acc(vec_C, ACC); \ |
| 1083 | for (int I = 0; I < 4; I++) { \ |
| 1084 | for (int J = 0; J < 4; J++) { \ |
| 1085 | *((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&vec_C[I]+J); \ |
| 1086 | } \ |
| 1087 | } \ |
| 1088 | |
| 1089 | template <typename TA, typename TB, typename TC> |
| 1090 | class tinyBLAS_BF16_PPC { |
| 1091 | public: |
| 1092 | tinyBLAS_BF16_PPC(int64_t k, |
| 1093 | const TA *A, int64_t lda, |
| 1094 | const TB *B, int64_t ldb, |
| 1095 | TC *C, int64_t ldc, |
| 1096 | int ith, int nth) |
| 1097 | : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { |
| 1098 | } |
| 1099 | |
| 1100 | void matmul(int64_t m, int64_t n) { |
| 1101 | mnpack(0, m, 0, n); |
| 1102 | } |
| 1103 | |
| 1104 | private: |
| 1105 | void vector_permute_store(vec_t *c, int numVec, unsigned char *vecOffset) { |
| 1106 | vec_t t[8], s[8]; |
| 1107 | vec_t swiz1 = {0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23}; |
| 1108 | vec_t swiz2 = {8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31}; |
| 1109 | vec_t swiz3 = {0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23}; |
| 1110 | vec_t swiz4 = {8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31}; |
| 1111 | |
| 1112 | if (numVec == 2) { |
| 1113 | t[0] = vec_perm(c[0], c[1], swiz1); |
| 1114 | t[1] = vec_perm(c[2], c[3], swiz1); |
| 1115 | s[0] = vec_perm(t[0], t[1], swiz3); |
| 1116 | s[1] = vec_perm(t[0], t[1], swiz4); |
| 1117 | vec_xst(s[0], 0, (vec_t*)vecOffset); |
| 1118 | vec_xst(s[1], 0, (vec_t*)(vecOffset + 16)); |
| 1119 | } else if (numVec == 4) { |
| 1120 | t[0] = vec_perm(c[0], c[1], swiz1); |
| 1121 | t[1] = vec_perm(c[0], c[1], swiz2); |
| 1122 | t[2] = vec_perm(c[2], c[3], swiz1); |
| 1123 | t[3] = vec_perm(c[2], c[3], swiz2); |
| 1124 | s[0] = vec_perm(t[0], t[2], swiz3); |
| 1125 | s[1] = vec_perm(t[0], t[2], swiz4); |
| 1126 | s[2] = vec_perm(t[1], t[3], swiz3); |
| 1127 | s[3] = vec_perm(t[1], t[3], swiz4); |
| 1128 | for (int i = 0; i < 4; ++i) |
| 1129 | vec_xst(s[i], 0, (vec_t*)(vecOffset + i * 16)); |
| 1130 | } else if (numVec == 8) { |
| 1131 | for (int i = 0; i < 4; i += 2) { |
| 1132 | t[i+0] = vec_perm(c[i+0], c[i+1], swiz1); |
| 1133 | t[i+1] = vec_perm(c[i+0], c[i+1], swiz2); |
| 1134 | } |
| 1135 | for (int i = 4; i < 8; i += 2) { |
| 1136 | t[i+0] = vec_perm(c[i+0], c[i+1], swiz1); |
| 1137 | t[i+1] = vec_perm(c[i+0], c[i+1], swiz2); |
| 1138 | } |
| 1139 | s[0] = vec_perm(t[0], t[2], swiz3); |
| 1140 | s[1] = vec_perm(t[0], t[2], swiz4); |
| 1141 | s[2] = vec_perm(t[1], t[3], swiz3); |
| 1142 | s[3] = vec_perm(t[1], t[3], swiz4); |
| 1143 | s[4] = vec_perm(t[4], t[6], swiz3); |
| 1144 | s[5] = vec_perm(t[4], t[6], swiz4); |
| 1145 | s[6] = vec_perm(t[5], t[7], swiz3); |
| 1146 | s[7] = vec_perm(t[5], t[7], swiz4); |
| 1147 | for (int i = 0; i < 8; ++i) |
| 1148 | vec_xst(s[i], 0, (vec_t*)(vecOffset + i * 16)); |
| 1149 | } |
| 1150 | } |
| 1151 | |
| 1152 | void packNormal(const TA* a, int64_t lda, int rows, int cols, unsigned char* vec) { |
| 1153 | int64_t i, j; |
| 1154 | TA *aoffset = NULL; |
| 1155 | unsigned char *vecOffset = NULL; |
| 1156 | TA * aoffsets[8]; |
| 1157 | vector unsigned char c_arr[8]; |
| 1158 | aoffset = const_cast<TA*>(a); |
| 1159 | vecOffset = vec; |
| 1160 | j = (rows >> 3); |
| 1161 | if (j > 0) { |
| 1162 | do { |
| 1163 | if (cols == 4) { |
| 1164 | aoffsets[0] = aoffset; |
| 1165 | for (int it = 1; it < 4; ++it) |
| 1166 | aoffsets[it] = aoffsets[it-1] + lda; |
| 1167 | aoffset += 4 * lda; |
| 1168 | for (int i = 0; i < 4; ++i) |
| 1169 | c_arr[i] = vec_xl(0, (vector unsigned char*)aoffsets[i]); |
| 1170 | vector_permute_store(c_arr, 4, vecOffset); |
| 1171 | for (int i = 0; i<4; i++) |
| 1172 | aoffsets[i] = aoffsets[i]+lda; |
| 1173 | vecOffset +=64; |
| 1174 | } |
| 1175 | i = (cols >> 3); |
| 1176 | if (i > 0) { |
| 1177 | aoffsets[0] = aoffset; |
| 1178 | for (int it = 1; it < 8; ++it) { |
| 1179 | aoffsets[it] = aoffsets[it-1] + lda; |
| 1180 | } |
| 1181 | aoffset += 8 * lda; |
| 1182 | do { |
| 1183 | for (int it = 0; it < 8; ++it) |
| 1184 | c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]); |
| 1185 | vector_permute_store(c_arr, 8, vecOffset); |
| 1186 | for (int it = 0; it < 8; ++it) |
| 1187 | aoffsets[it] = aoffsets[it] + 8*lda; |
| 1188 | vecOffset += 128; |
| 1189 | i--; |
| 1190 | } while(i > 0); |
| 1191 | } |
| 1192 | j--; |
| 1193 | } while(j > 0); |
| 1194 | } |
| 1195 | if (rows & 4) { |
| 1196 | aoffsets[0] = aoffset; |
| 1197 | for (int it = 1; it < 4; ++it) |
| 1198 | aoffsets[it] = aoffsets[it-1] + lda; |
| 1199 | aoffset += 4 * lda; |
| 1200 | if (cols == 4) { |
| 1201 | for (int it = 0; it < 4; ++it) |
| 1202 | c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]); |
| 1203 | vector_permute_store(c_arr, 2, vecOffset); |
| 1204 | for (int it = 0; it< 4; it++) |
| 1205 | aoffsets[it] = aoffsets[it] + lda; |
| 1206 | vecOffset += 32; |
| 1207 | } |
| 1208 | i = (cols >> 3); |
| 1209 | if (i > 0) { |
| 1210 | do { |
| 1211 | for (int it = 0; it < 4; ++it) |
| 1212 | c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]); |
| 1213 | vector_permute_store(c_arr, 4, vecOffset); |
| 1214 | for (int it = 0; it< 4; it++) |
| 1215 | aoffsets[it] = aoffsets[it] + 8*lda; |
| 1216 | vecOffset += 64; |
| 1217 | i--; |
| 1218 | } while(i > 0); |
| 1219 | } |
| 1220 | } |
| 1221 | if (rows & 3) { |
| 1222 | aoffsets[0] = aoffset; |
| 1223 | for (int it = 1; it < 4; ++it) |
| 1224 | aoffsets[it] = aoffsets[it-1] + lda; |
| 1225 | if (cols == 4) { |
| 1226 | switch(rows) { |
| 1227 | case 3: c_arr[2] = vec_xl(0, (vector unsigned char*)aoffsets[2]); |
| 1228 | case 2: c_arr[1] = vec_xl(0, (vector unsigned char*)aoffsets[1]); |
| 1229 | case 1: c_arr[0] = vec_xl(0, (vector unsigned char*)aoffsets[0]); |
| 1230 | break; |
| 1231 | } |
| 1232 | vector_permute_store(c_arr, 2, vecOffset); |
| 1233 | for (int it = 0; it< 4; it++) |
| 1234 | aoffsets[it] = aoffsets[it] + lda; |
| 1235 | vecOffset += 32; |
| 1236 | } |
| 1237 | i = (cols >> 3); |
| 1238 | if (i > 0) { |
| 1239 | do { |
| 1240 | switch(rows) { |
| 1241 | case 3: c_arr[2] = vec_xl(0, (vector unsigned char*)aoffsets[2]); |
| 1242 | case 2: c_arr[1] = vec_xl(0, (vector unsigned char*)aoffsets[1]); |
| 1243 | case 1: c_arr[0] = vec_xl(0, (vector unsigned char*)aoffsets[0]); |
| 1244 | break; |
| 1245 | } |
| 1246 | vector_permute_store(c_arr, 4, vecOffset); |
| 1247 | for (int it = 0; it <4; it++) |
| 1248 | aoffsets[it] = aoffsets[it] + 8* lda; |
| 1249 | vecOffset += 64; |
| 1250 | i--; |
| 1251 | } while(i > 0); |
| 1252 | } |
| 1253 | } |
| 1254 | } |
| 1255 | |
| 1256 | void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) { |
| 1257 | int64_t mc, nc, mp, np; |
| 1258 | int m_rem = MIN(m - m0, 8); |
| 1259 | int n_rem = MIN(n - n0, 8); |
| 1260 | |
| 1261 | if (m_rem >= 8 && n_rem >= 8) { |
| 1262 | mc = 8; |
| 1263 | nc = 8; |
| 1264 | gemm<8,8>(m0, m, n0, n); |
| 1265 | } else if (m_rem >= 4 && n_rem >= 8) { |
| 1266 | mc = 4; |
| 1267 | nc = 8; |
| 1268 | gemm<4,8>(m0, m, n0, n); |
| 1269 | } else if (m_rem >=8 && n_rem >=4){ |
| 1270 | mc = 8; |
| 1271 | nc = 4; |
| 1272 | gemm<8,4>(m0, m, n0, n); |
| 1273 | } else if ((m_rem < 4) && (n_rem >= 8)) { |
| 1274 | nc = 8; |
| 1275 | switch(m_rem) { |
| 1276 | case 1: |
| 1277 | mc = 1; |
| 1278 | gemm_Mx8<1>(m0, m, n0, n); |
| 1279 | break; |
| 1280 | case 2: |
| 1281 | mc = 2; |
| 1282 | gemm_Mx8<2>(m0, m, n0, n); |
| 1283 | break; |
| 1284 | case 3: |
| 1285 | mc = 3; |
| 1286 | gemm_Mx8<3>(m0, m, n0, n); |
| 1287 | break; |
| 1288 | default: |
| 1289 | return; |
| 1290 | } |
| 1291 | } else if (m_rem >= 4 && n_rem >= 4) { |
| 1292 | mc = 4; |
| 1293 | nc = 4; |
| 1294 | gemm_small<4, 4>(m0, m, n0, n); |
| 1295 | } else if ((m_rem > 4) && (n_rem < 4)) { |
| 1296 | mc = 4; |
| 1297 | switch(n_rem) { |
| 1298 | case 1: |
| 1299 | nc = 1; |
| 1300 | gemm_small<4, 1>(m0, m, n0, n); |
| 1301 | break; |
| 1302 | case 2: |
| 1303 | nc = 2; |
| 1304 | gemm_small<4, 2>(m0, m, n0, n); |
| 1305 | break; |
| 1306 | case 3: |
| 1307 | nc = 3; |
| 1308 | gemm_small<4, 3>(m0, m, n0, n); |
| 1309 | break; |
| 1310 | |
| 1311 | default: |
| 1312 | return; |
| 1313 | } |
| 1314 | } else { |
| 1315 | switch((m_rem << 4) | n_rem) { |
| 1316 | case 0x43: |
| 1317 | mc = 4; |
| 1318 | nc = 3; |
| 1319 | gemm_small<4, 3>(m0, m, n0, n); |
| 1320 | break; |
| 1321 | case 0x42: |
| 1322 | mc = 4; |
| 1323 | nc = 2; |
| 1324 | gemm_small<4, 2>(m0, m, n0, n); |
| 1325 | break; |
| 1326 | case 0x41: |
| 1327 | mc = 4; |
| 1328 | nc = 1; |
| 1329 | gemm_small<4, 1>(m0, m, n0, n); |
| 1330 | break; |
| 1331 | case 0x34: |
| 1332 | mc = 3; |
| 1333 | nc = 4; |
| 1334 | gemm_small<3, 4>(m0, m, n0, n); |
| 1335 | break; |
| 1336 | case 0x33: |
| 1337 | mc = 3; |
| 1338 | nc = 3; |
| 1339 | gemm_small<3, 3>(m0, m, n0, n); |
| 1340 | break; |
| 1341 | case 0x32: |
| 1342 | mc = 3; |
| 1343 | nc = 2; |
| 1344 | gemm_small<3, 2>(m0, m, n0, n); |
| 1345 | break; |
| 1346 | case 0x31: |
| 1347 | mc = 3; |
| 1348 | nc = 1; |
| 1349 | gemm_small<3, 1>(m0, m, n0, n); |
| 1350 | break; |
| 1351 | case 0x24: |
| 1352 | mc = 2; |
| 1353 | nc = 4; |
| 1354 | gemm_small<2,4>(m0, m, n0, n); |
| 1355 | break; |
| 1356 | case 0x23: |
| 1357 | mc = 2; |
| 1358 | nc = 3; |
| 1359 | gemm_small<2, 3>(m0, m, n0, n); |
| 1360 | break; |
| 1361 | case 0x22: |
| 1362 | mc = 2; |
| 1363 | nc = 2; |
| 1364 | gemm_small<2, 2>(m0, m, n0, n); |
| 1365 | break; |
| 1366 | case 0x21: |
| 1367 | mc = 2; |
| 1368 | nc = 1; |
| 1369 | gemm_small<2, 1>(m0, m, n0, n); |
| 1370 | break; |
| 1371 | case 0x14: |
| 1372 | mc = 1; |
| 1373 | nc = 4; |
| 1374 | gemm_small<1, 4>(m0, m, n0, n); |
| 1375 | break; |
| 1376 | case 0x13: |
| 1377 | mc = 1; |
| 1378 | nc = 3; |
| 1379 | gemm_small<1, 3>(m0, m, n0, n); |
| 1380 | break; |
| 1381 | case 0x12: |
| 1382 | mc = 1; |
| 1383 | nc = 2; |
| 1384 | gemm_small<1, 2>(m0, m, n0, n); |
| 1385 | break; |
| 1386 | case 0x11: |
| 1387 | mc = 1; |
| 1388 | nc = 1; |
| 1389 | gemm_small<1, 1>(m0, m, n0, n); |
| 1390 | break; |
| 1391 | default: |
| 1392 | return; |
| 1393 | } |
| 1394 | } |
| 1395 | mp = m0 + (m - m0) / mc * mc; |
| 1396 | np = n0 + (n - n0) / nc * nc; |
| 1397 | mnpack(mp, m, n0, np); |
| 1398 | mnpack(m0, m, np, n); |
| 1399 | } |
| 1400 | |
| 1401 | void KERNEL_4x8(int64_t ii, int64_t jj) { |
| 1402 | vec_t vec_A[4], vec_B[8] , vec_C[4]; |
| 1403 | acc_t acc_0, acc_1; |
| 1404 | __builtin_mma_xxsetaccz(&acc_0); |
| 1405 | __builtin_mma_xxsetaccz(&acc_1); |
| 1406 | for (int l = 0; l < k; l+=8) { |
| 1407 | packNormal((A+(ii*lda)+l), lda, 4, 8, (uint8_t*)vec_A); |
| 1408 | packNormal((B+(jj*ldb)+l), ldb, 8, 8, (uint8_t*)vec_B); |
| 1409 | for (int x = 0; x < 4; x++) { |
| 1410 | __builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]); |
| 1411 | __builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x], vec_B[x+4]); |
| 1412 | } |
| 1413 | } |
| 1414 | SAVE_ACC(&acc_0, ii, jj); |
| 1415 | SAVE_ACC(&acc_1, ii, jj+4); |
| 1416 | } |
| 1417 | |
| 1418 | void KERNEL_8x4(int64_t ii, int64_t jj) { |
| 1419 | vec_t vec_A[8], vec_B[4] , vec_C[4]; |
| 1420 | acc_t acc_0, acc_1; |
| 1421 | __builtin_mma_xxsetaccz(&acc_0); |
| 1422 | __builtin_mma_xxsetaccz(&acc_1); |
| 1423 | for (int l = 0; l < k; l+=8) { |
| 1424 | packNormal((A+(ii*lda)+l), lda, 8, 8, (uint8_t*)vec_A); |
| 1425 | packNormal((B+(jj*ldb)+l), ldb, 8, 4, (uint8_t*)vec_B); |
| 1426 | for (int x = 0; x < 4; x++) { |
| 1427 | __builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]); |
| 1428 | __builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x+4], vec_B[x]); |
| 1429 | } |
| 1430 | } |
| 1431 | SAVE_ACC(&acc_0, ii, jj); |
| 1432 | SAVE_ACC(&acc_1, ii+4, jj); |
| 1433 | } |
| 1434 | |
| 1435 | |
| 1436 | void KERNEL_8x8(int64_t ii, int64_t jj) { |
| 1437 | vec_t vec_A[8], vec_B[8], vec_C[4]; |
| 1438 | acc_t acc_0, acc_1, acc_2, acc_3; |
| 1439 | __builtin_mma_xxsetaccz(&acc_0); |
| 1440 | __builtin_mma_xxsetaccz(&acc_1); |
| 1441 | __builtin_mma_xxsetaccz(&acc_2); |
| 1442 | __builtin_mma_xxsetaccz(&acc_3); |
| 1443 | for (int l = 0; l < k; l+=8) { |
| 1444 | packNormal(A+(ii*lda)+l, lda, 8, 8, (uint8_t*)vec_A); |
| 1445 | packNormal(B+(jj*ldb)+l, ldb, 8, 8, (uint8_t*)vec_B); |
| 1446 | for (int x = 0; x < 4; x++) { |
| 1447 | __builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]); |
| 1448 | __builtin_mma_xvbf16ger2pp(&acc_1, (vec_t)vec_A[x], (vec_t)vec_B[x+4]); |
| 1449 | __builtin_mma_xvbf16ger2pp(&acc_2, (vec_t)vec_A[x+4], (vec_t)vec_B[x]); |
| 1450 | __builtin_mma_xvbf16ger2pp(&acc_3, (vec_t)vec_A[x+4], (vec_t)vec_B[x+4]); |
| 1451 | } |
| 1452 | } |
| 1453 | |
| 1454 | SAVE_ACC(&acc_0, ii, jj); |
| 1455 | SAVE_ACC(&acc_1, ii, jj+4); |
| 1456 | SAVE_ACC(&acc_2, ii+4, jj); |
| 1457 | SAVE_ACC(&acc_3, ii+4, jj+4); |
| 1458 | } |
| 1459 | |
| 1460 | template<int RM, int RN> |
| 1461 | void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n) { |
| 1462 | int64_t ytiles = (m - m0) / RM; |
| 1463 | int64_t xtiles = (n - n0) / RN; |
| 1464 | int64_t tiles = xtiles * ytiles; |
| 1465 | int64_t duty = (tiles + nth - 1) / nth; |
| 1466 | int64_t start = duty * ith; |
| 1467 | int64_t end = start + duty; |
| 1468 | if (end > tiles) |
| 1469 | end = tiles; |
| 1470 | for (int64_t job = start; job < end; ++job) { |
| 1471 | int64_t ii = m0 + job / xtiles * RM; |
| 1472 | int64_t jj = n0 + job % xtiles * RN; |
| 1473 | vec_t vec_C[4]; |
| 1474 | acc_t acc_0; |
| 1475 | __builtin_mma_xxsetaccz(&acc_0); |
| 1476 | vec_t vec_A[2], vec_B[2]; |
| 1477 | for (int l=0; l<k; l+=4) { |
| 1478 | packNormal(A+(ii*lda)+l, lda, RM, 4, (uint8_t*)vec_A); |
| 1479 | packNormal(B+(jj*ldb)+l, ldb, RN, 4, (uint8_t*)vec_B); |
| 1480 | for (int x = 0; x<2; x++) { |
| 1481 | __builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]); |
| 1482 | } |
| 1483 | } |
| 1484 | __builtin_mma_disassemble_acc(vec_C, &acc_0); |
| 1485 | for (int I = 0; I < RM; I++) { |
| 1486 | for (int J = 0; J < RN; J++) { |
| 1487 | *((TC*)(C+ii+((jj+J)*ldc)+I)) = *((TC*)&vec_C[I]+J); |
| 1488 | } |
| 1489 | } |
| 1490 | } |
| 1491 | } |
| 1492 | |
| 1493 | template<int RM> |
| 1494 | void gemm_Mx8(int64_t m0, int64_t m, int64_t n0, int64_t n) { |
| 1495 | int RN = 8; |
| 1496 | int64_t ytiles = (m - m0) / RM; |
| 1497 | int64_t xtiles = (n - n0) / RN; |
| 1498 | int64_t tiles = xtiles * ytiles; |
| 1499 | int64_t duty = (tiles + nth - 1) / nth; |
| 1500 | int64_t start = duty * ith; |
| 1501 | int64_t end = start + duty; |
| 1502 | if (end > tiles) |
| 1503 | end = tiles; |
| 1504 | for (int64_t job = start; job < end; ++job) { |
| 1505 | int64_t ii = m0 + job / xtiles * RM; |
| 1506 | int64_t jj = n0 + job % xtiles * RN; |
| 1507 | vec_t vec_C[4]; |
| 1508 | acc_t acc_0, acc_1; |
| 1509 | __builtin_mma_xxsetaccz(&acc_0); |
| 1510 | __builtin_mma_xxsetaccz(&acc_1); |
| 1511 | vec_t vec_A[4], vec_B[8]; |
| 1512 | for (int l=0; l<k; l+=8) { |
| 1513 | packNormal(A+(ii*lda)+l, lda, RM, 8, (uint8_t*)vec_A); |
| 1514 | packNormal(B+(jj*ldb)+l, ldb, RN, 8, (uint8_t*)vec_B); |
| 1515 | for (int x = 0; x<4; x++) { |
| 1516 | __builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]); |
| 1517 | __builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x], vec_B[x+4]); |
| 1518 | } |
| 1519 | } |
| 1520 | __builtin_mma_disassemble_acc(vec_C, &acc_0); |
| 1521 | for (int I = 0; I < RM; I++) { |
| 1522 | for (int J = 0; J < 4; J++) { |
| 1523 | *((TC*)(C+ii+((jj+J)*ldc)+I)) = *((TC*)&vec_C[I]+J); |
| 1524 | } |
| 1525 | } |
| 1526 | __builtin_mma_disassemble_acc(vec_C, &acc_1); |
| 1527 | for (int I = 0; I < RM; I++) { |
| 1528 | for (int J = 0; J < 4; J++) { |
| 1529 | *((TC*)(C+ii+((jj+4+J)*ldc)+I)) = *((TC*)&vec_C[I]+J); |
| 1530 | } |
| 1531 | } |
| 1532 | } |
| 1533 | } |
| 1534 | |
| 1535 | template<int RM, int RN> |
| 1536 | inline void kernel(int64_t ii, int64_t jj) { |
| 1537 | if constexpr(RM == 4 && RN == 8) { |
| 1538 | KERNEL_4x8(ii,jj); |
| 1539 | } else if constexpr(RM == 8 && RN == 8) { |
| 1540 | KERNEL_8x8(ii,jj); |
| 1541 | } else if constexpr(RM == 8 && RN == 4) { |
| 1542 | KERNEL_8x4(ii,jj); |
| 1543 | } else { |
| 1544 | assert(false && "RN/RM values not supported" ); |
| 1545 | } |
| 1546 | } |
| 1547 | |
| 1548 | template <int RM, int RN> |
| 1549 | NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) { |
| 1550 | int64_t ytiles = (m - m0) / RM; |
| 1551 | int64_t xtiles = (n - n0) / RN; |
| 1552 | int64_t tiles = xtiles * ytiles; |
| 1553 | int64_t duty = (tiles + nth - 1) / nth; |
| 1554 | int64_t start = duty * ith; |
| 1555 | int64_t end = start + duty; |
| 1556 | if (end > tiles) |
| 1557 | end = tiles; |
| 1558 | for (int64_t job = start; job < end; ++job) { |
| 1559 | int64_t ii = m0 + job / xtiles * RM; |
| 1560 | int64_t jj = n0 + job % xtiles * RN; |
| 1561 | kernel<RM, RN>(ii, jj); |
| 1562 | } |
| 1563 | } |
| 1564 | |
| 1565 | const TA *const A; |
| 1566 | const TB *const B; |
| 1567 | TC *C; |
| 1568 | const int64_t k; |
| 1569 | const int64_t lda; |
| 1570 | const int64_t ldb; |
| 1571 | const int64_t ldc; |
| 1572 | const int ith; |
| 1573 | const int nth; |
| 1574 | }; |
| 1575 | |
| 1576 | template <typename TA> |
| 1577 | class tinyBLAS_Q0_PPC { |
| 1578 | public: |
| 1579 | tinyBLAS_Q0_PPC(int64_t k, |
| 1580 | const TA *A, int64_t lda, |
| 1581 | const block_q8_0 *B, int64_t ldb, |
| 1582 | float *C, int64_t ldc, |
| 1583 | int ith, int nth) |
| 1584 | : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { |
| 1585 | } |
| 1586 | |
| 1587 | void matmul(int64_t m, int64_t n) { |
| 1588 | mnpack(0, m, 0, n); |
| 1589 | } |
| 1590 | |
| 1591 | private: |
| 1592 | |
| 1593 | inline void save_res(int ii, int jj, int idx, vector float* fin_res, int RM=4, int RN=4) { |
| 1594 | for (int I = 0; I < RM; I++) { |
| 1595 | for (int J = 0; J < RN; J++) { |
| 1596 | *((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&fin_res[idx+I]+J); |
| 1597 | } |
| 1598 | } |
| 1599 | } |
| 1600 | |
| 1601 | template<int size> |
| 1602 | inline void compute(acc_t* ACC, int c_idx, int s_idx, std::array<int, size>& comparray, vector float* vs, vector float* fin_res) { |
| 1603 | vector signed int vec_C[4]; |
| 1604 | vector float CA[4] = {0}; |
| 1605 | vector float res[4] = {0}; |
| 1606 | __builtin_mma_disassemble_acc(vec_C, ACC); |
| 1607 | for (int i = 0; i < 4; i++) { |
| 1608 | CA[i] = vec_splats((float)(((double)comparray[c_idx+i]) * -128.0)); |
| 1609 | res[i] = vec_add(vec_ctf(vec_C[i], 0), CA[i]); |
| 1610 | fin_res[s_idx+i] = vec_madd(res[i], vs[s_idx+i], fin_res[s_idx+i]); |
| 1611 | } |
| 1612 | } |
| 1613 | /* This function processes quantized data from block_q4_0 elements. |
| 1614 | * First the we try to extract the two int4 values stored in single int8_t into two signed int8. |
| 1615 | * And then we subtract each of the resultant element with 8, to convert signed int8 to unsigned int8. |
| 1616 | * Also compute the rowsum which is required to compensate the above conversion. */ |
| 1617 | inline void process_q4_elements(vector signed char (&c)[2], int* ca) { |
| 1618 | const vector signed char lowMask = vec_splats((signed char)0xF); |
| 1619 | const vector unsigned char v4 = vec_splats((unsigned char)0x4); |
| 1620 | const vector signed char v8 = vec_splats((signed char)0x8); |
| 1621 | vector signed int vsum = {0}; |
| 1622 | vector signed int vsum2 = {0}; |
| 1623 | c[0] = vec_and(c[1], lowMask); |
| 1624 | c[1] = vec_sr(c[1], v4); |
| 1625 | c[0] = vec_sub(c[0], v8); |
| 1626 | c[1] = vec_sub(c[1], v8); |
| 1627 | vsum = vec_sum4s(c[0], vsum); |
| 1628 | vsum2 = vec_sum4s(c[1], vsum2); |
| 1629 | vsum = vec_add(vsum, vsum2); |
| 1630 | *(ca) = vsum[0] + vsum[1] + vsum[2] + vsum[3]; |
| 1631 | } |
| 1632 | |
| 1633 | template <typename V1, typename V2> |
| 1634 | inline void vector_permute_store(V2 &s1, V2 &s2, V2 &s3, V2 &s4, V1 *vecOffset, bool flip) { |
| 1635 | vector unsigned char swiz1 = {0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23}; |
| 1636 | vector unsigned char swiz2 = {8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31}; |
| 1637 | vector unsigned char swiz3 = {0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27}; |
| 1638 | vector unsigned char swiz4 = {4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31}; |
| 1639 | V2 t1, t2, t3, t4, t5, t6, t7, t8; |
| 1640 | vector unsigned char xor_vector; |
| 1641 | uint8_t flip_vec = 0x80; |
| 1642 | xor_vector = vec_splats(flip_vec); |
| 1643 | t1 = vec_perm(s1, s2, swiz1); |
| 1644 | t2 = vec_perm(s1, s2, swiz2); |
| 1645 | t3 = vec_perm(s3, s4, swiz1); |
| 1646 | t4 = vec_perm(s3, s4, swiz2); |
| 1647 | t5 = vec_perm(t1, t3, swiz3); |
| 1648 | t6 = vec_perm(t1, t3, swiz4); |
| 1649 | t7 = vec_perm(t2, t4, swiz3); |
| 1650 | t8 = vec_perm(t2, t4, swiz4); |
| 1651 | if (flip == true) { |
| 1652 | t5 = vec_xor(t5, xor_vector); |
| 1653 | t6 = vec_xor(t6, xor_vector); |
| 1654 | t7 = vec_xor(t7, xor_vector); |
| 1655 | t8 = vec_xor(t8, xor_vector); |
| 1656 | } |
| 1657 | vec_xst(t5, 0, vecOffset); |
| 1658 | vec_xst(t6, 0, vecOffset+16); |
| 1659 | vec_xst(t7, 0, vecOffset+32); |
| 1660 | vec_xst(t8, 0, vecOffset+48); |
| 1661 | } |
| 1662 | |
| 1663 | template<int size> |
| 1664 | void packNormalInt4(const TA* a, int64_t lda, int rows, int cols, int8_t* vec, std::array<int, size>& comparray) { |
| 1665 | int64_t i, j; |
| 1666 | TA *aoffset = NULL; |
| 1667 | int8_t *vecOffset = NULL; |
| 1668 | TA *aoffset1 = NULL, *aoffset2 = NULL, *aoffset3 = NULL, *aoffset4 = NULL; |
| 1669 | TA *aoffset5 = NULL, *aoffset6 = NULL, *aoffset7 = NULL, *aoffset8 = NULL; |
| 1670 | vector signed char c1[2] = {0}, c2[2] = {0}, c3[2] = {0}, c4[2] = {0}; |
| 1671 | vector signed char c5[2] = {0}, c6[2] = {0}, c7[2] = {0}, c8[2] = {0}; |
| 1672 | aoffset = const_cast<TA*>(a); |
| 1673 | vecOffset = vec; |
| 1674 | j = (rows >> 3); |
| 1675 | if (j > 0) { |
| 1676 | do { |
| 1677 | aoffset1 = aoffset; |
| 1678 | aoffset2 = aoffset1 + lda; |
| 1679 | aoffset3 = aoffset2 + lda; |
| 1680 | aoffset4 = aoffset3 + lda; |
| 1681 | aoffset5 = aoffset4 + lda; |
| 1682 | aoffset6 = aoffset5 + lda; |
| 1683 | aoffset7 = aoffset6 + lda; |
| 1684 | aoffset8 = aoffset7 + lda; |
| 1685 | aoffset += 8 * lda; |
| 1686 | i = (cols >> 2); |
| 1687 | if (i > 0) { |
| 1688 | do { |
| 1689 | c1[1] = reinterpret_cast<vector signed char>(vec_xl(0, aoffset1->qs)); |
| 1690 | c2[1] = reinterpret_cast<vector signed char>(vec_xl(0, aoffset2->qs)); |
| 1691 | c3[1] = reinterpret_cast<vector signed char>(vec_xl(0, aoffset3->qs)); |
| 1692 | c4[1] = reinterpret_cast<vector signed char>(vec_xl(0, aoffset4->qs)); |
| 1693 | c5[1] = reinterpret_cast<vector signed char>(vec_xl(0, aoffset5->qs)); |
| 1694 | c6[1] = reinterpret_cast<vector signed char>(vec_xl(0, aoffset6->qs)); |
| 1695 | c7[1] = reinterpret_cast<vector signed char>(vec_xl(0, aoffset7->qs)); |
| 1696 | c8[1] = reinterpret_cast<vector signed char>(vec_xl(0, aoffset8->qs)); |
| 1697 | |
| 1698 | process_q4_elements(c1, &comparray[0]); |
| 1699 | process_q4_elements(c2, &comparray[1]); |
| 1700 | process_q4_elements(c3, &comparray[2]); |
| 1701 | process_q4_elements(c4, &comparray[3]); |
| 1702 | process_q4_elements(c5, &comparray[4]); |
| 1703 | process_q4_elements(c6, &comparray[5]); |
| 1704 | process_q4_elements(c7, &comparray[6]); |
| 1705 | process_q4_elements(c8, &comparray[7]); |
| 1706 | vector_permute_store<int8_t, vector signed char>(c1[0], c2[0], c3[0], c4[0], vecOffset, false); |
| 1707 | vector_permute_store<int8_t, vector signed char>(c1[1], c2[1], c3[1], c4[1], vecOffset+64, false); |
| 1708 | vector_permute_store<int8_t, vector signed char>(c5[0], c6[0], c7[0], c8[0], vecOffset+128, false); |
| 1709 | vector_permute_store<int8_t, vector signed char>(c5[1], c6[1], c7[1], c8[1], vecOffset+192, false); |
| 1710 | aoffset1 += lda; |
| 1711 | aoffset2 += lda; |
| 1712 | aoffset3 += lda; |
| 1713 | aoffset4 += lda; |
| 1714 | aoffset5 += lda; |
| 1715 | aoffset6 += lda; |
| 1716 | aoffset7 += lda; |
| 1717 | aoffset8 += lda; |
| 1718 | vecOffset += 256; |
| 1719 | i--; |
| 1720 | } while (i > 0); |
| 1721 | } |
| 1722 | j--; |
| 1723 | } while (j > 0); |
| 1724 | } |
| 1725 | |
| 1726 | if (rows & 4) { |
| 1727 | aoffset1 = aoffset; |
| 1728 | aoffset2 = aoffset1 + lda; |
| 1729 | aoffset3 = aoffset2 + lda; |
| 1730 | aoffset4 = aoffset3 + lda; |
| 1731 | aoffset += 4 * lda; |
| 1732 | i = (cols >> 2); |
| 1733 | if (i > 0) { |
| 1734 | do { |
| 1735 | c1[1] = reinterpret_cast<vector signed char>(vec_xl(0, aoffset1->qs)); |
| 1736 | c2[1] = reinterpret_cast<vector signed char>(vec_xl(0, aoffset2->qs)); |
| 1737 | c3[1] = reinterpret_cast<vector signed char>(vec_xl(0, aoffset3->qs)); |
| 1738 | c4[1] = reinterpret_cast<vector signed char>(vec_xl(0, aoffset4->qs)); |
| 1739 | |
| 1740 | process_q4_elements(c1, &comparray[0]); |
| 1741 | process_q4_elements(c2, &comparray[1]); |
| 1742 | process_q4_elements(c3, &comparray[2]); |
| 1743 | process_q4_elements(c4, &comparray[3]); |
| 1744 | vector_permute_store<int8_t, vector signed char>(c1[0], c2[0], c3[0], c4[0], vecOffset, false); |
| 1745 | vector_permute_store<int8_t, vector signed char>(c1[1], c2[1], c3[1], c4[1], vecOffset+64, false); |
| 1746 | aoffset1 += lda; |
| 1747 | aoffset2 += lda; |
| 1748 | aoffset3 += lda; |
| 1749 | aoffset4 += lda; |
| 1750 | vecOffset += 128; |
| 1751 | i--; |
| 1752 | } while (i > 0); |
| 1753 | } |
| 1754 | } |
| 1755 | |
| 1756 | if (rows & 3) { |
| 1757 | aoffset1 = aoffset; |
| 1758 | aoffset2 = aoffset1 + lda; |
| 1759 | aoffset3 = aoffset2 + lda; |
| 1760 | i = (cols >> 2); |
| 1761 | if (i > 0) { |
| 1762 | do { |
| 1763 | switch(rows) { |
| 1764 | case 3: c3[1] = reinterpret_cast<vector signed char>(vec_xl(0, aoffset3->qs)); |
| 1765 | case 2: c2[1] = reinterpret_cast<vector signed char>(vec_xl(0, aoffset2->qs)); |
| 1766 | case 1: c1[1] = reinterpret_cast<vector signed char>(vec_xl(0, aoffset1->qs)); |
| 1767 | break; |
| 1768 | } |
| 1769 | process_q4_elements(c1, &comparray[0]); |
| 1770 | process_q4_elements(c2, &comparray[1]); |
| 1771 | process_q4_elements(c3, &comparray[2]); |
| 1772 | process_q4_elements(c4, &comparray[3]); |
| 1773 | vector_permute_store<int8_t, vector signed char>(c1[0], c2[0], c3[0], c4[0], vecOffset, false); |
| 1774 | vector_permute_store<int8_t, vector signed char>(c1[1], c2[1], c3[1], c4[1], vecOffset+64, false); |
| 1775 | aoffset1 += lda; |
| 1776 | aoffset2 += lda; |
| 1777 | aoffset3 += lda; |
| 1778 | vecOffset += 128; |
| 1779 | i--; |
| 1780 | } while(i > 0); |
| 1781 | } |
| 1782 | } |
| 1783 | } |
| 1784 | template<typename VA, typename VB> |
| 1785 | void packNormal(const block_q8_0* a, int64_t lda, int rows, int cols, VA* vec, bool flip) { |
| 1786 | int64_t i, j; |
| 1787 | block_q8_0 *aoffset = NULL; |
| 1788 | VA *vecOffset = NULL; |
| 1789 | block_q8_0* aoffsets[8]; |
| 1790 | __vector_pair arr[8]; |
| 1791 | VB c[8][2] = {0}; |
| 1792 | VB c1[8] = {0}; VB c2[8] = {0}; |
| 1793 | aoffset = const_cast<block_q8_0*>(a); |
| 1794 | vecOffset = vec; |
| 1795 | j = (rows >> 3); |
| 1796 | if (j > 0) { |
| 1797 | do { |
| 1798 | aoffsets[0] = aoffset; |
| 1799 | for (int it = 1; it < 8; it++) |
| 1800 | aoffsets[it] = aoffsets[it-1] + lda; |
| 1801 | aoffset += 8 * lda; |
| 1802 | |
| 1803 | i = (cols >> 3); |
| 1804 | if (i > 0) { |
| 1805 | do { |
| 1806 | for (int it = 0; it < 8; it++) { |
| 1807 | arr[it] = __builtin_vsx_lxvp(0, (__vector_pair*)aoffsets[it]->qs); |
| 1808 | __builtin_vsx_disassemble_pair(c[it], &arr[it]); |
| 1809 | c1[it] = c[it][0]; |
| 1810 | c2[it] = c[it][1]; |
| 1811 | } |
| 1812 | vector_permute_store<VA, VB>(c1[0], c1[1], c1[2], c1[3], vecOffset, flip); |
| 1813 | vector_permute_store<VA, VB>(c2[0], c2[1], c2[2], c2[3], vecOffset+64, flip); |
| 1814 | vector_permute_store<VA, VB>(c1[4], c1[5], c1[6], c1[7], vecOffset+128, flip); |
| 1815 | vector_permute_store<VA, VB>(c2[4], c2[5], c2[6], c2[7], vecOffset+192, flip); |
| 1816 | for (int it = 0; it < 8; it++) |
| 1817 | aoffsets[it] += lda; |
| 1818 | vecOffset += 256; |
| 1819 | i--; |
| 1820 | } while(i > 0); |
| 1821 | } |
| 1822 | j--; |
| 1823 | } while(j > 0); |
| 1824 | } |
| 1825 | |
| 1826 | if (rows & 4) { |
| 1827 | aoffsets[0] = aoffset; |
| 1828 | for (int it = 1; it < 4; it++ ) |
| 1829 | aoffsets[it] = aoffsets[it-1] + lda; |
| 1830 | aoffset += 4 * lda; |
| 1831 | i = (cols >> 3); |
| 1832 | if (i > 0) { |
| 1833 | do { |
| 1834 | for (int it = 0; it < 4; it++) { |
| 1835 | arr[it] = __builtin_vsx_lxvp(0, (__vector_pair*)aoffsets[it]->qs); |
| 1836 | __builtin_vsx_disassemble_pair(c[it], &arr[it]); |
| 1837 | c1[it] = c[it][0]; |
| 1838 | c2[it] = c[it][1]; |
| 1839 | } |
| 1840 | vector_permute_store<VA, VB>(c1[0], c1[1], c1[2], c1[3], vecOffset, flip); |
| 1841 | vector_permute_store<VA, VB>(c2[0], c2[1], c2[2], c2[3], vecOffset+64, flip); |
| 1842 | for (int it = 0; it < 4; it++) { |
| 1843 | aoffsets[it] += lda; |
| 1844 | } |
| 1845 | vecOffset += 128; |
| 1846 | i--; |
| 1847 | } while(i > 0); |
| 1848 | } |
| 1849 | } |
| 1850 | |
| 1851 | if (rows & 3) { |
| 1852 | aoffsets[0] = aoffset; |
| 1853 | for (int it = 1; it < 3; it++ ) |
| 1854 | aoffsets[it] = aoffsets[it-1] + lda; |
| 1855 | i = (cols >> 3); |
| 1856 | if (i > 0) { |
| 1857 | do { |
| 1858 | switch(rows) { |
| 1859 | case 3: arr[2] = __builtin_vsx_lxvp(0, (__vector_pair*)aoffsets[2]->qs); |
| 1860 | __builtin_vsx_disassemble_pair(c[2], &arr[2]); |
| 1861 | c1[2] = c[2][0]; c2[2] = c[2][1]; |
| 1862 | case 2: arr[1] = __builtin_vsx_lxvp(0, (__vector_pair*)aoffsets[1]->qs); |
| 1863 | __builtin_vsx_disassemble_pair(c[1], &arr[1]); |
| 1864 | c1[1] = c[1][0]; c2[1] = c[1][1]; |
| 1865 | case 1: arr[0] = __builtin_vsx_lxvp(0, (__vector_pair*)aoffsets[0]->qs); |
| 1866 | __builtin_vsx_disassemble_pair(c[0], &arr[0]); |
| 1867 | c1[0] = c[0][0]; c2[0] = c[0][1]; |
| 1868 | break; |
| 1869 | } |
| 1870 | vector_permute_store<VA, VB>(c1[0], c1[1], c1[2], c1[3], vecOffset, flip); |
| 1871 | vector_permute_store<VA, VB>(c2[0], c2[1], c2[2], c2[3], vecOffset+64, flip); |
| 1872 | for (int it = 0; it < 3; it++) |
| 1873 | aoffsets[it] += lda; |
| 1874 | vecOffset += 128; |
| 1875 | i--; |
| 1876 | } while(i > 0); |
| 1877 | } |
| 1878 | } |
| 1879 | } |
| 1880 | |
| 1881 | void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) { |
| 1882 | int m_rem = MIN(m - m0, 16); |
| 1883 | int n_rem = MIN(n - n0, 16); |
| 1884 | |
| 1885 | int mc = 0, nc = 0; |
| 1886 | |
| 1887 | if (m_rem >= 8 && n_rem >= 8) { |
| 1888 | mc = 8; |
| 1889 | nc = 8; |
| 1890 | gemm<8, 8>(m0, m, n0, n); |
| 1891 | } else if (m_rem >= 4 && n_rem >= 8) { |
| 1892 | mc = 4; |
| 1893 | nc = 8; |
| 1894 | gemm<4, 8>(m0, m, n0, n); |
| 1895 | } else if (m_rem >= 8 && n_rem >= 4) { |
| 1896 | mc = 8; |
| 1897 | nc = 4; |
| 1898 | gemm<8, 4>(m0, m, n0, n); |
| 1899 | } else if (m_rem >= 4 && n_rem >= 4) { |
| 1900 | mc = 4; |
| 1901 | nc = 4; |
| 1902 | gemm_small(m0, m, n0, n, mc, nc); |
| 1903 | } else { |
| 1904 | mc = (m_rem >= 4) ? 4 : m_rem; |
| 1905 | nc = (n_rem >= 4) ? 4 : n_rem; |
| 1906 | if (mc == 0 || nc == 0) |
| 1907 | return; |
| 1908 | gemm_small(m0, m, n0, n, mc, nc); |
| 1909 | } |
| 1910 | |
| 1911 | int64_t mp = m0 + ((m - m0) / mc) * mc; |
| 1912 | int64_t np = n0 + ((n - n0) / nc) * nc; |
| 1913 | mnpack(mp, m, n0, np); |
| 1914 | mnpack(m0, m, np, n); |
| 1915 | } |
| 1916 | |
| 1917 | |
| 1918 | void KERNEL_4x8(int64_t ii, int64_t jj) { |
| 1919 | vec_t vec_A[8], vec_B[16] = {0}; |
| 1920 | acc_t acc_0, acc_1; |
| 1921 | std::array<int, 4> comparray {}; |
| 1922 | vector float fin_res[8] = {0}; |
| 1923 | vector float vs[8] = {0}; |
| 1924 | bool isAblock_q4 = std::is_same_v<TA, block_q4_0>; |
| 1925 | for (int l = 0; l < k; l++) { |
| 1926 | __builtin_mma_xxsetaccz(&acc_0); |
| 1927 | __builtin_mma_xxsetaccz(&acc_1); |
| 1928 | if (std::is_same_v<TA, block_q4_0>) { |
| 1929 | packNormalInt4<4>((A+(ii*lda)+l), lda, 4, 4, (int8_t*)vec_A, comparray); |
| 1930 | } else { |
| 1931 | packNormal<int8_t, vector signed char>((const block_q8_0*)(A+(ii*lda)+l), lda, 4, 8, (int8_t*)vec_A, false); |
| 1932 | } |
| 1933 | packNormal<uint8_t, vector unsigned char>((B+(jj*ldb)+l), ldb, 8, 8, (uint8_t*)vec_B, true); |
| 1934 | for(int x = 0; x < 8; x++) { |
| 1935 | __builtin_mma_xvi8ger4pp(&acc_0, vec_A[x], vec_B[x]); |
| 1936 | __builtin_mma_xvi8ger4pp(&acc_1, vec_A[x], vec_B[x+8]); |
| 1937 | } |
| 1938 | for (int I = 0; I<4; I++) { |
| 1939 | for (int J = 0; J<4; J++) { |
| 1940 | *((float*)&vs[I]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J)*ldb)+l)->d)); |
| 1941 | *((float*)&vs[I+4]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J+4)*ldb)+l)->d)); |
| 1942 | } |
| 1943 | } |
| 1944 | if (!isAblock_q4) { |
| 1945 | auto aoffset = A+(ii*lda)+l; |
| 1946 | for (int i = 0; i < 4; i++) { |
| 1947 | comparray[i] = 0; |
| 1948 | int ca = 0; |
| 1949 | auto *at = aoffset->qs; |
| 1950 | for (int j = 0; j < 32; j++) |
| 1951 | ca += (int)*at++; |
| 1952 | comparray[i] = ca; |
| 1953 | aoffset += lda; |
| 1954 | } |
| 1955 | } |
| 1956 | compute<4>(&acc_0, 0, 0, comparray, vs, fin_res); |
| 1957 | compute<4>(&acc_1, 0, 4, comparray, vs, fin_res); |
| 1958 | } |
| 1959 | save_res(ii, jj, 0, fin_res); |
| 1960 | save_res(ii, jj+4, 4, fin_res); |
| 1961 | } |
| 1962 | |
| 1963 | void KERNEL_8x4(int64_t ii, int64_t jj) { |
| 1964 | vec_t vec_A[16], vec_B[8] = {0}; |
| 1965 | acc_t acc_0, acc_1; |
| 1966 | std::array<int, 8> comparray {}; |
| 1967 | vector float fin_res[8] = {0}; |
| 1968 | vector float vs[8] = {0}; |
| 1969 | bool isAblock_q4 = std::is_same_v<TA, block_q4_0>; |
| 1970 | for (int l = 0; l < k; l++) { |
| 1971 | __builtin_mma_xxsetaccz(&acc_0); |
| 1972 | __builtin_mma_xxsetaccz(&acc_1); |
| 1973 | if (std::is_same_v<TA, block_q4_0>) { |
| 1974 | packNormalInt4<8>((A+(ii*lda)+l), lda, 8, 4, (int8_t*)vec_A, comparray); |
| 1975 | } else { |
| 1976 | packNormal<int8_t, vector signed char>((const block_q8_0*)(A+(ii*lda)+l), lda, 8, 8, (int8_t*)vec_A, false); |
| 1977 | } |
| 1978 | packNormal<uint8_t, vector unsigned char>((B+(jj*ldb)+l), ldb, 4, 8, (uint8_t*)vec_B, true); |
| 1979 | for(int x = 0; x < 8; x++) { |
| 1980 | __builtin_mma_xvi8ger4pp(&acc_0, vec_A[x], vec_B[x]); |
| 1981 | __builtin_mma_xvi8ger4pp(&acc_1, vec_A[x+8], vec_B[x]); |
| 1982 | } |
| 1983 | for (int I = 0; I<8; I++) { |
| 1984 | for (int J = 0; J<4; J++) { |
| 1985 | *((float*)&vs[I]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J)*ldb)+l)->d)); |
| 1986 | } |
| 1987 | } |
| 1988 | if (!isAblock_q4) { |
| 1989 | auto aoffset = A+(ii*lda)+l; |
| 1990 | for (int i = 0; i < 8; i++) { |
| 1991 | comparray[i] = 0; |
| 1992 | int ca = 0; |
| 1993 | auto *at = aoffset->qs; |
| 1994 | for (int j = 0; j < 32; j++) |
| 1995 | ca += (int)*at++; |
| 1996 | comparray[i] = ca; |
| 1997 | aoffset += lda; |
| 1998 | } |
| 1999 | } |
| 2000 | compute<8>(&acc_0, 0, 0, comparray, vs, fin_res); |
| 2001 | compute<8>(&acc_1, 4, 4, comparray, vs, fin_res); |
| 2002 | } |
| 2003 | save_res(ii, jj, 0, fin_res); |
| 2004 | save_res(ii+4, jj, 4, fin_res); |
| 2005 | } |
| 2006 | |
| 2007 | void KERNEL_8x8(int64_t ii, int64_t jj) { |
| 2008 | vec_t vec_A[16], vec_B[16] = {0}; |
| 2009 | acc_t acc_0, acc_1, acc_2, acc_3; |
| 2010 | std::array<int, 8> comparray {}; |
| 2011 | vector float fin_res[16] = {0}; |
| 2012 | vector float vs[16] = {0}; |
| 2013 | bool isAblock_q4 = std::is_same_v<TA, block_q4_0>; |
| 2014 | for (int l = 0; l < k; l++) { |
| 2015 | __builtin_mma_xxsetaccz(&acc_0); |
| 2016 | __builtin_mma_xxsetaccz(&acc_1); |
| 2017 | __builtin_mma_xxsetaccz(&acc_2); |
| 2018 | __builtin_mma_xxsetaccz(&acc_3); |
| 2019 | if (std::is_same_v<TA, block_q4_0>) { |
| 2020 | packNormalInt4<8>((A+(ii*lda)+l), lda, 8, 4, (int8_t*)vec_A, comparray); |
| 2021 | } else { |
| 2022 | packNormal<int8_t, vector signed char>((const block_q8_0*)(A+(ii*lda)+l), lda, 8, 8, (int8_t*)vec_A, false); |
| 2023 | } |
| 2024 | packNormal<uint8_t, vector unsigned char>((B+(jj*ldb)+l), ldb, 8, 8, (uint8_t*)vec_B, true); |
| 2025 | for(int x = 0; x < 8; x++) { |
| 2026 | __builtin_mma_xvi8ger4pp(&acc_0, vec_A[x], vec_B[x]); |
| 2027 | __builtin_mma_xvi8ger4pp(&acc_1, vec_A[x+8], vec_B[x]); |
| 2028 | __builtin_mma_xvi8ger4pp(&acc_2, vec_A[x], vec_B[x+8]); |
| 2029 | __builtin_mma_xvi8ger4pp(&acc_3, vec_A[x+8], vec_B[x+8]); |
| 2030 | } |
| 2031 | for (int I = 0; I<8; I++) { |
| 2032 | for (int J = 0; J<4; J++) { |
| 2033 | *((float*)&vs[I]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J)*ldb)+l)->d)); |
| 2034 | *((float*)&vs[I+8]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J+4)*ldb)+l)->d)); |
| 2035 | } |
| 2036 | } |
| 2037 | if (!isAblock_q4) { |
| 2038 | auto aoffset = A+(ii*lda)+l; |
| 2039 | for (int i = 0; i < 8; i++) { |
| 2040 | comparray[i] = 0; |
| 2041 | int ca = 0; |
| 2042 | auto *at = aoffset->qs; |
| 2043 | for (int j = 0; j < 32; j++) |
| 2044 | ca += (int)*at++; |
| 2045 | comparray[i] = ca; |
| 2046 | aoffset += lda; |
| 2047 | } |
| 2048 | } |
| 2049 | compute<8>(&acc_0, 0, 0, comparray, vs, fin_res); |
| 2050 | compute<8>(&acc_1, 4, 4, comparray, vs, fin_res); |
| 2051 | compute<8>(&acc_2, 0, 8, comparray, vs, fin_res); |
| 2052 | compute<8>(&acc_3, 4, 12, comparray, vs, fin_res); |
| 2053 | } |
| 2054 | save_res(ii, jj, 0, fin_res); |
| 2055 | save_res(ii+4, jj, 4, fin_res); |
| 2056 | save_res(ii, jj+4, 8, fin_res); |
| 2057 | save_res(ii+4, jj+4, 12, fin_res); |
| 2058 | } |
| 2059 | |
| 2060 | void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN) { |
| 2061 | int64_t ytiles = (m - m0) / RM; |
| 2062 | int64_t xtiles = (n - n0) / RN; |
| 2063 | int64_t tiles = xtiles * ytiles; |
| 2064 | int64_t duty = (tiles + nth - 1) / nth; |
| 2065 | int64_t start = duty * ith; |
| 2066 | int64_t end = start + duty; |
| 2067 | vec_t vec_A[8] = {0}, vec_B[8] = {0}; |
| 2068 | vector signed int vec_C[4]; |
| 2069 | acc_t acc_0; |
| 2070 | bool isAblock_q4 = std::is_same_v<TA, block_q4_0>; |
| 2071 | |
| 2072 | if (end > tiles) |
| 2073 | end = tiles; |
| 2074 | for (int64_t job = start; job < end; ++job) { |
| 2075 | int64_t ii = m0 + job / xtiles * RM; |
| 2076 | int64_t jj = n0 + job % xtiles * RN; |
| 2077 | std::array<int, 4> comparray{}; |
| 2078 | vector float res[4] = {0}; |
| 2079 | vector float fin_res[4] = {0}; |
| 2080 | vector float vs[4] = {0}; |
| 2081 | vector float CA[4] = {0}; |
| 2082 | __builtin_prefetch((A+(ii*lda)+0)->qs, 0, 1); // prefetch first value |
| 2083 | __builtin_prefetch((B+(jj*ldb)+0)->qs, 0, 1); // prefetch first value |
| 2084 | for (int l = 0; l < k; l++) { |
| 2085 | __builtin_prefetch((A+(ii*lda)+(l+1))->qs, 0, 1); // prefetch one loop ahead |
| 2086 | __builtin_prefetch((B+(jj*ldb)+(l+1))->qs, 0, 1); // prefetch one loop ahead |
| 2087 | __builtin_mma_xxsetaccz(&acc_0); |
| 2088 | if (isAblock_q4) { |
| 2089 | packNormalInt4<4>((A+(ii*lda)+l), lda, RM, 4, (int8_t*)vec_A, comparray); |
| 2090 | } else { |
| 2091 | packNormal<int8_t, vector signed char>((const block_q8_0*)(A+(ii*lda)+l), lda, RM, 8, (int8_t*)vec_A, false); |
| 2092 | } |
| 2093 | packNormal<uint8_t, vector unsigned char>((B+(jj*ldb)+l), ldb, RN, 8, (uint8_t*)vec_B, true); |
| 2094 | for(int x = 0; x < 8; x+=4) { |
| 2095 | __builtin_mma_xvi8ger4pp(&acc_0, vec_A[x], vec_B[x]); |
| 2096 | __builtin_mma_xvi8ger4pp(&acc_0, vec_A[x+1], vec_B[x+1]); |
| 2097 | __builtin_mma_xvi8ger4pp(&acc_0, vec_A[x+2], vec_B[x+2]); |
| 2098 | __builtin_mma_xvi8ger4pp(&acc_0, vec_A[x+3], vec_B[x+3]); |
| 2099 | } |
| 2100 | for (int I = 0; I<RM; I++) { |
| 2101 | for (int J = 0; J<RN; J++) { |
| 2102 | *((float*)&vs[I]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J)*ldb)+l)->d)); |
| 2103 | } |
| 2104 | } |
| 2105 | __builtin_mma_disassemble_acc(vec_C, &acc_0); |
| 2106 | if (!isAblock_q4) { |
| 2107 | auto aoffset = A+(ii*lda)+l; |
| 2108 | for (int i = 0; i < RM; i++) { |
| 2109 | comparray[i] = 0; |
| 2110 | int ca = 0; |
| 2111 | auto *at = aoffset->qs; |
| 2112 | for (int j = 0; j < 32; j++) |
| 2113 | ca += (int)*at++; |
| 2114 | comparray[i] = ca; |
| 2115 | aoffset += lda; |
| 2116 | } |
| 2117 | } |
| 2118 | for (int i = 0; i < RM; i++) { |
| 2119 | CA[i] = vec_splats((float)(((double)comparray[i]) * -128.0)); |
| 2120 | res[i] = vec_add(vec_ctf(vec_C[i], 0), CA[i]); |
| 2121 | fin_res[i] = vec_madd(res[i], vs[i], fin_res[i]); |
| 2122 | } |
| 2123 | } |
| 2124 | save_res(ii, jj, 0, fin_res, RM, RN); |
| 2125 | } |
| 2126 | } |
| 2127 | |
| 2128 | template<int RM, int RN> |
| 2129 | inline void kernel(int64_t ii, int64_t jj) { |
| 2130 | if constexpr(RM == 4 && RN == 8) { |
| 2131 | KERNEL_4x8(ii,jj); |
| 2132 | } else if constexpr(RM == 8 && RN == 4) { |
| 2133 | KERNEL_8x4(ii,jj); |
| 2134 | } else if constexpr(RM == 8 && RN == 8) { |
| 2135 | KERNEL_8x8(ii,jj); |
| 2136 | } else { |
| 2137 | assert(false && "RN/RM values not supported" ); |
| 2138 | } |
| 2139 | } |
| 2140 | |
| 2141 | template <int RM, int RN> |
| 2142 | NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) { |
| 2143 | int64_t ytiles = (m - m0) / RM; |
| 2144 | int64_t xtiles = (n - n0) / RN; |
| 2145 | int64_t tiles = xtiles * ytiles; |
| 2146 | int64_t duty = (tiles + nth - 1) / nth; |
| 2147 | int64_t start = duty * ith; |
| 2148 | int64_t end = start + duty; |
| 2149 | if (end > tiles) |
| 2150 | end = tiles; |
| 2151 | for (int64_t job = start; job < end; ++job) { |
| 2152 | int64_t ii = m0 + job / xtiles * RM; |
| 2153 | int64_t jj = n0 + job % xtiles * RN; |
| 2154 | kernel<RM, RN>(ii, jj); |
| 2155 | } |
| 2156 | } |
| 2157 | |
| 2158 | const TA *const A; |
| 2159 | const block_q8_0 *const B; |
| 2160 | float *C; |
| 2161 | const int64_t k; |
| 2162 | const int64_t lda; |
| 2163 | const int64_t ldb; |
| 2164 | const int64_t ldc; |
| 2165 | const int ith; |
| 2166 | const int nth; |
| 2167 | }; |
| 2168 | |
| 2169 | class tinyBLAS_PPC { |
| 2170 | public: |
| 2171 | tinyBLAS_PPC(int64_t k, |
| 2172 | const float * A, int64_t lda, |
| 2173 | const float * B, int64_t ldb, |
| 2174 | float * C, int64_t ldc, |
| 2175 | int ith, int nth) |
| 2176 | : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { |
| 2177 | } |
| 2178 | |
| 2179 | void matmul(int64_t m, int64_t n) { |
| 2180 | int64_t mc = 256; int64_t nc = 256; int64_t kc = 256; |
| 2181 | if (m % mc == 0 && n % nc == 0 && k % kc == 0) { |
| 2182 | matmul_tiled(m, n, mc, nc, kc); |
| 2183 | } else { |
| 2184 | mnpack(0, m, 0, n); |
| 2185 | } |
| 2186 | } |
| 2187 | |
| 2188 | private: |
| 2189 | |
| 2190 | inline void save_acc(acc_t * ACC, int64_t ii, int64_t jj) { |
| 2191 | vec_t vec_C[4]; |
| 2192 | __builtin_mma_disassemble_acc(vec_C, ACC); |
| 2193 | for (int I = 0; I < 4; I++) { |
| 2194 | for (int J = 0; J < 4; J++) { |
| 2195 | *((float *)(C+ii+((jj+J)*ldc)+I)) = *((float *)&vec_C[I]+J); |
| 2196 | } |
| 2197 | } |
| 2198 | } |
| 2199 | |
| 2200 | inline void add_save_acc(acc_t * ACC, int64_t ii, int64_t jj) { |
| 2201 | vec_t vec_C[4]; |
| 2202 | __builtin_mma_disassemble_acc(vec_C, ACC); |
| 2203 | for (int I = 0; I < 4; I++) { |
| 2204 | for (int J = 0; J < 4; J++) { |
| 2205 | float * c_ptr = (float *)(C+ii+((jj+J)*ldc)+I); |
| 2206 | *c_ptr += *((float *)&vec_C[I]+J); |
| 2207 | } |
| 2208 | } |
| 2209 | } |
| 2210 | |
| 2211 | inline void vector_permute_store_4(vector float * src, float * vecOffset) { |
| 2212 | vector float t1, t2, t3, t4, t5, t6, t7, t8; |
| 2213 | t1 = vec_mergeh(src[0], src[1]); |
| 2214 | t2 = vec_mergeh(src[2], src[3]); |
| 2215 | t3 = vec_mergel(src[0], src[1]); |
| 2216 | t4 = vec_mergel(src[2], src[3]); |
| 2217 | |
| 2218 | t5 = vec_xxpermdi(t1, t2, 0); |
| 2219 | t6 = vec_xxpermdi(t1, t2, 3); |
| 2220 | t7 = vec_xxpermdi(t3, t4, 0); |
| 2221 | t8 = vec_xxpermdi(t3, t4, 3); |
| 2222 | |
| 2223 | vec_xst(t5, 0, vecOffset); |
| 2224 | vec_xst(t6, 0, vecOffset + 4); |
| 2225 | vec_xst(t7, 0, vecOffset + 8); |
| 2226 | vec_xst(t8, 0, vecOffset + 12); |
| 2227 | } |
| 2228 | |
| 2229 | inline void vector_permute_store_8(vector float * src, float * vecOffset) { |
| 2230 | vector float t1, t2, t3, t4, t5, t6, t7, t8; |
| 2231 | t1 = vec_mergeh(src[0], src[1]); |
| 2232 | t2 = vec_mergeh(src[2], src[3]); |
| 2233 | t3 = vec_mergeh(src[4], src[5]); |
| 2234 | t4 = vec_mergeh(src[6], src[7]); |
| 2235 | |
| 2236 | t5 = vec_xxpermdi(t1, t2, 0); |
| 2237 | t6 = vec_xxpermdi(t3, t4, 0); |
| 2238 | t7 = vec_xxpermdi(t1, t2, 3); |
| 2239 | t8 = vec_xxpermdi(t3, t4, 3); |
| 2240 | |
| 2241 | vec_xst(t5, 0, vecOffset); |
| 2242 | vec_xst(t6, 0, vecOffset + 4); |
| 2243 | vec_xst(t7, 0, vecOffset + 8); |
| 2244 | vec_xst(t8, 0, vecOffset + 12); |
| 2245 | |
| 2246 | t1 = vec_mergel(src[0], src[1]); |
| 2247 | t2 = vec_mergel(src[2], src[3]); |
| 2248 | t3 = vec_mergel(src[4], src[5]); |
| 2249 | t4 = vec_mergel(src[6], src[7]); |
| 2250 | |
| 2251 | t5 = vec_xxpermdi(t1, t2, 0); |
| 2252 | t6 = vec_xxpermdi(t3, t4, 0); |
| 2253 | t7 = vec_xxpermdi(t1, t2, 3); |
| 2254 | t8 = vec_xxpermdi(t3, t4, 3); |
| 2255 | |
| 2256 | vec_xst(t5, 0, vecOffset + 16); |
| 2257 | vec_xst(t6, 0, vecOffset + 20); |
| 2258 | vec_xst(t7, 0, vecOffset + 24); |
| 2259 | vec_xst(t8, 0, vecOffset + 28); |
| 2260 | } |
| 2261 | |
| 2262 | void packTranspose(const float * a, int64_t lda, int rows, int cols, float * vec) { |
| 2263 | int64_t i, j; |
| 2264 | float * aoffsets[8]; |
| 2265 | float * aoffset = NULL, * boffset = NULL; |
| 2266 | __vector_pair arr[8]; |
| 2267 | vector float c[8][2] = {0}; |
| 2268 | vector float c1[8] = {0}; |
| 2269 | vector float c2[8] = {0}; |
| 2270 | aoffset = const_cast<float *>(a); |
| 2271 | boffset = vec; |
| 2272 | j = (rows >> 3); |
| 2273 | if (j > 0) { |
| 2274 | do { |
| 2275 | aoffsets[0] = aoffset; |
| 2276 | for (int it = 1; it < 8; it++) |
| 2277 | aoffsets[it] = aoffsets[it-1] + lda; |
| 2278 | aoffset += 8 * lda; |
| 2279 | i = (cols >> 3); |
| 2280 | if (i > 0) { |
| 2281 | do { |
| 2282 | for (int it = 0; it < 8; it++) { |
| 2283 | arr[it] = __builtin_vsx_lxvp(0, (__vector_pair*)aoffsets[it]); |
| 2284 | __builtin_vsx_disassemble_pair(c[it], &arr[it]); |
| 2285 | c1[it] = c[it][0]; |
| 2286 | c2[it] = c[it][1]; |
| 2287 | } |
| 2288 | |
| 2289 | vector_permute_store_8(c1, boffset); |
| 2290 | vector_permute_store_8(c2, boffset + 32); |
| 2291 | boffset += 64; |
| 2292 | i--; |
| 2293 | if (i > 0) { |
| 2294 | for (int it = 0; it < 8; it++) { |
| 2295 | aoffsets[it] = aoffsets[it] + 8; |
| 2296 | } |
| 2297 | } |
| 2298 | } while(i > 0); |
| 2299 | } |
| 2300 | if (cols & 4) { |
| 2301 | for (int it = 0; it < 8 ; it++) |
| 2302 | c1[it] = vec_xl(0, aoffsets[it]); |
| 2303 | vector_permute_store_8(c1, boffset); |
| 2304 | } |
| 2305 | j--; |
| 2306 | } while(j > 0); |
| 2307 | } |
| 2308 | |
| 2309 | if (rows & 4) { |
| 2310 | aoffsets[0] = aoffset; |
| 2311 | for (int it = 1; it < 4; it++) |
| 2312 | aoffsets[it] = aoffsets[it-1] + lda; |
| 2313 | aoffset += 4 * lda; |
| 2314 | i = (cols >> 3); |
| 2315 | if (i > 0) { |
| 2316 | do { |
| 2317 | for (int it = 0; it < 4; it++) { |
| 2318 | arr[it] = __builtin_vsx_lxvp(0, (__vector_pair*)aoffsets[it]); |
| 2319 | __builtin_vsx_disassemble_pair(c[it], &arr[it]); |
| 2320 | c1[it] = c[it][0]; |
| 2321 | c2[it] = c[it][1]; |
| 2322 | } |
| 2323 | vector_permute_store_4(c1, boffset); |
| 2324 | vector_permute_store_4(c2, boffset + 16); |
| 2325 | for (int it = 0; it < 4; it++) |
| 2326 | aoffsets[it] += 8 * lda; |
| 2327 | boffset += 32; |
| 2328 | i--; |
| 2329 | } while(i > 0); |
| 2330 | } |
| 2331 | |
| 2332 | if (cols & 4) { |
| 2333 | for (int it = 0; it < 4; it++) |
| 2334 | c1[it] = vec_xl(0, aoffsets[it]); |
| 2335 | vector_permute_store_4(c1, boffset); |
| 2336 | } |
| 2337 | } |
| 2338 | if (rows & 3) { |
| 2339 | aoffsets[0] = aoffset; |
| 2340 | for (int it = 1; it < 3; it++) |
| 2341 | aoffsets[it] = aoffsets[it-1] + lda; |
| 2342 | if (cols & 4) { |
| 2343 | for (int it = 0; it < 3; it++) |
| 2344 | c1[it] = vec_xl(0, aoffsets[it]); |
| 2345 | vector_permute_store_4(c1, boffset); |
| 2346 | } |
| 2347 | } |
| 2348 | } |
| 2349 | |
| 2350 | void KERNEL_4x4(int64_t ii, int64_t jj) { |
| 2351 | vec_t vec_A[4], vec_B[4], vec_C[4]; |
| 2352 | acc_t acc_0; |
| 2353 | __builtin_mma_xxsetaccz(&acc_0); |
| 2354 | for (int l = 0; l < k; l += 4) { |
| 2355 | packTranspose(A + (ii * lda) + l, lda, 4, 4, (float *)vec_A); |
| 2356 | packTranspose(B + (jj * ldb) + l, ldb, 4, 4, (float *)vec_B); |
| 2357 | __builtin_mma_xvf32gerpp(&acc_0, vec_A[0], vec_B[0]); |
| 2358 | __builtin_mma_xvf32gerpp(&acc_0, vec_A[1], vec_B[1]); |
| 2359 | __builtin_mma_xvf32gerpp(&acc_0, vec_A[2], vec_B[2]); |
| 2360 | __builtin_mma_xvf32gerpp(&acc_0, vec_A[3], vec_B[3]); |
| 2361 | } |
| 2362 | save_acc(&acc_0, ii, jj); |
| 2363 | } |
| 2364 | |
| 2365 | void KERNEL_4x8(int64_t ii, int64_t jj) { |
| 2366 | vec_t vec_A[4], vec_B[8], vec_C[4]; |
| 2367 | acc_t acc_0, acc_1; |
| 2368 | __builtin_mma_xxsetaccz(&acc_0); |
| 2369 | __builtin_mma_xxsetaccz(&acc_1); |
| 2370 | for (int64_t l = 0; l < k; l += 4) { |
| 2371 | packTranspose(A + (ii * lda) + l, lda, 4, 4, (float *)vec_A); |
| 2372 | packTranspose(B + (jj * ldb) + l, ldb, 8, 4, (float *)vec_B); |
| 2373 | __builtin_mma_xvf32gerpp(&acc_0, vec_A[0], (vec_t)vec_B[0]); |
| 2374 | __builtin_mma_xvf32gerpp(&acc_1, vec_A[0], (vec_t)vec_B[1]); |
| 2375 | __builtin_mma_xvf32gerpp(&acc_0, vec_A[1], (vec_t)vec_B[2]); |
| 2376 | __builtin_mma_xvf32gerpp(&acc_1, vec_A[1], (vec_t)vec_B[3]); |
| 2377 | __builtin_mma_xvf32gerpp(&acc_0, vec_A[2], (vec_t)vec_B[4]); |
| 2378 | __builtin_mma_xvf32gerpp(&acc_1, vec_A[2], (vec_t)vec_B[5]); |
| 2379 | __builtin_mma_xvf32gerpp(&acc_0, vec_A[3], (vec_t)vec_B[6]); |
| 2380 | __builtin_mma_xvf32gerpp(&acc_1, vec_A[3], (vec_t)vec_B[7]); |
| 2381 | } |
| 2382 | save_acc(&acc_0, ii, jj); |
| 2383 | save_acc(&acc_1, ii, jj + 4); |
| 2384 | } |
| 2385 | |
| 2386 | void KERNEL_8x4(int64_t ii, int64_t jj) { |
| 2387 | vec_t vec_A[8], vec_B[4], vec_C[4]; |
| 2388 | acc_t acc_0, acc_1; |
| 2389 | __builtin_mma_xxsetaccz(&acc_0); |
| 2390 | __builtin_mma_xxsetaccz(&acc_1); |
| 2391 | for (int64_t l = 0; l < k; l += 4) { |
| 2392 | packTranspose(A + (ii * lda) + l, lda, 8, 4, (float *)vec_A); |
| 2393 | packTranspose(B + (jj * ldb) + l, ldb, 4, 4, (float *)vec_B); |
| 2394 | __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[0], vec_B[0]); |
| 2395 | __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[1], vec_B[0]); |
| 2396 | __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[2], vec_B[1]); |
| 2397 | __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[3], vec_B[1]); |
| 2398 | __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[4], vec_B[2]); |
| 2399 | __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[5], vec_B[2]); |
| 2400 | __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[6], vec_B[3]); |
| 2401 | __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[7], vec_B[3]); |
| 2402 | } |
| 2403 | save_acc(&acc_0, ii, jj); |
| 2404 | save_acc(&acc_1, ii + 4, jj); |
| 2405 | } |
| 2406 | |
| 2407 | void KERNEL_8x8(int64_t ii, int64_t jj) { |
| 2408 | vec_t vec_A[16], vec_B[16], vec_C[4]; |
| 2409 | acc_t acc_0, acc_1, acc_2, acc_3; |
| 2410 | __builtin_mma_xxsetaccz(&acc_0); |
| 2411 | __builtin_mma_xxsetaccz(&acc_1); |
| 2412 | __builtin_mma_xxsetaccz(&acc_2); |
| 2413 | __builtin_mma_xxsetaccz(&acc_3); |
| 2414 | for (int l = 0; l < k; l+=8) { |
| 2415 | packTranspose(A + (ii * lda) + l, lda, 8, 8, (float *)vec_A); |
| 2416 | packTranspose(B + (jj * ldb) + l, ldb, 8, 8, (float *)vec_B); |
| 2417 | for(int x = 0; x < 16; x+=2) { |
| 2418 | __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[x], vec_B[x]); |
| 2419 | __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[x], vec_B[x + 1]); |
| 2420 | __builtin_mma_xvf32gerpp(&acc_2, (vec_t)vec_A[x + 1], vec_B[x]); |
| 2421 | __builtin_mma_xvf32gerpp(&acc_3, (vec_t)vec_A[x + 1], vec_B[x + 1]); |
| 2422 | } |
| 2423 | } |
| 2424 | save_acc(&acc_0, ii, jj); |
| 2425 | save_acc(&acc_1, ii, jj + 4); |
| 2426 | save_acc(&acc_2, ii + 4, jj); |
| 2427 | save_acc(&acc_3, ii + 4, jj + 4); |
| 2428 | } |
| 2429 | |
| 2430 | inline void MMA_16x8(vec_t * vec_A0, vec_t * vec_A1, vec_t * vec_B, acc_t * acc) { |
| 2431 | for (int x = 0; x < 16; x += 2) { |
| 2432 | __builtin_mma_xvf32gerpp(&acc[0], vec_A0[x + 0], vec_B[x]); |
| 2433 | __builtin_mma_xvf32gerpp(&acc[1], vec_A0[x + 0], vec_B[x + 1]); |
| 2434 | __builtin_mma_xvf32gerpp(&acc[2], vec_A0[x + 1], vec_B[x]); |
| 2435 | __builtin_mma_xvf32gerpp(&acc[3], vec_A0[x + 1], vec_B[x + 1]); |
| 2436 | __builtin_mma_xvf32gerpp(&acc[4], vec_A1[x + 0], vec_B[x]); |
| 2437 | __builtin_mma_xvf32gerpp(&acc[5], vec_A1[x + 0], vec_B[x + 1]); |
| 2438 | __builtin_mma_xvf32gerpp(&acc[6], vec_A1[x + 1], vec_B[x]); |
| 2439 | __builtin_mma_xvf32gerpp(&acc[7], vec_A1[x + 1], vec_B[x + 1]); |
| 2440 | } |
| 2441 | } |
| 2442 | |
| 2443 | void KERNEL(int64_t ii, int64_t jj, int64_t mc, int64_t nc, int64_t kc, vec_t * vec_A, vec_t * vec_B, int64_t kk) { |
| 2444 | for (int64_t i = 0; i < mc; i += 16) { |
| 2445 | int A_base_addr = (mc / 8) * (i / 8) * 16; |
| 2446 | for (int64_t j = 0; j < nc; j += 8) { |
| 2447 | int B_base_addr = (nc / 8) * (j / 8) * 16; |
| 2448 | acc_t acc[8]; |
| 2449 | vec_t A0_block[16]; vec_t A1_block[16]; |
| 2450 | for (int x = 0; x < 8; x++) |
| 2451 | __builtin_mma_xxsetaccz(&acc[x]); |
| 2452 | for (int64_t l = 0; l < kc; l += 8) { |
| 2453 | int A0_block_idx = A_base_addr + (l / 8) * 16; |
| 2454 | int A1_block_idx = A0_block_idx + (mc / 8) * 16; |
| 2455 | int B_block_idx = B_base_addr + (l / 8) * 16; |
| 2456 | vec_t* A0_block = &vec_A[A0_block_idx]; |
| 2457 | vec_t* A1_block = &vec_A[A1_block_idx]; |
| 2458 | vec_t* B_block = &vec_B[B_block_idx]; |
| 2459 | MMA_16x8(A0_block, A1_block, B_block, acc); |
| 2460 | } |
| 2461 | if (kk == 0) { |
| 2462 | save_acc(&acc[0], ii + i, jj + j); |
| 2463 | save_acc(&acc[1], ii + i, jj + j + 4); |
| 2464 | save_acc(&acc[2], ii + i + 4, jj + j); |
| 2465 | save_acc(&acc[3], ii + i + 4, jj + j + 4); |
| 2466 | save_acc(&acc[4], ii + i + 8, jj + j); |
| 2467 | save_acc(&acc[5], ii + i + 8, jj + j + 4); |
| 2468 | save_acc(&acc[6], ii + i + 12, jj + j); |
| 2469 | save_acc(&acc[7], ii + i + 12, jj + j + 4); |
| 2470 | } else { |
| 2471 | add_save_acc(&acc[0], ii + i, jj + j); |
| 2472 | add_save_acc(&acc[1], ii + i, jj + j + 4); |
| 2473 | add_save_acc(&acc[2], ii + i + 4, jj + j); |
| 2474 | add_save_acc(&acc[3], ii + i + 4, jj + j + 4); |
| 2475 | add_save_acc(&acc[4], ii + i + 8, jj + j); |
| 2476 | add_save_acc(&acc[5], ii + i + 8, jj + j + 4); |
| 2477 | add_save_acc(&acc[6], ii + i + 12, jj + j); |
| 2478 | add_save_acc(&acc[7], ii + i + 12, jj + j + 4); |
| 2479 | } |
| 2480 | } |
| 2481 | } |
| 2482 | } |
| 2483 | |
| 2484 | void matmul_tiled(int64_t m , int64_t n, int64_t mc, int64_t nc, int64_t kc) { |
| 2485 | int64_t ytiles = m / mc; |
| 2486 | int64_t xtiles = n / nc; |
| 2487 | int64_t tiles = xtiles * ytiles; |
| 2488 | int64_t duty = (tiles + nth - 1) / nth; |
| 2489 | int64_t start = duty * ith; |
| 2490 | int64_t end = start + duty; |
| 2491 | if (end > tiles) { |
| 2492 | end = tiles; |
| 2493 | } |
| 2494 | for (int64_t job = start; job < end; ++job) { |
| 2495 | int64_t ii = (job / xtiles) * mc; |
| 2496 | int64_t jj = (job % xtiles) * nc; |
| 2497 | for (int64_t kk = 0; kk < k; kk += kc) { |
| 2498 | vec_t A_pack[kc * mc / 4]; |
| 2499 | vec_t B_pack[kc * nc / 4]; |
| 2500 | packTranspose(A + (ii * lda) + kk, lda, kc, mc, (float *)A_pack); |
| 2501 | packTranspose(B + (jj * ldb) + kk, ldb, kc, nc, (float *)B_pack); |
| 2502 | KERNEL(ii, jj, mc, nc, kc, A_pack, B_pack, kk); |
| 2503 | } |
| 2504 | } |
| 2505 | } |
| 2506 | |
| 2507 | void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) { |
| 2508 | int m_rem = MIN(m - m0, 8); |
| 2509 | int n_rem = MIN(n - n0, 8); |
| 2510 | int mc = 0, nc = 0; |
| 2511 | if (m_rem >= 8 && n_rem >= 8) { |
| 2512 | mc = 8; |
| 2513 | nc = 8; |
| 2514 | gemm<8, 8>(m0, m, n0, n); |
| 2515 | } else if (m_rem >= 4 && n_rem >= 8) { |
| 2516 | mc = 4; |
| 2517 | nc = 8; |
| 2518 | gemm<4, 8>(m0, m, n0, n); |
| 2519 | } else if (m_rem >= 8 && n_rem >= 4) { |
| 2520 | mc = 8; |
| 2521 | nc = 4; |
| 2522 | gemm<8, 4>(m0, m, n0, n); |
| 2523 | } else if (m_rem >= 4 && n_rem >= 4) { |
| 2524 | mc = 4; |
| 2525 | nc = 4; |
| 2526 | gemm<4, 4>(m0, m, n0, n); |
| 2527 | } else { |
| 2528 | mc = (m_rem >= 4) ? 4 : m_rem; |
| 2529 | nc = (n_rem >= 4) ? 4 : n_rem; |
| 2530 | if (mc == 0 || nc == 0) |
| 2531 | return; |
| 2532 | gemm_small(m0, m, n0, n, mc, nc); |
| 2533 | } |
| 2534 | int64_t mp = m0 + ((m - m0) / mc) * mc; |
| 2535 | int64_t np = n0 + ((n - n0) / nc) * nc; |
| 2536 | mnpack(mp, m, n0, np); |
| 2537 | mnpack(m0, m, np, n); |
| 2538 | } |
| 2539 | |
| 2540 | void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN) { |
| 2541 | int64_t ytiles = (m - m0) / RM; |
| 2542 | int64_t xtiles = (n - n0) / RN; |
| 2543 | int64_t tiles = xtiles * ytiles; |
| 2544 | int64_t duty = (tiles + nth - 1) / nth; |
| 2545 | int64_t start = duty * ith; |
| 2546 | int64_t end = start + duty; |
| 2547 | if (end > tiles) |
| 2548 | end = tiles; |
| 2549 | for (int64_t job = start; job < end; ++job) { |
| 2550 | int64_t ii = m0 + job / xtiles * RM; |
| 2551 | int64_t jj = n0 + job % xtiles * RN; |
| 2552 | vec_t vec_C[4]; |
| 2553 | acc_t acc_0; |
| 2554 | __builtin_mma_xxsetaccz(&acc_0); |
| 2555 | vec_t vec_A[4] = {0}, vec_B[4] = {0}; |
| 2556 | for (int l = 0; l < k; l += 4) { |
| 2557 | /* 'GEMV Forwarding' concept is used in first two conditional loops. |
| 2558 | * when one of the matrix has a single row/column, the elements are |
| 2559 | * broadcasted, instead of using packing routine to prepack the |
| 2560 | * matrix elements. |
| 2561 | */ |
| 2562 | if (RM == 1) { |
| 2563 | float * a = const_cast<float *>(A + (ii) * lda + l); |
| 2564 | packTranspose(B + (jj * ldb) + l, ldb, RN, 4, (float *)vec_B); |
| 2565 | vec_A[0] = (vec_t)vec_xl(0,a); |
| 2566 | vec_A[1] = (vec_t)vec_splats(*((float *)&vec_A+1)); |
| 2567 | vec_A[2] = (vec_t)vec_splats(*((float *)&vec_A+2)); |
| 2568 | vec_A[3] = (vec_t)vec_splats(*((float *)&vec_A+3)); |
| 2569 | } else if (RN == 1) { |
| 2570 | packTranspose(A + (ii * lda) + l, lda, RM, 4, (float *)vec_A); |
| 2571 | float * b = const_cast<float *>(B + (jj) * ldb + l); |
| 2572 | vec_B[0] = (vec_t)vec_xl(0,b); |
| 2573 | vec_B[1] = (vec_t)vec_splats(*((float *)&vec_B+1)); |
| 2574 | vec_B[2] = (vec_t)vec_splats(*((float *)&vec_B+2)); |
| 2575 | vec_B[3] = (vec_t)vec_splats(*((float *)&vec_B+3)); |
| 2576 | } else { |
| 2577 | packTranspose(A + (ii * lda) + l, lda, RM, 4, (float *)vec_A); |
| 2578 | packTranspose(B + (jj * ldb) + l, ldb, RN, 4, (float *)vec_B); |
| 2579 | } |
| 2580 | __builtin_mma_xvf32gerpp(&acc_0, vec_A[0], vec_B[0]); |
| 2581 | __builtin_mma_xvf32gerpp(&acc_0, vec_A[1], vec_B[1]); |
| 2582 | __builtin_mma_xvf32gerpp(&acc_0, vec_A[2], vec_B[2]); |
| 2583 | __builtin_mma_xvf32gerpp(&acc_0, vec_A[3], vec_B[3]); |
| 2584 | } |
| 2585 | __builtin_mma_disassemble_acc(vec_C, &acc_0); |
| 2586 | for (int I = 0; I < RM; I++) { |
| 2587 | for (int J = 0; J < RN; J++) { |
| 2588 | *((float *)(C+ii+((jj+J)*ldc)+I)) = *((float *)&vec_C[I]+J); |
| 2589 | } |
| 2590 | } |
| 2591 | } |
| 2592 | } |
| 2593 | |
| 2594 | template<int RM, int RN> |
| 2595 | inline void kernel(int64_t ii, int64_t jj) { |
| 2596 | if constexpr(RM == 4 && RN == 4) { |
| 2597 | KERNEL_4x4(ii, jj); |
| 2598 | } else if constexpr(RM == 4 && RN == 8) { |
| 2599 | KERNEL_4x8(ii, jj); |
| 2600 | } else if constexpr(RM == 8 && RN == 4) { |
| 2601 | KERNEL_8x4(ii, jj); |
| 2602 | } else if constexpr(RM == 8 && RN == 8) { |
| 2603 | KERNEL_8x8(ii, jj); |
| 2604 | } else { |
| 2605 | static_assert(false, "RN/RM values not supported" ); |
| 2606 | } |
| 2607 | } |
| 2608 | |
| 2609 | template <int RM, int RN> |
| 2610 | NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) { |
| 2611 | int64_t ytiles = (m - m0) / RM; |
| 2612 | int64_t xtiles = (n - n0) / RN; |
| 2613 | int64_t tiles = xtiles * ytiles; |
| 2614 | int64_t duty = (tiles + nth - 1) / nth; |
| 2615 | int64_t start = duty * ith; |
| 2616 | int64_t end = start + duty; |
| 2617 | if (end > tiles) |
| 2618 | end = tiles; |
| 2619 | for (int64_t job = start; job < end; ++job) { |
| 2620 | int64_t ii = m0 + job / xtiles * RM; |
| 2621 | int64_t jj = n0 + job % xtiles * RN; |
| 2622 | kernel<RM, RN>(ii, jj); |
| 2623 | } |
| 2624 | } |
| 2625 | |
| 2626 | const float * const A; |
| 2627 | const float * const B; |
| 2628 | float * C; |
| 2629 | const int64_t k; |
| 2630 | const int64_t lda; |
| 2631 | const int64_t ldb; |
| 2632 | const int64_t ldc; |
| 2633 | const int ith; |
| 2634 | const int nth; |
| 2635 | }; |
| 2636 | #endif |
| 2637 | } // namespace |
| 2638 | |
| 2639 | /** |
| 2640 | * Performs optimized matrix multiplication on CPU. |
| 2641 | * |
| 2642 | * This subroutine may compute C = Aᵀ * B with column major ordering. |
| 2643 | * Despite its name, this isn't a generalized implementation. Work is |
| 2644 | * only performed when a handwritten kernel is written and available. |
| 2645 | * Otherwise the caller should fall back to a general matmul routine. |
| 2646 | * |
| 2647 | * For example, for single-threaded single-precision GEMM you can say |
| 2648 | * |
| 2649 | * llamafile_sgemm(m, n, k, A, lda, B, ldb, C, ldc, |
| 2650 | * 0, 1, |
| 2651 | * GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32); |
| 2652 | * |
| 2653 | * @param m is rows in `A` and `C` |
| 2654 | * @param n is cols in `B` and `C` |
| 2655 | * @param k is cols in `A` and rows in `B` |
| 2656 | * @param A is first input matrix (always transposed) |
| 2657 | * @param lda is row stride of `A` |
| 2658 | * @param B is second input matrix (never transposed) |
| 2659 | * @param ldb is row stride of `B` |
| 2660 | * @param C is input/output array of output matrices |
| 2661 | * @param ldc is row stride of `C` |
| 2662 | * @param ith is thread id (must be less than `nth`) |
| 2663 | * @param nth is number of threads (must be greater than zero) |
| 2664 | * @param Atype is GGML data type of `A` |
| 2665 | * @param Btype is GGML data type of `B` |
| 2666 | * @param Ctype is GGML data type of `C` |
| 2667 | * @return true if this function was able to service the matmul request |
| 2668 | */ |
| 2669 | bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64_t n, int64_t k, |
| 2670 | const void *A, int64_t lda, const void *B, int64_t ldb, void *C, |
| 2671 | int64_t ldc, int Atype, int Btype, int Ctype) { |
| 2672 | |
| 2673 | assert(m >= 0); |
| 2674 | assert(n >= 0); |
| 2675 | assert(k >= 0); |
| 2676 | assert(lda >= k); |
| 2677 | assert(ldb >= k); |
| 2678 | assert(ldc >= m); |
| 2679 | assert(params->nth > 0); |
| 2680 | assert(params->ith < params->nth); |
| 2681 | |
| 2682 | // only enable sgemm for prompt processing |
| 2683 | #if !defined(__MMA__) |
| 2684 | if (n < 2) |
| 2685 | return false; |
| 2686 | #endif |
| 2687 | |
| 2688 | if (Ctype != GGML_TYPE_F32) |
| 2689 | return false; |
| 2690 | |
| 2691 | switch (Atype) { |
| 2692 | |
| 2693 | case GGML_TYPE_F32: { |
| 2694 | if (Btype != GGML_TYPE_F32) |
| 2695 | return false; |
| 2696 | #if defined(__AVX512F__) |
| 2697 | tinyBLAS<16, __m512, __m512, float, float, float> tb{ params, |
| 2698 | k, (const float *)A, lda, |
| 2699 | (const float *)B, ldb, |
| 2700 | (float *)C, ldc}; |
| 2701 | return tb.matmul(m, n); |
| 2702 | #elif defined(__AVX__) || defined(__AVX2__) |
| 2703 | tinyBLAS<8, __m256, __m256, float, float, float> tb{ params, |
| 2704 | k, (const float *)A, lda, |
| 2705 | (const float *)B, ldb, |
| 2706 | (float *)C, ldc}; |
| 2707 | return tb.matmul(m, n); |
| 2708 | #elif defined(__ARM_NEON) |
| 2709 | if (n < 4) |
| 2710 | return false; |
| 2711 | tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{ params, |
| 2712 | k, (const float *)A, lda, |
| 2713 | (const float *)B, ldb, |
| 2714 | (float *)C, ldc}; |
| 2715 | return tb.matmul(m, n); |
| 2716 | #elif defined(__VXE__) || defined(__VXE2__) |
| 2717 | if (n < 4) |
| 2718 | return false; |
| 2719 | tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{ params, |
| 2720 | k, (const float *)A, lda, |
| 2721 | (const float *)B, ldb, |
| 2722 | (float *)C, ldc}; |
| 2723 | return tb.matmul(m, n); |
| 2724 | #elif defined(__MMA__) |
| 2725 | if (k % 8) |
| 2726 | return false; |
| 2727 | tinyBLAS_PPC tb{ |
| 2728 | k, (const float *)A, lda, |
| 2729 | (const float *)B, ldb, |
| 2730 | (float *)C, ldc, |
| 2731 | params->ith, params->nth}; |
| 2732 | tb.matmul(m, n); |
| 2733 | return true; |
| 2734 | #else |
| 2735 | return false; |
| 2736 | #endif |
| 2737 | } |
| 2738 | |
| 2739 | case GGML_TYPE_BF16: { |
| 2740 | #if defined(__AVX512BF16__) |
| 2741 | if (Btype == GGML_TYPE_BF16) { |
| 2742 | tinyBLAS<32, __m512, __m512bh, ggml_bf16_t, ggml_bf16_t, float> tb{ params, k, |
| 2743 | (const ggml_bf16_t *)A, lda, |
| 2744 | (const ggml_bf16_t *)B, ldb, |
| 2745 | (float *)C, ldc}; |
| 2746 | return tb.matmul(m, n); |
| 2747 | } |
| 2748 | #elif defined(__AVX512F__) |
| 2749 | if (Btype == GGML_TYPE_BF16) { |
| 2750 | tinyBLAS<16, __m512, __m512, ggml_bf16_t, ggml_bf16_t, float> tb{ params, k, |
| 2751 | (const ggml_bf16_t *)A, lda, |
| 2752 | (const ggml_bf16_t *)B, ldb, |
| 2753 | (float *)C, ldc}; |
| 2754 | return tb.matmul(m, n); |
| 2755 | } |
| 2756 | #elif defined(__AVX2__) |
| 2757 | if (Btype == GGML_TYPE_BF16) { |
| 2758 | tinyBLAS<8, __m256, __m256, ggml_bf16_t, ggml_bf16_t, float> tb{ params, k, |
| 2759 | (const ggml_bf16_t *)A, lda, |
| 2760 | (const ggml_bf16_t *)B, ldb, |
| 2761 | (float *)C, ldc}; |
| 2762 | return tb.matmul(m, n); |
| 2763 | } |
| 2764 | #elif defined(__MMA__) |
| 2765 | if ((k % 8)) |
| 2766 | return false; |
| 2767 | if(Btype == GGML_TYPE_BF16) { |
| 2768 | tinyBLAS_BF16_PPC<ggml_bf16_t, ggml_bf16_t, float> tb{ k, |
| 2769 | (const ggml_bf16_t *)A, lda, |
| 2770 | (const ggml_bf16_t *)B, ldb, |
| 2771 | (float *)C, ldc, |
| 2772 | params->ith, params->nth}; |
| 2773 | tb.matmul(m, n); |
| 2774 | return true; |
| 2775 | } |
| 2776 | #endif |
| 2777 | return false; |
| 2778 | } |
| 2779 | |
| 2780 | case GGML_TYPE_F16: { |
| 2781 | #if defined(__AVX512F__) |
| 2782 | if (Btype == GGML_TYPE_F16) { |
| 2783 | tinyBLAS<16, __m512, __m512, ggml_fp16_t, ggml_fp16_t, float> tb{ params, k, |
| 2784 | (const ggml_fp16_t *)A, lda, |
| 2785 | (const ggml_fp16_t *)B, ldb, |
| 2786 | (float *)C, ldc}; |
| 2787 | return tb.matmul(m, n); |
| 2788 | } |
| 2789 | #elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__) |
| 2790 | if (Btype == GGML_TYPE_F16) { |
| 2791 | tinyBLAS<8, __m256, __m256, ggml_fp16_t, ggml_fp16_t, float> tb{ params, k, |
| 2792 | (const ggml_fp16_t *)A, lda, |
| 2793 | (const ggml_fp16_t *)B, ldb, |
| 2794 | (float *)C, ldc}; |
| 2795 | return tb.matmul(m, n); |
| 2796 | } |
| 2797 | #elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER) |
| 2798 | if (n < 8) |
| 2799 | return false; |
| 2800 | if (Btype == GGML_TYPE_F16) { |
| 2801 | tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{ params, |
| 2802 | k, (const ggml_fp16_t *)A, lda, |
| 2803 | (const ggml_fp16_t *)B, ldb, |
| 2804 | (float *)C, ldc}; |
| 2805 | return tb.matmul(m, n); |
| 2806 | } |
| 2807 | #elif defined(__ARM_NEON) && !defined(_MSC_VER) |
| 2808 | if (Btype == GGML_TYPE_F32) { |
| 2809 | tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{ params, |
| 2810 | k, (const ggml_fp16_t *)A, lda, |
| 2811 | (const float *)B, ldb, |
| 2812 | (float *)C, ldc}; |
| 2813 | return tb.matmul(m, n); |
| 2814 | } |
| 2815 | #elif defined(__VXE__) || defined(__VXE2__) |
| 2816 | if (n < 4) |
| 2817 | return false; |
| 2818 | if (Btype == GGML_TYPE_F16) { |
| 2819 | tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, ggml_fp16_t, float> tb{ params, |
| 2820 | k, (const ggml_fp16_t *)A, lda, |
| 2821 | (const ggml_fp16_t *)B, ldb, |
| 2822 | (float *)C, ldc}; |
| 2823 | return tb.matmul(m, n); |
| 2824 | } |
| 2825 | #endif |
| 2826 | return false; |
| 2827 | } |
| 2828 | |
| 2829 | case GGML_TYPE_Q8_0: { |
| 2830 | if (Btype != GGML_TYPE_Q8_0) |
| 2831 | return false; |
| 2832 | #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__) |
| 2833 | tinyBLAS_Q0_AVX<block_q8_0, block_q8_0, float> tb{ |
| 2834 | k, (const block_q8_0 *)A, lda, |
| 2835 | (const block_q8_0 *)B, ldb, |
| 2836 | (float *)C, ldc, |
| 2837 | params->ith, params->nth}; |
| 2838 | tb.matmul(m, n); |
| 2839 | return true; |
| 2840 | #elif defined(__ARM_FEATURE_DOTPROD) |
| 2841 | tinyBLAS_Q0_ARM<block_q8_0> tb{ |
| 2842 | k, (const block_q8_0 *)A, lda, |
| 2843 | (const block_q8_0 *)B, ldb, |
| 2844 | (float *)C, ldc, |
| 2845 | params->ith, params->nth}; |
| 2846 | tb.matmul(m, n); |
| 2847 | return true; |
| 2848 | #elif defined(__MMA__) |
| 2849 | //TO-DO: Remove this condition once gemv forwarding is enabled. |
| 2850 | if (n < 8 && n != 4) |
| 2851 | return false; |
| 2852 | if (m < 8 && m != 4) |
| 2853 | return false; |
| 2854 | tinyBLAS_Q0_PPC<block_q8_0> tb{ |
| 2855 | k, (const block_q8_0 *)A, lda, |
| 2856 | (const block_q8_0 *)B, ldb, |
| 2857 | (float *)C, ldc, |
| 2858 | params->ith, params->nth}; |
| 2859 | tb.matmul(m, n); |
| 2860 | return true; |
| 2861 | #else |
| 2862 | return false; |
| 2863 | #endif |
| 2864 | } |
| 2865 | |
| 2866 | case GGML_TYPE_Q4_0: { |
| 2867 | if (Btype != GGML_TYPE_Q8_0) |
| 2868 | return false; |
| 2869 | #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__) |
| 2870 | tinyBLAS_Q0_AVX<block_q4_0, block_q8_0, float> tb{ |
| 2871 | k, (const block_q4_0 *)A, lda, |
| 2872 | (const block_q8_0 *)B, ldb, |
| 2873 | (float *)C, ldc, |
| 2874 | params->ith, params->nth}; |
| 2875 | tb.matmul(m, n); |
| 2876 | return true; |
| 2877 | #elif defined(__ARM_FEATURE_DOTPROD) |
| 2878 | tinyBLAS_Q0_ARM<block_q4_0> tb{ |
| 2879 | k, (const block_q4_0 *)A, lda, |
| 2880 | (const block_q8_0 *)B, ldb, |
| 2881 | (float *)C, ldc, |
| 2882 | params->ith, params->nth}; |
| 2883 | tb.matmul(m, n); |
| 2884 | return true; |
| 2885 | #elif defined(__MMA__) |
| 2886 | //TO-DO: Remove this condition once gemv forwarding is enabled. |
| 2887 | if (n < 8 && n != 4) |
| 2888 | return false; |
| 2889 | if (m < 8 && m != 4) |
| 2890 | return false; |
| 2891 | tinyBLAS_Q0_PPC<block_q4_0> tb{ |
| 2892 | k, (const block_q4_0 *)A, lda, |
| 2893 | (const block_q8_0 *)B, ldb, |
| 2894 | (float *)C, ldc, |
| 2895 | params->ith, params->nth}; |
| 2896 | tb.matmul(m, n); |
| 2897 | return true; |
| 2898 | #else |
| 2899 | return false; |
| 2900 | #endif |
| 2901 | } |
| 2902 | |
| 2903 | case GGML_TYPE_Q5_0: { |
| 2904 | if (Btype != GGML_TYPE_Q8_0) |
| 2905 | return false; |
| 2906 | #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__) |
| 2907 | tinyBLAS_Q0_AVX<block_q5_0, block_q8_0, float> tb{ |
| 2908 | k, (const block_q5_0 *)A, lda, |
| 2909 | (const block_q8_0 *)B, ldb, |
| 2910 | (float *)C, ldc, |
| 2911 | params->ith, params->nth}; |
| 2912 | tb.matmul(m, n); |
| 2913 | return true; |
| 2914 | #else |
| 2915 | return false; |
| 2916 | #endif |
| 2917 | } |
| 2918 | |
| 2919 | case GGML_TYPE_IQ4_NL: { |
| 2920 | if (Btype != GGML_TYPE_Q8_0) |
| 2921 | return false; |
| 2922 | #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__) |
| 2923 | tinyBLAS_Q0_AVX<block_iq4_nl, block_q8_0, float> tb{ |
| 2924 | k, (const block_iq4_nl *)A, lda, |
| 2925 | (const block_q8_0 *)B, ldb, |
| 2926 | (float *)C, ldc, |
| 2927 | params->ith, params->nth}; |
| 2928 | tb.matmul(m, n); |
| 2929 | return true; |
| 2930 | #else |
| 2931 | return false; |
| 2932 | #endif |
| 2933 | } |
| 2934 | |
| 2935 | default: |
| 2936 | return false; |
| 2937 | } |
| 2938 | |
| 2939 | (void)params; |
| 2940 | (void)m; |
| 2941 | (void)n; |
| 2942 | (void)k; |
| 2943 | (void)A; |
| 2944 | (void)lda; |
| 2945 | (void)B; |
| 2946 | (void)ldb; |
| 2947 | (void)C; |
| 2948 | (void)ldc; |
| 2949 | (void)Atype; |
| 2950 | (void)Btype; |
| 2951 | (void)Ctype; |
| 2952 | } |
| 2953 | |