| 1 | #define GGML_COMMON_IMPL_CPP |
| 2 | #define GGML_COMMON_DECL_CPP |
| 3 | #include "ggml-common.h" |
| 4 | #include "ggml-backend-impl.h" |
| 5 | |
| 6 | #include "ggml-impl.h" |
| 7 | #include "ggml-cpu.h" |
| 8 | #include "ggml-cpu-impl.h" |
| 9 | #include "simd-mappings.h" |
| 10 | #include "traits.h" |
| 11 | |
| 12 | #include "arch-fallback.h" |
| 13 | |
| 14 | #include <cmath> |
| 15 | #include <cstring> |
| 16 | #include <cassert> |
| 17 | #include <cstdio> // for GGML_ASSERT |
| 18 | |
| 19 | #include "repack.h" |
| 20 | |
| 21 | #if defined(__GNUC__) |
| 22 | #pragma GCC diagnostic ignored "-Woverlength-strings" |
| 23 | #endif |
| 24 | |
| 25 | #define UNUSED GGML_UNUSED |
| 26 | |
| 27 | static inline int nearest_int(float fval) { |
| 28 | assert(fabsf(fval) <= 4194303.f); |
| 29 | float val = fval + 12582912.f; |
| 30 | int i; memcpy(dest: &i, src: &val, n: sizeof(int)); |
| 31 | return (i & 0x007fffff) - 0x00400000; |
| 32 | } |
| 33 | |
| 34 | // Functions to create the interleaved data layout formats |
| 35 | |
| 36 | // interleave 4 block_q4_0s in blocks of blck_size_interleave |
| 37 | // returns an interleaved block_q4_0x4 |
| 38 | // in the interleaved block_q4_0x4, place deltas for 4 block_q4_0 blocks |
| 39 | // first, then interleave quants from 4 block_q4_0s in blocks of blck_size_interleave |
| 40 | // |
| 41 | // - in : an array of block_q4_0 pointers |
| 42 | // - blck_size_interleave : the block_q4_0 quants bytes are interleaved in blocks of |
| 43 | // blck_size_interleave bytes |
| 44 | // - xor_mask : the mask to convert the nibbles in block_q4_0 quants bytes |
| 45 | // from bias offset form to pure sign form (this saves subtract |
| 46 | // operations durin unpacking) |
| 47 | // |
| 48 | |
| 49 | extern "C" { |
| 50 | |
| 51 | void ggml_quantize_mat_q8_0_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) { |
| 52 | assert(QK8_0 == 32); |
| 53 | assert(k % QK8_0 == 0); |
| 54 | const int nb = k / QK8_0; |
| 55 | |
| 56 | block_q8_0x4 * GGML_RESTRICT y = (block_q8_0x4 *) vy; |
| 57 | |
| 58 | // scalar |
| 59 | const int blck_size_interleave = 4; |
| 60 | float srcv[4][QK8_0]; |
| 61 | float id[4]; |
| 62 | |
| 63 | for (int i = 0; i < nb; i++) { |
| 64 | for (int row_iter = 0; row_iter < 4; row_iter++) { |
| 65 | float amax = 0.0f; // absolute max |
| 66 | |
| 67 | for (int j = 0; j < QK8_0; j++) { |
| 68 | srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j]; |
| 69 | amax = MAX(amax, fabsf(srcv[row_iter][j])); |
| 70 | } |
| 71 | |
| 72 | const float d = amax / ((1 << 7) - 1); |
| 73 | id[row_iter] = d ? 1.0f / d : 0.0f; |
| 74 | |
| 75 | y[i].d[row_iter] = GGML_CPU_FP32_TO_FP16(d); |
| 76 | } |
| 77 | |
| 78 | for (int j = 0; j < QK8_0 * 4; j++) { |
| 79 | int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave; |
| 80 | int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave; |
| 81 | src_offset += (j % blck_size_interleave); |
| 82 | |
| 83 | float x0 = srcv[src_id][src_offset] * id[src_id]; |
| 84 | y[i].qs[j] = roundf(x: x0); |
| 85 | } |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | void ggml_quantize_mat_q8_0_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) { |
| 90 | assert(QK8_0 == 32); |
| 91 | assert(k % QK8_0 == 0); |
| 92 | const int nb = k / QK8_0; |
| 93 | |
| 94 | block_q8_0x4 * GGML_RESTRICT y = (block_q8_0x4 *) vy; |
| 95 | |
| 96 | // scalar |
| 97 | const int blck_size_interleave = 8; |
| 98 | float srcv[4][QK8_0]; |
| 99 | float id[4]; |
| 100 | |
| 101 | for (int i = 0; i < nb; i++) { |
| 102 | for (int row_iter = 0; row_iter < 4; row_iter++) { |
| 103 | float amax = 0.0f; // absolute max |
| 104 | |
| 105 | for (int j = 0; j < QK8_0; j++) { |
| 106 | srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j]; |
| 107 | amax = MAX(amax, fabsf(srcv[row_iter][j])); |
| 108 | } |
| 109 | |
| 110 | const float d = amax / ((1 << 7) - 1); |
| 111 | id[row_iter] = d ? 1.0f / d : 0.0f; |
| 112 | |
| 113 | y[i].d[row_iter] = GGML_CPU_FP32_TO_FP16(d); |
| 114 | } |
| 115 | |
| 116 | for (int j = 0; j < QK8_0 * 4; j++) { |
| 117 | int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave; |
| 118 | int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave; |
| 119 | src_offset += (j % blck_size_interleave); |
| 120 | |
| 121 | float x0 = srcv[src_id][src_offset] * id[src_id]; |
| 122 | y[i].qs[j] = roundf(x: x0); |
| 123 | } |
| 124 | } |
| 125 | } |
| 126 | |
| 127 | void ggml_quantize_mat_q8_K_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) { |
| 128 | assert(QK_K == 256); |
| 129 | assert(k % QK_K == 0); |
| 130 | const int nb = k / QK_K; |
| 131 | |
| 132 | block_q8_Kx4 * GGML_RESTRICT y = (block_q8_Kx4 *) vy; |
| 133 | |
| 134 | // scalar |
| 135 | const int blck_size_interleave = 8; |
| 136 | float srcv[4][QK_K]; |
| 137 | float iscale[4]; |
| 138 | |
| 139 | for (int i = 0; i < nb; i++) { |
| 140 | for (int row_iter = 0; row_iter < 4; row_iter++) { |
| 141 | float amax = 0.0f; // absolute max |
| 142 | float max = 0; |
| 143 | |
| 144 | for (int j = 0; j < QK_K; j++) { |
| 145 | srcv[row_iter][j] = x[row_iter * k + i * QK_K + j]; |
| 146 | // Update the maximum value of the corresponding super block |
| 147 | if(amax < fabsf(x: srcv[row_iter][j])) { |
| 148 | amax = fabsf(x: srcv[row_iter][j]); |
| 149 | max = srcv[row_iter][j]; |
| 150 | } |
| 151 | } |
| 152 | |
| 153 | iscale[row_iter] = amax ? -127.f/max : 0; |
| 154 | |
| 155 | y[i].d[row_iter] = amax ? 1/iscale[row_iter] : 0; |
| 156 | } |
| 157 | |
| 158 | for (int j = 0; j < QK_K / 4; j++) { |
| 159 | y[i].bsums[j] = 0; |
| 160 | } |
| 161 | |
| 162 | // Quants values are interleaved in sequence of eight bytes from corresponding super blocks |
| 163 | // Bsums values are interleaved in sequence of four bsums from each super block taken for interleaving |
| 164 | // i.e first four bsums from the first super block, followed by first four bsums from second super block and so on |
| 165 | for (int j = 0; j < QK_K * 4; j++) { |
| 166 | int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave; |
| 167 | int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave; |
| 168 | src_offset += (j % blck_size_interleave); |
| 169 | int index = (((j & 31) >> 3) << 2) + ((j >> 8) << 4) + ((j >> 6) & 3); |
| 170 | |
| 171 | float x0 = srcv[src_id][src_offset] * iscale[src_id]; |
| 172 | y[i].qs[j] = nearest_int(fval: x0); |
| 173 | y[i].bsums[index] += y[i].qs[j]; |
| 174 | } |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | } // extern "C" |
| 179 | |
| 180 | template <int64_t INTER_SIZE, ggml_type PARAM_TYPE> |
| 181 | void ggml_quantize_mat_t(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row); |
| 182 | |
| 183 | template <> void ggml_quantize_mat_t<4, GGML_TYPE_Q8_0>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) { |
| 184 | assert(nrow == 4); |
| 185 | UNUSED(nrow); |
| 186 | ggml_quantize_mat_q8_0_4x4(x, vy, k: n_per_row); |
| 187 | } |
| 188 | |
| 189 | template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_0>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) { |
| 190 | assert(nrow == 4); |
| 191 | UNUSED(nrow); |
| 192 | ggml_quantize_mat_q8_0_4x8(x, vy, k: n_per_row); |
| 193 | } |
| 194 | |
| 195 | template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_K>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) { |
| 196 | assert(nrow == 4); |
| 197 | UNUSED(nrow); |
| 198 | ggml_quantize_mat_q8_K_4x8(x, vy, k: n_per_row); |
| 199 | } |
| 200 | |
| 201 | extern "C" { |
| 202 | |
| 203 | void ggml_gemv_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { |
| 204 | const int qk = QK8_0; |
| 205 | const int nb = n / qk; |
| 206 | const int ncols_interleaved = 4; |
| 207 | const int blocklen = 4; |
| 208 | |
| 209 | assert(nr == 1); |
| 210 | assert(n % qk == 0); |
| 211 | assert(nc % ncols_interleaved == 0); |
| 212 | |
| 213 | UNUSED(s); |
| 214 | UNUSED(bs); |
| 215 | UNUSED(vx); |
| 216 | UNUSED(vy); |
| 217 | UNUSED(nr); |
| 218 | UNUSED(nc); |
| 219 | UNUSED(nb); |
| 220 | UNUSED(ncols_interleaved); |
| 221 | UNUSED(blocklen); |
| 222 | |
| 223 | float sumf[4]; |
| 224 | int sumi; |
| 225 | |
| 226 | const block_q8_0 * a_ptr = (const block_q8_0 *) vy; |
| 227 | for (int x = 0; x < nc / ncols_interleaved; x++) { |
| 228 | const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb); |
| 229 | |
| 230 | for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0; |
| 231 | for (int l = 0; l < nb; l++) { |
| 232 | for (int k = 0; k < (qk / (2 * blocklen)); k++) { |
| 233 | for (int j = 0; j < ncols_interleaved; j++) { |
| 234 | sumi = 0; |
| 235 | for (int i = 0; i < blocklen; ++i) { |
| 236 | const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); |
| 237 | const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); |
| 238 | sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4; |
| 239 | } |
| 240 | sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d); |
| 241 | } |
| 242 | } |
| 243 | } |
| 244 | for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j]; |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | void ggml_gemv_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { |
| 249 | const int qk = QK8_0; |
| 250 | const int nb = n / qk; |
| 251 | const int ncols_interleaved = 4; |
| 252 | const int blocklen = 8; |
| 253 | |
| 254 | assert (n % qk == 0); |
| 255 | assert (nc % ncols_interleaved == 0); |
| 256 | |
| 257 | UNUSED(s); |
| 258 | UNUSED(bs); |
| 259 | UNUSED(vx); |
| 260 | UNUSED(vy); |
| 261 | UNUSED(nr); |
| 262 | UNUSED(nc); |
| 263 | UNUSED(nb); |
| 264 | UNUSED(ncols_interleaved); |
| 265 | UNUSED(blocklen); |
| 266 | |
| 267 | float sumf[4]; |
| 268 | int sumi; |
| 269 | |
| 270 | const block_q8_0 * a_ptr = (const block_q8_0 *) vy; |
| 271 | for (int x = 0; x < nc / ncols_interleaved; x++) { |
| 272 | const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb); |
| 273 | |
| 274 | for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0; |
| 275 | for (int l = 0; l < nb; l++) { |
| 276 | for (int k = 0; k < (qk / (2 * blocklen)); k++) { |
| 277 | for (int j = 0; j < ncols_interleaved; j++) { |
| 278 | sumi = 0; |
| 279 | for (int i = 0; i < blocklen; ++i) { |
| 280 | const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); |
| 281 | const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); |
| 282 | sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4; |
| 283 | } |
| 284 | sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d); |
| 285 | } |
| 286 | } |
| 287 | } |
| 288 | for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j]; |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { |
| 293 | const int qk = QK8_0; |
| 294 | const int nb = n / qk; |
| 295 | const int ncols_interleaved = 8; |
| 296 | const int blocklen = 8; |
| 297 | |
| 298 | assert (n % qk == 0); |
| 299 | assert (nc % ncols_interleaved == 0); |
| 300 | |
| 301 | UNUSED(s); |
| 302 | UNUSED(bs); |
| 303 | UNUSED(vx); |
| 304 | UNUSED(vy); |
| 305 | UNUSED(nr); |
| 306 | UNUSED(nc); |
| 307 | UNUSED(nb); |
| 308 | UNUSED(ncols_interleaved); |
| 309 | UNUSED(blocklen); |
| 310 | |
| 311 | float sumf[8]; |
| 312 | int sumi; |
| 313 | |
| 314 | const block_q8_0 * a_ptr = (const block_q8_0 *) vy; |
| 315 | for (int x = 0; x < nc / ncols_interleaved; x++) { |
| 316 | const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb); |
| 317 | |
| 318 | for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0; |
| 319 | for (int l = 0; l < nb; l++) { |
| 320 | for (int k = 0; k < (qk / (2 * blocklen)); k++) { |
| 321 | for (int j = 0; j < ncols_interleaved; j++) { |
| 322 | sumi = 0; |
| 323 | for (int i = 0; i < blocklen; ++i) { |
| 324 | const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); |
| 325 | const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); |
| 326 | sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4; |
| 327 | } |
| 328 | sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d); |
| 329 | } |
| 330 | } |
| 331 | } |
| 332 | for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j]; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { |
| 337 | const int qk = QK_K; |
| 338 | const int nb = n / qk; |
| 339 | const int ncols_interleaved = 8; |
| 340 | const int blocklen = 8; |
| 341 | static const uint32_t kmask1 = 0x3f3f3f3f; |
| 342 | static const uint32_t kmask2 = 0x0f0f0f0f; |
| 343 | static const uint32_t kmask3 = 0x03030303; |
| 344 | |
| 345 | assert (n % qk == 0); |
| 346 | assert (nc % ncols_interleaved == 0); |
| 347 | |
| 348 | UNUSED(s); |
| 349 | UNUSED(bs); |
| 350 | UNUSED(vx); |
| 351 | UNUSED(vy); |
| 352 | UNUSED(nr); |
| 353 | UNUSED(nc); |
| 354 | UNUSED(nb); |
| 355 | UNUSED(ncols_interleaved); |
| 356 | UNUSED(blocklen); |
| 357 | |
| 358 | float sumf[8]; |
| 359 | float sum_minf[8]; |
| 360 | uint32_t utmp[32]; |
| 361 | int sumi1; |
| 362 | int sumi2; |
| 363 | int sumi; |
| 364 | |
| 365 | const block_q8_K * a_ptr = (const block_q8_K *) vy; |
| 366 | for (int x = 0; x < nc / ncols_interleaved; x++) { |
| 367 | const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb); |
| 368 | |
| 369 | for (int j = 0; j < ncols_interleaved; j++) { |
| 370 | sumf[j] = 0.0; |
| 371 | sum_minf[j] = 0.0; |
| 372 | } |
| 373 | for (int l = 0; l < nb; l++) { |
| 374 | for (int sb = 0; sb < 8; sb++) { |
| 375 | memcpy(dest: utmp + sb * 4, src: b_ptr[l].scales + sb * 12, n: 12); |
| 376 | utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4); |
| 377 | const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1; |
| 378 | utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4); |
| 379 | utmp[sb * 4 + 2] = uaux_0; |
| 380 | utmp[sb * 4 + 0] &= kmask1; |
| 381 | } |
| 382 | for (int k = 0; k < (qk / (2 * blocklen)); k++) { |
| 383 | uint8_t *scales_0 = (uint8_t*) utmp + (k / 4) * 32; |
| 384 | uint8_t *scales_1 = (uint8_t*) utmp + (k / 4) * 32 + 16; |
| 385 | for (int j = 0; j < ncols_interleaved; j++) { |
| 386 | sumi1 = 0; |
| 387 | sumi2 = 0; |
| 388 | sumi = 0; |
| 389 | for (int i = 0; i < blocklen; ++i) { |
| 390 | const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF); |
| 391 | const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4); |
| 392 | sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 64 + (k % 4) * blocklen + i]); |
| 393 | sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 64 + (k % 4) * blocklen + i + 32]); |
| 394 | sumi1 = sumi1 * scales_0[j]; |
| 395 | sumi2 = sumi2 * scales_1[j]; |
| 396 | sumi += sumi1 + sumi2; |
| 397 | } |
| 398 | sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d; |
| 399 | } |
| 400 | } |
| 401 | for (int sb = 0; sb < 8; sb++) { |
| 402 | uint8_t *mins = (uint8_t*) utmp + 8 + sb * 16; |
| 403 | for (int j = 0; j < ncols_interleaved; j++) { |
| 404 | sum_minf[j] += mins[j] * (a_ptr[l].bsums[sb * 2] + a_ptr[l].bsums[sb * 2 + 1]) * GGML_CPU_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d; |
| 405 | } |
| 406 | } |
| 407 | } |
| 408 | for (int j = 0; j < ncols_interleaved; j++) { |
| 409 | s[x * ncols_interleaved + j] = sumf[j] - sum_minf[j]; |
| 410 | } |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | void ggml_gemv_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { |
| 415 | const int qk = QK_K; |
| 416 | const int nb = n / qk; |
| 417 | const int ncols_interleaved = 8; |
| 418 | const int blocklen = 8; |
| 419 | |
| 420 | assert (n % qk == 0); |
| 421 | assert (nc % ncols_interleaved == 0); |
| 422 | |
| 423 | UNUSED(s); |
| 424 | UNUSED(bs); |
| 425 | UNUSED(vx); |
| 426 | UNUSED(vy); |
| 427 | UNUSED(nr); |
| 428 | UNUSED(nc); |
| 429 | UNUSED(nb); |
| 430 | UNUSED(ncols_interleaved); |
| 431 | UNUSED(blocklen); |
| 432 | |
| 433 | float sumf[8]; |
| 434 | float sum_minf[8]; |
| 435 | int sumi1,sumi2,sumi3,sumi4; |
| 436 | int sumi; |
| 437 | |
| 438 | const block_q8_K * a_ptr = (const block_q8_K *)vy; |
| 439 | for(int x = 0; x < nc / ncols_interleaved; x++) { |
| 440 | const block_q2_Kx8 * b_ptr = (const block_q2_Kx8 *) vx + (x * nb); |
| 441 | for (int j = 0; j < ncols_interleaved; j++) { |
| 442 | sumf[j] = 0.0; |
| 443 | sum_minf[j] = 0.0; |
| 444 | } |
| 445 | for (int l = 0; l < nb; l++) { |
| 446 | for (int k = 0; k < (qk / (4 * blocklen)); k++) { |
| 447 | const uint8_t *scales_0 = b_ptr[l].scales + (k / 4) * 64 ; |
| 448 | const uint8_t *scales_1 = b_ptr[l].scales + (k / 4) * 64 + 16; |
| 449 | const uint8_t *scales_2 = b_ptr[l].scales + (k / 4) * 64 + 32; |
| 450 | const uint8_t *scales_3 = b_ptr[l].scales + (k / 4) * 64 + 48; |
| 451 | for (int j = 0; j < ncols_interleaved; j++) { |
| 452 | sumi1 = 0; |
| 453 | sumi2 = 0; |
| 454 | sumi3 = 0; |
| 455 | sumi4 = 0; |
| 456 | sumi = 0; |
| 457 | int offset = ((k / 2) % 2) + j * 2; |
| 458 | for (int i = 0; i < blocklen; ++i){ |
| 459 | const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 3); |
| 460 | const int v1 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 2 ) & 3); |
| 461 | const int v2 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4 ) & 3); |
| 462 | const int v3 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 6 ) & 3); |
| 463 | sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i]); |
| 464 | sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i + 32]); |
| 465 | sumi3 = (v2 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i + 64]); |
| 466 | sumi4 = (v3 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i + 96]); |
| 467 | |
| 468 | sumi1 = sumi1 * (scales_0[offset] & 0xF); |
| 469 | sumi2 = sumi2 * (scales_1[offset] & 0xF); |
| 470 | sumi3 = sumi3 * (scales_2[offset] & 0xF); |
| 471 | sumi4 = sumi4 * (scales_3[offset] & 0xF); |
| 472 | sumi += sumi1 + sumi2 + sumi3 + sumi4; |
| 473 | } |
| 474 | sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d; |
| 475 | } |
| 476 | } |
| 477 | for(int sb = 0; sb < 8; sb++) { |
| 478 | const uint8_t *mins = b_ptr[l].scales + sb * 16; |
| 479 | for(int j = 0; j < ncols_interleaved; j++){ |
| 480 | sum_minf[j] += ((mins[j * 2] >> 4) * a_ptr[l].bsums[sb * 2] + (mins[(j * 2)+ 1] >> 4) * a_ptr[l].bsums[sb * 2 + 1]) * GGML_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d; |
| 481 | } |
| 482 | } |
| 483 | } |
| 484 | for (int j = 0; j < ncols_interleaved; j++) { |
| 485 | s[x * ncols_interleaved + j] = sumf[j] - sum_minf[j]; |
| 486 | } |
| 487 | } |
| 488 | } |
| 489 | |
| 490 | void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { |
| 491 | const int qk = QK8_0; |
| 492 | const int nb = n / qk; |
| 493 | const int ncols_interleaved = 4; |
| 494 | const int blocklen = 4; |
| 495 | |
| 496 | assert(nr == 1); |
| 497 | assert(n % qk == 0); |
| 498 | assert(nc % ncols_interleaved == 0); |
| 499 | |
| 500 | UNUSED(bs); |
| 501 | UNUSED(nr); |
| 502 | |
| 503 | float sumf[4]; |
| 504 | int sumi; |
| 505 | |
| 506 | const block_q8_0 * a_ptr = (const block_q8_0 *) vy; |
| 507 | for (int x = 0; x < nc / ncols_interleaved; x++) { |
| 508 | const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb); |
| 509 | |
| 510 | for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0; |
| 511 | for (int l = 0; l < nb; l++) { |
| 512 | for (int k = 0; k < (qk / (2 * blocklen)); k++) { |
| 513 | for (int j = 0; j < ncols_interleaved; j++) { |
| 514 | sumi = 0; |
| 515 | for (int i = 0; i < blocklen; ++i) { |
| 516 | const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F]; |
| 517 | const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4]; |
| 518 | sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])); |
| 519 | } |
| 520 | sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d); |
| 521 | } |
| 522 | } |
| 523 | } |
| 524 | for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j]; |
| 525 | } |
| 526 | } |
| 527 | |
| 528 | void ggml_gemv_iq4_nl_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { |
| 529 | const int qk = QK8_0; |
| 530 | const int nb = n / qk; |
| 531 | const int ncols_interleaved = 8; |
| 532 | const int blocklen = 8; |
| 533 | |
| 534 | assert(nr == 1); |
| 535 | assert(n % qk == 0); |
| 536 | assert(nc % ncols_interleaved == 0); |
| 537 | |
| 538 | UNUSED(bs); |
| 539 | UNUSED(nr); |
| 540 | |
| 541 | float sumf[8]; |
| 542 | int sumi; |
| 543 | |
| 544 | const block_q8_0 * a_ptr = (const block_q8_0 *) vy; |
| 545 | for (int x = 0; x < nc / ncols_interleaved; x++) { |
| 546 | const block_iq4_nlx8 * b_ptr = (const block_iq4_nlx8 *) vx + (x * nb); |
| 547 | |
| 548 | for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0; |
| 549 | for (int l = 0; l < nb; l++) { |
| 550 | for (int k = 0; k < (qk / (2 * blocklen)); k++) { |
| 551 | for (int j = 0; j < ncols_interleaved; j++) { |
| 552 | sumi = 0; |
| 553 | for (int i = 0; i < blocklen; ++i) { |
| 554 | const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F]; |
| 555 | const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4]; |
| 556 | sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])); |
| 557 | } |
| 558 | sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d); |
| 559 | } |
| 560 | } |
| 561 | } |
| 562 | for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j]; |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | void ggml_gemm_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { |
| 567 | const int qk = QK8_0; |
| 568 | const int nb = n / qk; |
| 569 | const int ncols_interleaved = 4; |
| 570 | const int blocklen = 4; |
| 571 | |
| 572 | assert (n % qk == 0); |
| 573 | assert (nr % 4 == 0); |
| 574 | assert (nc % ncols_interleaved == 0); |
| 575 | |
| 576 | UNUSED(s); |
| 577 | UNUSED(bs); |
| 578 | UNUSED(vx); |
| 579 | UNUSED(vy); |
| 580 | UNUSED(nr); |
| 581 | UNUSED(nc); |
| 582 | UNUSED(nb); |
| 583 | UNUSED(ncols_interleaved); |
| 584 | UNUSED(blocklen); |
| 585 | |
| 586 | { |
| 587 | float sumf[4][4]; |
| 588 | int sumi; |
| 589 | |
| 590 | for (int y = 0; y < nr / 4; y++) { |
| 591 | const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb); |
| 592 | for (int x = 0; x < nc / ncols_interleaved; x++) { |
| 593 | const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb); |
| 594 | for (int m = 0; m < 4; m++) { |
| 595 | for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0; |
| 596 | } |
| 597 | for (int l = 0; l < nb; l++) { |
| 598 | for (int k = 0; k < (qk / (2 * blocklen)); k++) { |
| 599 | for (int m = 0; m < 4; m++) { |
| 600 | for (int j = 0; j < ncols_interleaved; j++) { |
| 601 | sumi = 0; |
| 602 | for (int i = 0; i < blocklen; ++i) { |
| 603 | const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); |
| 604 | const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); |
| 605 | sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) + |
| 606 | (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4; |
| 607 | } |
| 608 | sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]); |
| 609 | } |
| 610 | } |
| 611 | } |
| 612 | } |
| 613 | for (int m = 0; m < 4; m++) { |
| 614 | for (int j = 0; j < ncols_interleaved; j++) |
| 615 | s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j]; |
| 616 | } |
| 617 | } |
| 618 | } |
| 619 | } |
| 620 | } |
| 621 | |
| 622 | void ggml_gemm_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { |
| 623 | const int qk = QK8_0; |
| 624 | const int nb = n / qk; |
| 625 | const int ncols_interleaved = 4; |
| 626 | const int blocklen = 8; |
| 627 | |
| 628 | assert (n % qk == 0); |
| 629 | assert (nr % 4 == 0); |
| 630 | assert (nc % ncols_interleaved == 0); |
| 631 | |
| 632 | UNUSED(s); |
| 633 | UNUSED(bs); |
| 634 | UNUSED(vx); |
| 635 | UNUSED(vy); |
| 636 | UNUSED(nr); |
| 637 | UNUSED(nc); |
| 638 | UNUSED(nb); |
| 639 | UNUSED(ncols_interleaved); |
| 640 | UNUSED(blocklen); |
| 641 | |
| 642 | float sumf[4][4]; |
| 643 | int sumi; |
| 644 | |
| 645 | for (int y = 0; y < nr / 4; y++) { |
| 646 | const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb); |
| 647 | for (int x = 0; x < nc / ncols_interleaved; x++) { |
| 648 | const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb); |
| 649 | for (int m = 0; m < 4; m++) { |
| 650 | for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0; |
| 651 | } |
| 652 | for (int l = 0; l < nb; l++) { |
| 653 | for (int k = 0; k < (qk / (2 * blocklen)); k++) { |
| 654 | for (int m = 0; m < 4; m++) { |
| 655 | for (int j = 0; j < ncols_interleaved; j++) { |
| 656 | sumi = 0; |
| 657 | for (int i = 0; i < blocklen; ++i) { |
| 658 | const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); |
| 659 | const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); |
| 660 | sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) + |
| 661 | (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4; |
| 662 | } |
| 663 | sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]); |
| 664 | } |
| 665 | } |
| 666 | } |
| 667 | } |
| 668 | for (int m = 0; m < 4; m++) { |
| 669 | for (int j = 0; j < ncols_interleaved; j++) |
| 670 | s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j]; |
| 671 | } |
| 672 | } |
| 673 | } |
| 674 | } |
| 675 | |
| 676 | void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { |
| 677 | const int qk = QK8_0; |
| 678 | const int nb = n / qk; |
| 679 | const int ncols_interleaved = 8; |
| 680 | const int blocklen = 8; |
| 681 | |
| 682 | assert (n % qk == 0); |
| 683 | assert (nr % 4 == 0); |
| 684 | assert (nc % ncols_interleaved == 0); |
| 685 | |
| 686 | UNUSED(s); |
| 687 | UNUSED(bs); |
| 688 | UNUSED(vx); |
| 689 | UNUSED(vy); |
| 690 | UNUSED(nr); |
| 691 | UNUSED(nc); |
| 692 | UNUSED(nb); |
| 693 | UNUSED(ncols_interleaved); |
| 694 | UNUSED(blocklen); |
| 695 | |
| 696 | float sumf[4][8]; |
| 697 | int sumi; |
| 698 | |
| 699 | for (int y = 0; y < nr / 4; y++) { |
| 700 | const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb); |
| 701 | for (int x = 0; x < nc / ncols_interleaved; x++) { |
| 702 | const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb); |
| 703 | for (int m = 0; m < 4; m++) { |
| 704 | for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0; |
| 705 | } |
| 706 | for (int l = 0; l < nb; l++) { |
| 707 | for (int k = 0; k < (qk / (2 * blocklen)); k++) { |
| 708 | for (int m = 0; m < 4; m++) { |
| 709 | for (int j = 0; j < ncols_interleaved; j++) { |
| 710 | sumi = 0; |
| 711 | for (int i = 0; i < blocklen; ++i) { |
| 712 | const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); |
| 713 | const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); |
| 714 | sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) + |
| 715 | (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4; |
| 716 | } |
| 717 | sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]); |
| 718 | } |
| 719 | } |
| 720 | } |
| 721 | } |
| 722 | for (int m = 0; m < 4; m++) { |
| 723 | for (int j = 0; j < ncols_interleaved; j++) |
| 724 | s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j]; |
| 725 | } |
| 726 | } |
| 727 | } |
| 728 | } |
| 729 | |
| 730 | void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { |
| 731 | const int qk = QK_K; |
| 732 | const int nb = n / qk; |
| 733 | const int ncols_interleaved = 8; |
| 734 | const int blocklen = 8; |
| 735 | static const uint32_t kmask1 = 0x3f3f3f3f; |
| 736 | static const uint32_t kmask2 = 0x0f0f0f0f; |
| 737 | static const uint32_t kmask3 = 0x03030303; |
| 738 | |
| 739 | assert (n % qk == 0); |
| 740 | assert (nr % 4 == 0); |
| 741 | assert (nc % ncols_interleaved == 0); |
| 742 | |
| 743 | UNUSED(s); |
| 744 | UNUSED(bs); |
| 745 | UNUSED(vx); |
| 746 | UNUSED(vy); |
| 747 | UNUSED(nr); |
| 748 | UNUSED(nc); |
| 749 | UNUSED(nb); |
| 750 | UNUSED(ncols_interleaved); |
| 751 | UNUSED(blocklen); |
| 752 | |
| 753 | float sumf[4][8]; |
| 754 | float sum_minf[4][8]; |
| 755 | uint32_t utmp[32]; |
| 756 | int sumi1; |
| 757 | int sumi2; |
| 758 | int sumi; |
| 759 | |
| 760 | for (int y = 0; y < nr / 4; y++) { |
| 761 | const block_q8_Kx4 * a_ptr = (const block_q8_Kx4 *) vy + (y * nb); |
| 762 | for (int x = 0; x < nc / ncols_interleaved; x++) { |
| 763 | const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb); |
| 764 | for (int m = 0; m < 4; m++) { |
| 765 | for (int j = 0; j < ncols_interleaved; j++) { |
| 766 | sumf[m][j] = 0.0; |
| 767 | sum_minf[m][j] = 0.0; |
| 768 | } |
| 769 | } |
| 770 | for (int l = 0; l < nb; l++) { |
| 771 | for (int sb = 0; sb < 8; sb++) { |
| 772 | memcpy(dest: utmp + sb * 4, src: b_ptr[l].scales + sb * 12, n: 12); |
| 773 | utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4); |
| 774 | const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1; |
| 775 | utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4); |
| 776 | utmp[sb * 4 + 2] = uaux_0; |
| 777 | utmp[sb * 4 + 0] &= kmask1; |
| 778 | } |
| 779 | for (int k = 0; k < (qk / (2 * blocklen)); k++) { |
| 780 | uint8_t *scales_0 = (uint8_t*) utmp + (k / 4) * 32; |
| 781 | uint8_t *scales_1 = (uint8_t*) utmp + (k / 4) * 32 + 16; |
| 782 | for (int m = 0; m < 4; m++) { |
| 783 | for (int j = 0; j < ncols_interleaved; j++) { |
| 784 | sumi1 = 0; |
| 785 | sumi2 = 0; |
| 786 | sumi = 0; |
| 787 | for (int i = 0; i < blocklen; ++i) { |
| 788 | const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF); |
| 789 | const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4); |
| 790 | sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 256 + (k % 4) * 4 * blocklen + m * blocklen + i]); |
| 791 | sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 256 + (k % 4) * 4 * blocklen + m * blocklen + i + 128]); |
| 792 | sumi1 = sumi1 * scales_0[j]; |
| 793 | sumi2 = sumi2 * scales_1[j]; |
| 794 | sumi += sumi1 + sumi2; |
| 795 | } |
| 796 | sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d[m]; |
| 797 | } |
| 798 | } |
| 799 | } |
| 800 | for (int sb = 0; sb < 8; sb++) { |
| 801 | uint8_t *mins = (uint8_t*) utmp + 8 + sb * 16; |
| 802 | for(int m = 0; m < 4; m++) { |
| 803 | const int16_t *bsums = a_ptr[l].bsums + (sb * 8) + (m * 4) - ((sb % 2) * 6); |
| 804 | for(int j = 0; j < ncols_interleaved; j++) { |
| 805 | sum_minf[m][j] += mins[j] * (bsums[0] + bsums[1]) * GGML_CPU_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d[m]; |
| 806 | } |
| 807 | } |
| 808 | } |
| 809 | } |
| 810 | for (int m = 0; m < 4; m++) { |
| 811 | for (int j = 0; j < ncols_interleaved; j++) { |
| 812 | s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j] - sum_minf[m][j]; |
| 813 | } |
| 814 | } |
| 815 | } |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | void ggml_gemm_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { |
| 820 | const int qk = QK_K; |
| 821 | const int nb = n / qk; |
| 822 | const int ncols_interleaved = 8; |
| 823 | const int blocklen = 8; |
| 824 | |
| 825 | assert (n % qk == 0); |
| 826 | assert (nr % 4 == 0); |
| 827 | assert (nc % ncols_interleaved == 0); |
| 828 | |
| 829 | UNUSED(s); |
| 830 | UNUSED(bs); |
| 831 | UNUSED(vx); |
| 832 | UNUSED(vy); |
| 833 | UNUSED(nr); |
| 834 | UNUSED(nc); |
| 835 | UNUSED(nb); |
| 836 | UNUSED(ncols_interleaved); |
| 837 | UNUSED(blocklen); |
| 838 | |
| 839 | float sumf[4][8]; |
| 840 | float sum_minf[4][8]; |
| 841 | int sumi1, sumi2, sumi3, sumi4; |
| 842 | int sumi; |
| 843 | |
| 844 | for (int y = 0; y < nr / 4; y++) { |
| 845 | const block_q8_Kx4 * a_ptr = (const block_q8_Kx4 *) vy + (y * nb); |
| 846 | for (int x = 0; x < nc / ncols_interleaved; x++) { |
| 847 | const block_q2_Kx8 * b_ptr = (const block_q2_Kx8 *) vx + (x * nb); |
| 848 | for (int m = 0; m < 4; m++) { |
| 849 | for (int j = 0; j < ncols_interleaved; j++) { |
| 850 | sumf[m][j] = 0.0; |
| 851 | sum_minf[m][j] = 0.0; |
| 852 | } |
| 853 | } |
| 854 | for (int l = 0; l < nb; l++) { |
| 855 | for (int k = 0; k < (qk / (4 * blocklen)); k++) { |
| 856 | |
| 857 | const uint8_t *scales_0 = b_ptr[l].scales + (k / 4) * 64 ; |
| 858 | const uint8_t *scales_1 = b_ptr[l].scales + (k / 4) * 64 + 16; |
| 859 | const uint8_t *scales_2 = b_ptr[l].scales + (k / 4) * 64 + 32; |
| 860 | const uint8_t *scales_3 = b_ptr[l].scales + (k / 4) * 64 + 48; |
| 861 | for (int m = 0; m < 4; m++) { |
| 862 | for (int j = 0; j < ncols_interleaved; j++) { |
| 863 | sumi1 = 0; |
| 864 | sumi2 = 0; |
| 865 | sumi3 = 0; |
| 866 | sumi4 = 0; |
| 867 | sumi = 0; |
| 868 | int offset = ((k / 2) % 2) + j * 2; |
| 869 | for (int i = 0; i < blocklen; ++i){ |
| 870 | const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 3); |
| 871 | const int v1 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 2 ) & 3); |
| 872 | const int v2 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4 ) & 3); |
| 873 | const int v3 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 6 ) & 3); |
| 874 | sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i]); |
| 875 | sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i + 128]); |
| 876 | sumi3 = (v2 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i + 256]); |
| 877 | sumi4 = (v3 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i + 384]); |
| 878 | sumi1 = sumi1 * (scales_0[offset] & 0xF); |
| 879 | sumi2 = sumi2 * (scales_1[offset] & 0xF); |
| 880 | sumi3 = sumi3 * (scales_2[offset] & 0xF); |
| 881 | sumi4 = sumi4 * (scales_3[offset] & 0xF); |
| 882 | sumi += sumi1 + sumi2 + sumi3 + sumi4; |
| 883 | } |
| 884 | sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d[m]; |
| 885 | } |
| 886 | } |
| 887 | } |
| 888 | for(int sb = 0; sb < 8; sb++) { |
| 889 | const uint8_t *mins = b_ptr[l].scales + sb * 16; |
| 890 | for(int m = 0; m < 4; m++) { |
| 891 | const int16_t *bsums = a_ptr[l].bsums + (sb * 8) + (m * 4) - ((sb % 2) * 6); |
| 892 | for(int j = 0; j < ncols_interleaved; j++) { |
| 893 | int mins_prod = ((mins[j * 2] >> 4) * bsums[0] + (mins[(j * 2)+ 1] >> 4) * bsums[1]); |
| 894 | sum_minf[m][j] += (mins_prod) * GGML_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d[m]; |
| 895 | } |
| 896 | } |
| 897 | } |
| 898 | } |
| 899 | |
| 900 | for (int m = 0; m < 4; m++) { |
| 901 | for (int j = 0; j < ncols_interleaved; j++) { |
| 902 | s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j] - sum_minf[m][j]; |
| 903 | } |
| 904 | } |
| 905 | } |
| 906 | } |
| 907 | } |
| 908 | |
| 909 | |
| 910 | void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { |
| 911 | const int qk = QK8_0; |
| 912 | const int nb = n / qk; |
| 913 | const int ncols_interleaved = 4; |
| 914 | const int blocklen = 4; |
| 915 | |
| 916 | assert (n % qk == 0); |
| 917 | assert (nr % 4 == 0); |
| 918 | assert (nc % ncols_interleaved == 0); |
| 919 | |
| 920 | UNUSED(s); |
| 921 | UNUSED(bs); |
| 922 | UNUSED(vx); |
| 923 | UNUSED(vy); |
| 924 | UNUSED(nr); |
| 925 | UNUSED(nc); |
| 926 | UNUSED(nb); |
| 927 | UNUSED(ncols_interleaved); |
| 928 | UNUSED(blocklen); |
| 929 | |
| 930 | { |
| 931 | float sumf[4][4]; |
| 932 | int sumi; |
| 933 | |
| 934 | for (int y = 0; y < nr / 4; y++) { |
| 935 | const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb); |
| 936 | for (int x = 0; x < nc / ncols_interleaved; x++) { |
| 937 | const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb); |
| 938 | for (int m = 0; m < 4; m++) { |
| 939 | for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0; |
| 940 | } |
| 941 | for (int l = 0; l < nb; l++) { |
| 942 | for (int k = 0; k < (qk / (2 * blocklen)); k++) { |
| 943 | for (int m = 0; m < 4; m++) { |
| 944 | for (int j = 0; j < ncols_interleaved; j++) { |
| 945 | sumi = 0; |
| 946 | for (int i = 0; i < blocklen; ++i) { |
| 947 | const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F]; |
| 948 | const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4]; |
| 949 | sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) + |
| 950 | (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])); |
| 951 | } |
| 952 | sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]); |
| 953 | } |
| 954 | } |
| 955 | } |
| 956 | } |
| 957 | for (int m = 0; m < 4; m++) { |
| 958 | for (int j = 0; j < ncols_interleaved; j++) |
| 959 | s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j]; |
| 960 | } |
| 961 | } |
| 962 | } |
| 963 | } |
| 964 | } |
| 965 | |
| 966 | void ggml_gemm_iq4_nl_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { |
| 967 | const int qk = QK8_0; |
| 968 | const int nb = n / qk; |
| 969 | const int ncols_interleaved = 8; |
| 970 | const int blocklen = 8; |
| 971 | |
| 972 | assert(n % qk == 0); |
| 973 | assert(nr % 4 == 0); |
| 974 | assert(nc % ncols_interleaved == 0); |
| 975 | |
| 976 | float sumf[4][8]; |
| 977 | int sumi; |
| 978 | |
| 979 | for (int y = 0; y < nr / 4; y++) { |
| 980 | const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb); |
| 981 | for (int x = 0; x < nc / ncols_interleaved; x++) { |
| 982 | const block_iq4_nlx8 * b_ptr = (const block_iq4_nlx8 *) vx + (x * nb); |
| 983 | for (int m = 0; m < 4; m++) { |
| 984 | for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0; |
| 985 | } |
| 986 | for (int l = 0; l < nb; l++) { |
| 987 | for (int k = 0; k < (qk / (2 * blocklen)); k++) { |
| 988 | for (int m = 0; m < 4; m++) { |
| 989 | for (int j = 0; j < ncols_interleaved; j++) { |
| 990 | sumi = 0; |
| 991 | for (int i = 0; i < blocklen; ++i) { |
| 992 | const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F]; |
| 993 | const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4]; |
| 994 | sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) + |
| 995 | (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])); |
| 996 | } |
| 997 | sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]); |
| 998 | } |
| 999 | } |
| 1000 | } |
| 1001 | } |
| 1002 | for (int m = 0; m < 4; m++) { |
| 1003 | for (int j = 0; j < ncols_interleaved; j++) |
| 1004 | s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j]; |
| 1005 | } |
| 1006 | } |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | } // extern "C" |
| 1011 | |
| 1012 | static block_q4_0x4 make_block_q4_0x4(block_q4_0 * in, unsigned int blck_size_interleave) { |
| 1013 | block_q4_0x4 out; |
| 1014 | |
| 1015 | for (int i = 0; i < 4; i++) { |
| 1016 | out.d[i] = in[i].d; |
| 1017 | } |
| 1018 | |
| 1019 | const int end = QK4_0 * 2 / blck_size_interleave; |
| 1020 | |
| 1021 | if (blck_size_interleave == 8) { |
| 1022 | const uint64_t xor_mask = 0x8888888888888888ULL; |
| 1023 | for (int i = 0; i < end; ++i) { |
| 1024 | int src_id = i % 4; |
| 1025 | int src_offset = (i / 4) * blck_size_interleave; |
| 1026 | int dst_offset = i * blck_size_interleave; |
| 1027 | |
| 1028 | uint64_t elems; |
| 1029 | // Using memcpy to avoid unaligned memory accesses |
| 1030 | memcpy(dest: &elems, src: &in[src_id].qs[src_offset], n: sizeof(uint64_t)); |
| 1031 | elems ^= xor_mask; |
| 1032 | memcpy(dest: &out.qs[dst_offset], src: &elems, n: sizeof(uint64_t)); |
| 1033 | } |
| 1034 | } else if (blck_size_interleave == 4) { |
| 1035 | const uint32_t xor_mask = 0x88888888; |
| 1036 | for (int i = 0; i < end; ++i) { |
| 1037 | int src_id = i % 4; |
| 1038 | int src_offset = (i / 4) * blck_size_interleave; |
| 1039 | int dst_offset = i * blck_size_interleave; |
| 1040 | |
| 1041 | uint32_t elems; |
| 1042 | memcpy(dest: &elems, src: &in[src_id].qs[src_offset], n: sizeof(uint32_t)); |
| 1043 | elems ^= xor_mask; |
| 1044 | memcpy(dest: &out.qs[dst_offset], src: &elems, n: sizeof(uint32_t)); |
| 1045 | } |
| 1046 | } else { |
| 1047 | GGML_ASSERT(false); |
| 1048 | } |
| 1049 | |
| 1050 | return out; |
| 1051 | } |
| 1052 | |
| 1053 | // interleave 8 block_q4_0s in blocks of blck_size_interleave |
| 1054 | // returns an interleaved block_q4_0x8 |
| 1055 | // in the interleaved block_q4_0x8, place deltas for 8 block_q4_0 blocks |
| 1056 | // first, then interleave quants from 8 block_q4_0s in blocks of blck_size_interleave |
| 1057 | static block_q4_0x8 make_block_q4_0x8(block_q4_0 * in, unsigned int blck_size_interleave) { |
| 1058 | block_q4_0x8 out; |
| 1059 | |
| 1060 | for (int i = 0; i < 8; i++) { |
| 1061 | out.d[i] = in[i].d; |
| 1062 | } |
| 1063 | |
| 1064 | const int end = QK4_0 * 4 / blck_size_interleave; |
| 1065 | const uint64_t xor_mask = 0x8888888888888888ULL; |
| 1066 | |
| 1067 | for (int i = 0; i < end; ++i) { |
| 1068 | int src_id = i % 8; |
| 1069 | int src_offset = (i / 8) * blck_size_interleave; |
| 1070 | int dst_offset = i * blck_size_interleave; |
| 1071 | |
| 1072 | uint64_t elems; |
| 1073 | memcpy(dest: &elems, src: &in[src_id].qs[src_offset], n: sizeof(uint64_t)); |
| 1074 | elems ^= xor_mask; |
| 1075 | memcpy(dest: &out.qs[dst_offset], src: &elems, n: sizeof(uint64_t)); |
| 1076 | } |
| 1077 | |
| 1078 | return out; |
| 1079 | } |
| 1080 | |
| 1081 | static block_q4_Kx8 make_block_q4_Kx8(block_q4_K * in, unsigned int blck_size_interleave) { |
| 1082 | block_q4_Kx8 out; |
| 1083 | //Delta(scale) and dmin values of the eight Q4_K structures are copied onto the output interleaved structure |
| 1084 | for (int i = 0; i < 8; i++) { |
| 1085 | out.d[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d; |
| 1086 | } |
| 1087 | |
| 1088 | for (int i = 0; i < 8; i++) { |
| 1089 | out.dmin[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.dmin; |
| 1090 | } |
| 1091 | |
| 1092 | const int end = QK_K * 4 / blck_size_interleave; |
| 1093 | |
| 1094 | // Interleave Q4_K quants by taking 8 bytes at a time |
| 1095 | for (int i = 0; i < end; ++i) { |
| 1096 | int src_id = i % 8; |
| 1097 | int src_offset = (i / 8) * blck_size_interleave; |
| 1098 | int dst_offset = i * blck_size_interleave; |
| 1099 | |
| 1100 | uint64_t elems; |
| 1101 | memcpy(dest: &elems, src: &in[src_id].qs[src_offset], n: sizeof(uint64_t)); |
| 1102 | memcpy(dest: &out.qs[dst_offset], src: &elems, n: sizeof(uint64_t)); |
| 1103 | } |
| 1104 | |
| 1105 | // The below logic is designed so as to unpack and rearrange scales and mins values in Q4_K |
| 1106 | // Currently the Q4_K structure has 8 scales and 8 mins packed in 12 bytes ( 6 bits for each value) |
| 1107 | // The output Q4_Kx8 structure has 96 bytes |
| 1108 | // Every 12 byte is packed such that it contains scales and mins for corresponding sub blocks from Q4_K structure |
| 1109 | // For eg - First 12 bytes contains 8 scales and 8 mins - each of first sub block from different Q4_K structures |
| 1110 | uint8_t s[8], m[8]; |
| 1111 | |
| 1112 | for (int i = 0; i < 4; i++) { |
| 1113 | for (int j = 0; j < 8; j++) { |
| 1114 | s[j] = in[j].scales[i] & 63; |
| 1115 | m[j] = in[j].scales[i + 4] & 63; |
| 1116 | } |
| 1117 | |
| 1118 | out.scales[i * 12] = (s[0] & 63) + ((s[4] & 48) << 2); |
| 1119 | out.scales[i * 12 + 1] = (s[1] & 63) + ((s[5] & 48) << 2); |
| 1120 | out.scales[i * 12 + 2] = (s[2] & 63) + ((s[6] & 48) << 2); |
| 1121 | out.scales[i * 12 + 3] = (s[3] & 63) + ((s[7] & 48) << 2); |
| 1122 | out.scales[i * 12 + 4] = (m[0] & 63) + ((m[4] & 48) << 2); |
| 1123 | out.scales[i * 12 + 5] = (m[1] & 63) + ((m[5] & 48) << 2); |
| 1124 | out.scales[i * 12 + 6] = (m[2] & 63) + ((m[6] & 48) << 2); |
| 1125 | out.scales[i * 12 + 7] = (m[3] & 63) + ((m[7] & 48) << 2); |
| 1126 | out.scales[i * 12 + 8] = (s[4] & 15) + ((m[4] & 15) << 4); |
| 1127 | out.scales[i * 12 + 9] = (s[5] & 15) + ((m[5] & 15) << 4); |
| 1128 | out.scales[i * 12 + 10] = (s[6] & 15) + ((m[6] & 15) << 4); |
| 1129 | out.scales[i * 12 + 11] = (s[7] & 15) + ((m[7] & 15) << 4); |
| 1130 | |
| 1131 | } |
| 1132 | |
| 1133 | for (int i = 0; i < 4; i++) { |
| 1134 | for (int j = 0; j < 8; j++) { |
| 1135 | s[j] = ((in[j].scales[i] & 192) >> 2) | (in[j].scales[i+8] & 15); |
| 1136 | m[j] = ((in[j].scales[i + 4] & 192) >> 2) | ((in[j].scales[i+8] & 240) >> 4); |
| 1137 | } |
| 1138 | |
| 1139 | out.scales[i * 12 + 48] = (s[0] & 63) + ((s[4] & 48) << 2); |
| 1140 | out.scales[i * 12 + 49] = (s[1] & 63) + ((s[5] & 48) << 2); |
| 1141 | out.scales[i * 12 + 50] = (s[2] & 63) + ((s[6] & 48) << 2); |
| 1142 | out.scales[i * 12 + 51] = (s[3] & 63) + ((s[7] & 48) << 2); |
| 1143 | out.scales[i * 12 + 52] = (m[0] & 63) + ((m[4] & 48) << 2); |
| 1144 | out.scales[i * 12 + 53] = (m[1] & 63) + ((m[5] & 48) << 2); |
| 1145 | out.scales[i * 12 + 54] = (m[2] & 63) + ((m[6] & 48) << 2); |
| 1146 | out.scales[i * 12 + 55] = (m[3] & 63) + ((m[7] & 48) << 2); |
| 1147 | out.scales[i * 12 + 56] = (s[4] & 15) + ((m[4] & 15) << 4); |
| 1148 | out.scales[i * 12 + 57] = (s[5] & 15) + ((m[5] & 15) << 4); |
| 1149 | out.scales[i * 12 + 58] = (s[6] & 15) + ((m[6] & 15) << 4); |
| 1150 | out.scales[i * 12 + 59] = (s[7] & 15) + ((m[7] & 15) << 4); |
| 1151 | |
| 1152 | } |
| 1153 | |
| 1154 | return out; |
| 1155 | } |
| 1156 | |
| 1157 | static block_q2_Kx8 make_block_q2_Kx8(block_q2_K * in, unsigned int blck_size_interleave) { |
| 1158 | block_q2_Kx8 out; |
| 1159 | |
| 1160 | // Delta(scale) and dmin values of the eight Q2_K structures are copied onto the output interleaved structure |
| 1161 | for (int i = 0; i < 8; i++) { |
| 1162 | out.d[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d; |
| 1163 | } |
| 1164 | |
| 1165 | for (int i = 0; i < 8; i++) { |
| 1166 | out.dmin[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.dmin; |
| 1167 | } |
| 1168 | |
| 1169 | const int end = QK_K * 2 / blck_size_interleave; |
| 1170 | |
| 1171 | // Interleave Q2_K quants by taking 8 bytes at a time |
| 1172 | for (int i = 0; i < end; ++i) { |
| 1173 | int src_id = i % 8; |
| 1174 | int src_offset = (i / 8) * blck_size_interleave; |
| 1175 | int dst_offset = i * blck_size_interleave; |
| 1176 | |
| 1177 | uint64_t elems; |
| 1178 | memcpy(dest: &elems, src: &in[src_id].qs[src_offset], n: sizeof(uint64_t)); |
| 1179 | memcpy(dest: &out.qs[dst_offset], src: &elems, n: sizeof(uint64_t)); |
| 1180 | } |
| 1181 | |
| 1182 | // The below logic is designed so as to unpack and rearrange scales and mins values in Q2_K |
| 1183 | // Currently the Q2_K structure has 16 scales and 16 mins packed in 16 bytes ( 4 bits for each value) |
| 1184 | // The output Q2_Kx8 structure has 128 bytes for storing scales and mins |
| 1185 | // Every 16 byte is packed such that it contains scales and mins for corresponding sub blocks from Q2_K structure |
| 1186 | // For eg - First 16 bytes contains 16 scales and 16 mins - each of first and second sub blocks from different Q2_K structures |
| 1187 | |
| 1188 | for(int i = 0; i < 128; i++){ |
| 1189 | |
| 1190 | // Index for selecting which q2k super block |
| 1191 | int src1 = (i % 16) / 2; |
| 1192 | // Index for selecting scale |
| 1193 | int src2 = ((i / 16) * 2) + (i % 2); |
| 1194 | |
| 1195 | out.scales[i] = in[src1].scales[src2]; |
| 1196 | } |
| 1197 | return out; |
| 1198 | |
| 1199 | } |
| 1200 | |
| 1201 | static int repack_q4_0_to_q4_0_4_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) { |
| 1202 | GGML_ASSERT(t->type == GGML_TYPE_Q4_0); |
| 1203 | GGML_ASSERT(interleave_block == 4 || interleave_block == 8); |
| 1204 | constexpr int nrows_interleaved = 4; |
| 1205 | |
| 1206 | block_q4_0x4 * dst = (block_q4_0x4 *)t->data; |
| 1207 | const block_q4_0 * src = (const block_q4_0 *)data; |
| 1208 | block_q4_0 dst_tmp[4]; |
| 1209 | int nrow = ggml_nrows(tensor: t); |
| 1210 | int nblocks = t->ne[0] / QK4_0; |
| 1211 | |
| 1212 | GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_0)); |
| 1213 | |
| 1214 | if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) { |
| 1215 | return -1; |
| 1216 | } |
| 1217 | |
| 1218 | for (int b = 0; b < nrow; b += nrows_interleaved) { |
| 1219 | for (int64_t x = 0; x < nblocks; x++) { |
| 1220 | for (int i = 0; i < nrows_interleaved; i++) { |
| 1221 | dst_tmp[i] = src[x + i * nblocks]; |
| 1222 | } |
| 1223 | *dst++ = make_block_q4_0x4(in: dst_tmp, blck_size_interleave: interleave_block); |
| 1224 | } |
| 1225 | src += nrows_interleaved * nblocks; |
| 1226 | } |
| 1227 | return 0; |
| 1228 | |
| 1229 | GGML_UNUSED(data_size); |
| 1230 | } |
| 1231 | static int repack_q4_K_to_q4_K_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) { |
| 1232 | GGML_ASSERT(t->type == GGML_TYPE_Q4_K); |
| 1233 | GGML_ASSERT(interleave_block == 8); |
| 1234 | constexpr int nrows_interleaved = 8; |
| 1235 | |
| 1236 | block_q4_Kx8 * dst = (block_q4_Kx8*)t->data; |
| 1237 | const block_q4_K * src = (const block_q4_K*) data; |
| 1238 | block_q4_K dst_tmp[8]; |
| 1239 | int nrow = ggml_nrows(tensor: t); |
| 1240 | int nblocks = t->ne[0] / QK_K; |
| 1241 | |
| 1242 | GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_K)); |
| 1243 | |
| 1244 | if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) { |
| 1245 | return -1; |
| 1246 | } |
| 1247 | |
| 1248 | for (int b = 0; b < nrow; b += nrows_interleaved) { |
| 1249 | for (int64_t x = 0; x < nblocks; x++) { |
| 1250 | for (int i = 0; i < nrows_interleaved; i++ ) { |
| 1251 | dst_tmp[i] = src[x + i * nblocks]; |
| 1252 | } |
| 1253 | *dst++ = make_block_q4_Kx8(in: dst_tmp, blck_size_interleave: interleave_block); |
| 1254 | } |
| 1255 | src += nrows_interleaved * nblocks; |
| 1256 | } |
| 1257 | return 0; |
| 1258 | |
| 1259 | GGML_UNUSED(data_size); |
| 1260 | } |
| 1261 | |
| 1262 | static int repack_q2_K_to_q2_K_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) { |
| 1263 | GGML_ASSERT(t->type == GGML_TYPE_Q2_K); |
| 1264 | GGML_ASSERT(interleave_block == 8); |
| 1265 | constexpr int nrows_interleaved = 8; |
| 1266 | |
| 1267 | block_q2_Kx8 * dst = (block_q2_Kx8*)t->data; |
| 1268 | const block_q2_K * src = (const block_q2_K*) data; |
| 1269 | block_q2_K dst_tmp[8]; |
| 1270 | int nrow = ggml_nrows(tensor: t); |
| 1271 | int nblocks = t->ne[0] / QK_K; |
| 1272 | |
| 1273 | GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q2_K)); |
| 1274 | |
| 1275 | if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) { |
| 1276 | return -1; |
| 1277 | } |
| 1278 | |
| 1279 | for (int b = 0; b < nrow; b += nrows_interleaved) { |
| 1280 | for (int64_t x = 0; x < nblocks; x++) { |
| 1281 | for (int i = 0; i < nrows_interleaved; i++ ) { |
| 1282 | dst_tmp[i] = src[x + i * nblocks]; |
| 1283 | } |
| 1284 | *dst++ = make_block_q2_Kx8(in: dst_tmp, blck_size_interleave: interleave_block); |
| 1285 | } |
| 1286 | src += nrows_interleaved * nblocks; |
| 1287 | } |
| 1288 | return 0; |
| 1289 | |
| 1290 | GGML_UNUSED(data_size); |
| 1291 | } |
| 1292 | |
| 1293 | static int repack_q4_0_to_q4_0_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) { |
| 1294 | GGML_ASSERT(t->type == GGML_TYPE_Q4_0); |
| 1295 | GGML_ASSERT(interleave_block == 8); |
| 1296 | constexpr int nrows_interleaved = 8; |
| 1297 | |
| 1298 | block_q4_0x8 * dst = (block_q4_0x8*)t->data; |
| 1299 | const block_q4_0 * src = (const block_q4_0*) data; |
| 1300 | block_q4_0 dst_tmp[8]; |
| 1301 | int nrow = ggml_nrows(tensor: t); |
| 1302 | int nblocks = t->ne[0] / QK4_0; |
| 1303 | |
| 1304 | GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_0)); |
| 1305 | |
| 1306 | if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) { |
| 1307 | return -1; |
| 1308 | } |
| 1309 | |
| 1310 | for (int b = 0; b < nrow; b += nrows_interleaved) { |
| 1311 | for (int64_t x = 0; x < nblocks; x++) { |
| 1312 | for (int i = 0; i < nrows_interleaved; i++ ) { |
| 1313 | dst_tmp[i] = src[x + i * nblocks]; |
| 1314 | } |
| 1315 | *dst++ = make_block_q4_0x8(in: dst_tmp, blck_size_interleave: interleave_block); |
| 1316 | } |
| 1317 | src += nrows_interleaved * nblocks; |
| 1318 | } |
| 1319 | return 0; |
| 1320 | |
| 1321 | GGML_UNUSED(data_size); |
| 1322 | } |
| 1323 | |
| 1324 | static block_iq4_nlx4 make_block_iq4_nlx4(block_iq4_nl * in, unsigned int blck_size_interleave) { |
| 1325 | block_iq4_nlx4 out; |
| 1326 | |
| 1327 | for (int i = 0; i < 4; i++) { |
| 1328 | out.d[i] = in[i].d; |
| 1329 | } |
| 1330 | |
| 1331 | const int end = QK4_NL * 2 / blck_size_interleave; |
| 1332 | |
| 1333 | // TODO: this branch seems wrong |
| 1334 | //if (blck_size_interleave == 8) { |
| 1335 | // for (int i = 0; i < end; ++i) { |
| 1336 | // int src_id = i % 4; |
| 1337 | // int src_offset = (i / 4) * blck_size_interleave; |
| 1338 | // int dst_offset = i * blck_size_interleave; |
| 1339 | |
| 1340 | // // Using memcpy to avoid unaligned memory accesses |
| 1341 | // memcpy(&out.qs[dst_offset], &in[src_id].qs[src_offset], sizeof(uint64_t)); |
| 1342 | // } |
| 1343 | //} else |
| 1344 | if (blck_size_interleave == 4) { |
| 1345 | for (int i = 0; i < end; ++i) { |
| 1346 | int src_id = i % 4; |
| 1347 | int src_offset = (i / 4) * blck_size_interleave; |
| 1348 | int dst_offset = i * blck_size_interleave; |
| 1349 | |
| 1350 | memcpy(dest: &out.qs[dst_offset], src: &in[src_id].qs[src_offset], n: sizeof(uint32_t)); |
| 1351 | } |
| 1352 | } else { |
| 1353 | GGML_ASSERT(false); |
| 1354 | } |
| 1355 | |
| 1356 | return out; |
| 1357 | } |
| 1358 | |
| 1359 | static int repack_iq4_nl_to_iq4_nl_4_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) { |
| 1360 | GGML_ASSERT(t->type == GGML_TYPE_IQ4_NL); |
| 1361 | GGML_ASSERT(interleave_block == 4); |
| 1362 | |
| 1363 | const block_iq4_nl * src = (const block_iq4_nl *)data; |
| 1364 | block_iq4_nlx4 * dst = ( block_iq4_nlx4 *)t->data; |
| 1365 | |
| 1366 | block_iq4_nl dst_tmp[4]; |
| 1367 | |
| 1368 | int nrow = ggml_nrows(tensor: t); |
| 1369 | int nrows_interleaved = 4; |
| 1370 | int nblocks = t->ne[0] / QK4_NL; |
| 1371 | |
| 1372 | GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_iq4_nl)); |
| 1373 | |
| 1374 | if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) { |
| 1375 | return -1; |
| 1376 | } |
| 1377 | |
| 1378 | for (int b = 0; b < nrow; b += nrows_interleaved) { |
| 1379 | for (int64_t x = 0; x < nblocks; x++) { |
| 1380 | for (int i = 0; i < nrows_interleaved; i++) { |
| 1381 | dst_tmp[i] = src[x + i * nblocks]; |
| 1382 | } |
| 1383 | *dst++ = make_block_iq4_nlx4(in: dst_tmp, blck_size_interleave: interleave_block); |
| 1384 | } |
| 1385 | src += nrows_interleaved * nblocks; |
| 1386 | } |
| 1387 | return 0; |
| 1388 | |
| 1389 | GGML_UNUSED(data_size); |
| 1390 | } |
| 1391 | |
| 1392 | static block_iq4_nlx8 make_block_iq4_nlx8(block_iq4_nl * in, unsigned int blck_size_interleave) { |
| 1393 | block_iq4_nlx8 out; |
| 1394 | |
| 1395 | for (int i = 0; i < 8; i++) { |
| 1396 | out.d[i] = in[i].d; |
| 1397 | } |
| 1398 | |
| 1399 | const int end = QK4_NL * 4 / blck_size_interleave; |
| 1400 | |
| 1401 | if (blck_size_interleave == 8) { |
| 1402 | for (int i = 0; i < end; ++i) { |
| 1403 | int src_id = i % 8; |
| 1404 | int src_offset = (i / 8) * blck_size_interleave; |
| 1405 | int dst_offset = i * blck_size_interleave; |
| 1406 | |
| 1407 | memcpy(dest: &out.qs[dst_offset], src: &in[src_id].qs[src_offset], n: sizeof(uint64_t)); |
| 1408 | } |
| 1409 | } else { |
| 1410 | GGML_ASSERT(false); |
| 1411 | } |
| 1412 | |
| 1413 | return out; |
| 1414 | } |
| 1415 | |
| 1416 | static int repack_iq4_nl_to_iq4_nl_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) { |
| 1417 | GGML_ASSERT(t->type == GGML_TYPE_IQ4_NL); |
| 1418 | GGML_ASSERT(interleave_block == 8); |
| 1419 | |
| 1420 | const block_iq4_nl * src = (const block_iq4_nl *)data; |
| 1421 | block_iq4_nlx8 * dst = ( block_iq4_nlx8 *)t->data; |
| 1422 | |
| 1423 | block_iq4_nl dst_tmp[8]; |
| 1424 | |
| 1425 | int nrow = ggml_nrows(tensor: t); |
| 1426 | int nrows_interleaved = 8; |
| 1427 | int nblocks = t->ne[0] / QK4_NL; |
| 1428 | |
| 1429 | GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_iq4_nl)); |
| 1430 | |
| 1431 | if (t->ne[1] % nrows_interleaved != 0) { |
| 1432 | return -1; |
| 1433 | } |
| 1434 | |
| 1435 | for (int b = 0; b < nrow; b += nrows_interleaved) { |
| 1436 | for (int64_t x = 0; x < nblocks; x++) { |
| 1437 | for (int i = 0; i < nrows_interleaved; i++) { |
| 1438 | dst_tmp[i] = src[x + i * nblocks]; |
| 1439 | } |
| 1440 | *dst++ = make_block_iq4_nlx8(in: dst_tmp, blck_size_interleave: interleave_block); |
| 1441 | } |
| 1442 | src += nrows_interleaved * nblocks; |
| 1443 | } |
| 1444 | return 0; |
| 1445 | |
| 1446 | GGML_UNUSED(data_size); |
| 1447 | } |
| 1448 | |
| 1449 | namespace ggml::cpu::repack { |
| 1450 | // repack |
| 1451 | template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS> |
| 1452 | int repack(struct ggml_tensor *, const void *, size_t); |
| 1453 | |
| 1454 | // TODO: generalise. |
| 1455 | template <> int repack<block_q4_0, 4, 4>(struct ggml_tensor * t, const void * data, size_t data_size) { |
| 1456 | return repack_q4_0_to_q4_0_4_bl(t, interleave_block: 4, data, data_size); |
| 1457 | } |
| 1458 | |
| 1459 | template <> int repack<block_q4_0, 8, 4>(struct ggml_tensor * t, const void * data, size_t data_size) { |
| 1460 | return repack_q4_0_to_q4_0_4_bl(t, interleave_block: 8, data, data_size); |
| 1461 | } |
| 1462 | |
| 1463 | template <> int repack<block_q4_0, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) { |
| 1464 | return repack_q4_0_to_q4_0_8_bl(t, interleave_block: 8, data, data_size); |
| 1465 | } |
| 1466 | |
| 1467 | template <> int repack<block_q4_K, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) { |
| 1468 | return repack_q4_K_to_q4_K_8_bl(t, interleave_block: 8, data, data_size); |
| 1469 | } |
| 1470 | |
| 1471 | template <> int repack<block_q2_K, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) { |
| 1472 | return repack_q2_K_to_q2_K_8_bl(t, interleave_block: 8, data, data_size); |
| 1473 | } |
| 1474 | |
| 1475 | template <> int repack<block_iq4_nl, 4, 4>(struct ggml_tensor * t, const void * data, size_t data_size) { |
| 1476 | return repack_iq4_nl_to_iq4_nl_4_bl(t, interleave_block: 4, data, data_size); |
| 1477 | } |
| 1478 | |
| 1479 | // TODO: needs to be revisited |
| 1480 | //template <> int repack<block_iq4_nl, 8, 4>(struct ggml_tensor * t, const void * data, size_t data_size) { |
| 1481 | // return repack_iq4_nl_to_iq4_nl_4_bl(t, 8, data, data_size); |
| 1482 | //} |
| 1483 | |
| 1484 | template <> int repack<block_iq4_nl, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) { |
| 1485 | return repack_iq4_nl_to_iq4_nl_8_bl(t, interleave_block: 8, data, data_size); |
| 1486 | } |
| 1487 | |
| 1488 | // gemv |
| 1489 | template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE> |
| 1490 | void gemv(int, float *, size_t, const void *, const void *, int, int); |
| 1491 | |
| 1492 | template <> void gemv<block_q4_0, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { |
| 1493 | ggml_gemv_q4_0_4x4_q8_0(n, s, bs, vx, vy, nr, nc); |
| 1494 | } |
| 1495 | |
| 1496 | template <> void gemv<block_q4_0, 8, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { |
| 1497 | ggml_gemv_q4_0_4x8_q8_0(n, s, bs, vx, vy, nr, nc); |
| 1498 | } |
| 1499 | |
| 1500 | template <> void gemv<block_q4_0, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { |
| 1501 | ggml_gemv_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc); |
| 1502 | } |
| 1503 | |
| 1504 | template <> void gemv<block_q4_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { |
| 1505 | ggml_gemv_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc); |
| 1506 | } |
| 1507 | |
| 1508 | template <> void gemv<block_q2_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { |
| 1509 | ggml_gemv_q2_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc); |
| 1510 | } |
| 1511 | |
| 1512 | template <> void gemv<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { |
| 1513 | ggml_gemv_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc); |
| 1514 | } |
| 1515 | |
| 1516 | template <> void gemv<block_iq4_nl, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { |
| 1517 | ggml_gemv_iq4_nl_8x8_q8_0(n, s, bs, vx, vy, nr, nc); |
| 1518 | } |
| 1519 | |
| 1520 | // gemm |
| 1521 | template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE> |
| 1522 | void gemm(int, float *, size_t, const void *, const void *, int, int); |
| 1523 | |
| 1524 | template <> void gemm<block_q4_0, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { |
| 1525 | ggml_gemm_q4_0_4x4_q8_0(n, s, bs, vx, vy, nr, nc); |
| 1526 | } |
| 1527 | |
| 1528 | template <> void gemm<block_q4_0, 8, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { |
| 1529 | ggml_gemm_q4_0_4x8_q8_0(n, s, bs, vx, vy, nr, nc); |
| 1530 | } |
| 1531 | |
| 1532 | template <> void gemm<block_q4_0, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { |
| 1533 | ggml_gemm_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc); |
| 1534 | } |
| 1535 | |
| 1536 | template <> void gemm<block_q4_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { |
| 1537 | ggml_gemm_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc); |
| 1538 | } |
| 1539 | |
| 1540 | template <> void gemm<block_q2_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { |
| 1541 | ggml_gemm_q2_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc); |
| 1542 | } |
| 1543 | |
| 1544 | template <> void gemm<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { |
| 1545 | ggml_gemm_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc); |
| 1546 | } |
| 1547 | |
| 1548 | template <> void gemm<block_iq4_nl, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { |
| 1549 | ggml_gemm_iq4_nl_8x8_q8_0(n, s, bs, vx, vy, nr, nc); |
| 1550 | } |
| 1551 | |
| 1552 | class tensor_traits_base : public ggml::cpu::tensor_traits { |
| 1553 | public: |
| 1554 | virtual int repack(struct ggml_tensor * t, const void * data, size_t data_size) = 0; |
| 1555 | }; |
| 1556 | |
| 1557 | template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE> class tensor_traits : public tensor_traits_base { |
| 1558 | |
| 1559 | bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override { |
| 1560 | // not realy a GGML_TYPE_Q8_0 but same size. |
| 1561 | switch (op->op) { |
| 1562 | case GGML_OP_MUL_MAT: |
| 1563 | { |
| 1564 | size = ggml_row_size(type: PARAM_TYPE, ne: ggml_nelements(tensor: op->src[1])); |
| 1565 | return true; |
| 1566 | } |
| 1567 | case GGML_OP_MUL_MAT_ID: |
| 1568 | { |
| 1569 | size = ggml_row_size(type: PARAM_TYPE, ne: ggml_nelements(tensor: op->src[1])); |
| 1570 | size = GGML_PAD(size, sizeof(int64_t)); // + padding for next bloc. |
| 1571 | |
| 1572 | const int64_t ne02 = op->src[0]->ne[2]; // n_as, n_expert |
| 1573 | const int64_t ne12 = op->src[1]->ne[2]; // n_tokens |
| 1574 | |
| 1575 | const size_t sizeof_mmid_row_mapping = sizeof(int64_t); |
| 1576 | |
| 1577 | size += sizeof_mmid_row_mapping*ne02*(ne12 + 1); |
| 1578 | |
| 1579 | return true; |
| 1580 | } |
| 1581 | default: |
| 1582 | // GGML_ABORT("fatal error"); |
| 1583 | break; |
| 1584 | } |
| 1585 | return false; |
| 1586 | } |
| 1587 | |
| 1588 | bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * op) override { |
| 1589 | switch (op->op) { |
| 1590 | case GGML_OP_MUL_MAT: |
| 1591 | forward_mul_mat(params, op); |
| 1592 | return true; |
| 1593 | case GGML_OP_MUL_MAT_ID: |
| 1594 | forward_mul_mat_id(params, op); |
| 1595 | return true; |
| 1596 | default: |
| 1597 | // GGML_ABORT("fatal error"); |
| 1598 | break; |
| 1599 | } |
| 1600 | return false; |
| 1601 | } |
| 1602 | |
| 1603 | void forward_mul_mat_one_chunk(ggml_compute_params * params, ggml_tensor * op, int64_t src0_start, int64_t src0_end) { |
| 1604 | const ggml_tensor * src0 = op->src[0]; |
| 1605 | const ggml_tensor * src1 = op->src[1]; |
| 1606 | ggml_tensor * dst = op; |
| 1607 | |
| 1608 | GGML_TENSOR_BINARY_OP_LOCALS |
| 1609 | |
| 1610 | const void * src1_wdata = params->wdata; |
| 1611 | const size_t src1_col_stride = ggml_row_size(type: PARAM_TYPE, ne: ne10); |
| 1612 | |
| 1613 | // If there are more than three rows in src1, use gemm; otherwise, use gemv. |
| 1614 | if (ne11 > 3) { |
| 1615 | gemm<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00, |
| 1616 | (float *) ((char *) dst->data) + src0_start, ne01, |
| 1617 | (const char *) src0->data + src0_start * nb01, |
| 1618 | (const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start); |
| 1619 | } |
| 1620 | for (int iter = ne11 - ne11 % 4; iter < ne11; iter++) { |
| 1621 | gemv<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00, |
| 1622 | (float *) ((char *) dst->data + (iter * nb1)) + src0_start, ne01, |
| 1623 | (const char *) src0->data + src0_start * nb01, |
| 1624 | (const char *) src1_wdata + (src1_col_stride * iter), 1, |
| 1625 | src0_end - src0_start); |
| 1626 | } |
| 1627 | } |
| 1628 | |
| 1629 | void forward_mul_mat(ggml_compute_params * params, ggml_tensor * op) { |
| 1630 | const ggml_tensor * src0 = op->src[0]; |
| 1631 | const ggml_tensor * src1 = op->src[1]; |
| 1632 | ggml_tensor * dst = op; |
| 1633 | |
| 1634 | GGML_TENSOR_BINARY_OP_LOCALS |
| 1635 | |
| 1636 | const int ith = params->ith; |
| 1637 | const int nth = params->nth; |
| 1638 | |
| 1639 | GGML_ASSERT(ne0 == ne01); |
| 1640 | GGML_ASSERT(ne1 == ne11); |
| 1641 | GGML_ASSERT(ne2 == ne12); |
| 1642 | GGML_ASSERT(ne3 == ne13); |
| 1643 | |
| 1644 | // dst cannot be transposed or permuted |
| 1645 | GGML_ASSERT(nb0 == sizeof(float)); |
| 1646 | GGML_ASSERT(nb0 <= nb1); |
| 1647 | GGML_ASSERT(nb1 <= nb2); |
| 1648 | GGML_ASSERT(nb2 <= nb3); |
| 1649 | |
| 1650 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
| 1651 | |
| 1652 | GGML_ASSERT(ggml_n_dims(op->src[0]) == 2); |
| 1653 | // GGML_ASSERT(ggml_n_dims(op->src[1]) == 2); |
| 1654 | |
| 1655 | char * wdata = static_cast<char *>(params->wdata); |
| 1656 | const size_t nbw1 = ggml_row_size(type: PARAM_TYPE, ne: ne10); |
| 1657 | |
| 1658 | assert(params->wsize >= nbw1 * ne11); |
| 1659 | |
| 1660 | const ggml_from_float_t from_float = ggml_get_type_traits_cpu(type: PARAM_TYPE)->from_float; |
| 1661 | |
| 1662 | int64_t i11_processed = 0; |
| 1663 | for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) { |
| 1664 | ggml_quantize_mat_t<INTER_SIZE, PARAM_TYPE>((float *) ((char *) src1->data + i11 * nb11), (void *) (wdata + i11 * nbw1), 4, ne10); |
| 1665 | } |
| 1666 | |
| 1667 | i11_processed = ne11 - ne11 % 4; |
| 1668 | for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) { |
| 1669 | from_float((float *) ((char *) src1->data + i11 * nb11), (void *) (wdata + i11 * nbw1), ne10); |
| 1670 | } |
| 1671 | |
| 1672 | // disable for NUMA |
| 1673 | const bool disable_chunking = ggml_is_numa(); |
| 1674 | |
| 1675 | // 4x chunks per thread |
| 1676 | int64_t nr = ggml_nrows(tensor: op->src[0]); |
| 1677 | int nth_scaled = nth * 4; |
| 1678 | int64_t chunk_size = (nr + nth_scaled - 1) / nth_scaled; |
| 1679 | int64_t nchunk = (nr + chunk_size - 1) / chunk_size; |
| 1680 | |
| 1681 | // Ensure minimum chunk size to avoid alignment issues with high thread counts |
| 1682 | // Minimum chunk size should be at least NB_COLS to prevent overlapping chunks after alignment |
| 1683 | const int64_t min_chunk_size = NB_COLS; |
| 1684 | if (nchunk > 0 && (nr / nchunk) < min_chunk_size && nr >= min_chunk_size) { |
| 1685 | nchunk = (nr + min_chunk_size - 1) / min_chunk_size; |
| 1686 | } |
| 1687 | |
| 1688 | if (nth == 1 || nchunk < nth || disable_chunking) { |
| 1689 | nchunk = nth; |
| 1690 | } |
| 1691 | |
| 1692 | // Ensure nchunk doesn't exceed the number of rows divided by minimum chunk size |
| 1693 | // This prevents creating too many tiny chunks that could overlap after alignment |
| 1694 | const int64_t max_nchunk = (nr + min_chunk_size - 1) / min_chunk_size; |
| 1695 | if (nchunk > max_nchunk) { |
| 1696 | nchunk = max_nchunk; |
| 1697 | } |
| 1698 | |
| 1699 | if (ith == 0) { |
| 1700 | // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start. |
| 1701 | ggml_threadpool_chunk_set(tp: params->threadpool, value: nth); |
| 1702 | } |
| 1703 | |
| 1704 | ggml_barrier(tp: params->threadpool); |
| 1705 | |
| 1706 | // The first chunk comes from our thread_id, the rest will get auto-assigned. |
| 1707 | int current_chunk = ith; |
| 1708 | |
| 1709 | while (current_chunk < nchunk) { |
| 1710 | int64_t src0_start = (current_chunk * ne01) / nchunk; |
| 1711 | int64_t src0_end = ((current_chunk + 1) * ne01) / nchunk; |
| 1712 | |
| 1713 | // Align boundaries to NB_COLS - round up to ensure all data is included |
| 1714 | // The chunk size limiting above ensures chunks are large enough to prevent overlaps |
| 1715 | src0_start = (src0_start % NB_COLS) ? src0_start + NB_COLS - (src0_start % NB_COLS) : src0_start; |
| 1716 | src0_end = (src0_end % NB_COLS) ? src0_end + NB_COLS - (src0_end % NB_COLS) : src0_end; |
| 1717 | if (src0_end > ne01) { |
| 1718 | src0_end = ne01; |
| 1719 | } |
| 1720 | |
| 1721 | if (src0_start >= src0_end) { |
| 1722 | break; |
| 1723 | } |
| 1724 | |
| 1725 | forward_mul_mat_one_chunk(params, op: dst, src0_start, src0_end); |
| 1726 | |
| 1727 | current_chunk = ggml_threadpool_chunk_add(tp: params->threadpool, value: 1); |
| 1728 | } |
| 1729 | } |
| 1730 | |
| 1731 | void forward_mul_mat_id(ggml_compute_params * params, ggml_tensor * op) { |
| 1732 | const ggml_tensor * src0 = op->src[0]; |
| 1733 | const ggml_tensor * src1 = op->src[1]; |
| 1734 | const ggml_tensor * ids = op->src[2]; |
| 1735 | ggml_tensor * dst = op; |
| 1736 | |
| 1737 | GGML_TENSOR_BINARY_OP_LOCALS |
| 1738 | |
| 1739 | const int ith = params->ith; |
| 1740 | const int nth = params->nth; |
| 1741 | |
| 1742 | const ggml_from_float_t from_float = ggml_get_type_traits_cpu(type: PARAM_TYPE)->from_float; |
| 1743 | |
| 1744 | // we don't support permuted src0 or src1 |
| 1745 | GGML_ASSERT(nb00 == ggml_type_size(src0->type)); |
| 1746 | GGML_ASSERT(nb10 == ggml_type_size(src1->type)); |
| 1747 | |
| 1748 | // dst cannot be transposed or permuted |
| 1749 | GGML_ASSERT(nb0 == sizeof(float)); |
| 1750 | GGML_ASSERT(nb0 <= nb1); |
| 1751 | GGML_ASSERT(nb1 <= nb2); |
| 1752 | GGML_ASSERT(nb2 <= nb3); |
| 1753 | |
| 1754 | GGML_ASSERT(ne03 == 1); |
| 1755 | GGML_ASSERT(ne13 == 1); |
| 1756 | GGML_ASSERT(ne3 == 1); |
| 1757 | |
| 1758 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
| 1759 | |
| 1760 | // row groups |
| 1761 | const int n_ids = ids->ne[0]; // n_expert_used |
| 1762 | const int n_as = ne02; // n_expert |
| 1763 | |
| 1764 | const size_t nbw1 = ggml_row_size(type: PARAM_TYPE, ne: ne10); |
| 1765 | const size_t nbw2 = nbw1*ne11; |
| 1766 | const size_t nbw3 = nbw2*ne12; |
| 1767 | |
| 1768 | struct mmid_row_mapping { |
| 1769 | int32_t i1; |
| 1770 | int32_t i2; |
| 1771 | }; |
| 1772 | |
| 1773 | GGML_ASSERT(params->wsize >= |
| 1774 | (GGML_PAD(nbw3, sizeof(int64_t)) + |
| 1775 | n_as*(ne12 + 1)*sizeof(mmid_row_mapping)) |
| 1776 | ); |
| 1777 | |
| 1778 | auto * wdata = (char *)params->wdata; |
| 1779 | auto * wdata_src1_end = (char *)wdata + GGML_PAD(nbw3, sizeof(int64_t)); |
| 1780 | |
| 1781 | // total of [n_as][ne12 + 1] elemets of type mmid_row_mapping (2*int32_t = int64_t) |
| 1782 | auto * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as] |
| 1783 | struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *) (matrix_row_counts + n_as); // [n_as][ne12] |
| 1784 | |
| 1785 | // src1: float32 => param type |
| 1786 | for (int64_t i12 = 0; i12 < ne12; ++i12) { |
| 1787 | for (int64_t i11 = ith; i11 < ne11; i11 += nth) { |
| 1788 | from_float((float *)((char *) src1->data + i12 * nb12 + i11 * nb11), |
| 1789 | (void *) (wdata + i12 * nbw2 + i11 * nbw1), |
| 1790 | ne10); |
| 1791 | } |
| 1792 | } |
| 1793 | |
| 1794 | #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id) * ne12 + (i1)] |
| 1795 | |
| 1796 | if (ith == 0) { |
| 1797 | // initialize matrix_row_counts |
| 1798 | memset(s: matrix_row_counts, c: 0, n: n_as * sizeof(int64_t)); |
| 1799 | |
| 1800 | // group rows by src0 matrix |
| 1801 | for (int32_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) { |
| 1802 | for (int32_t id = 0; id < n_ids; ++id) { |
| 1803 | const int32_t i02 = |
| 1804 | *(const int32_t *) ((const char *) ids->data + iid1 * ids->nb[1] + id * ids->nb[0]); |
| 1805 | |
| 1806 | GGML_ASSERT(i02 >= 0 && i02 < n_as); |
| 1807 | |
| 1808 | MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = { id, iid1 }; |
| 1809 | matrix_row_counts[i02] += 1; |
| 1810 | } |
| 1811 | } |
| 1812 | } |
| 1813 | |
| 1814 | ggml_barrier(tp: params->threadpool); |
| 1815 | |
| 1816 | // compute each matrix multiplication in sequence |
| 1817 | for (int cur_a = 0; cur_a < n_as; ++cur_a) { |
| 1818 | const int64_t cne1 = matrix_row_counts[cur_a]; |
| 1819 | |
| 1820 | if (cne1 == 0) { |
| 1821 | continue; |
| 1822 | } |
| 1823 | |
| 1824 | const auto * src0_cur = (const char *) src0->data + cur_a*nb02; |
| 1825 | |
| 1826 | //const int64_t nr0 = ne01; // src0 rows |
| 1827 | const int64_t nr1 = cne1; // src1 rows |
| 1828 | |
| 1829 | int64_t src0_cur_start = (ith * ne01) / nth; |
| 1830 | int64_t src0_cur_end = ((ith + 1) * ne01) / nth; |
| 1831 | |
| 1832 | // Align boundaries to NB_COLS - round up to ensure all data is included |
| 1833 | src0_cur_start = (src0_cur_start % NB_COLS) ? src0_cur_start + NB_COLS - (src0_cur_start % NB_COLS) : src0_cur_start; |
| 1834 | src0_cur_end = (src0_cur_end % NB_COLS) ? src0_cur_end + NB_COLS - (src0_cur_end % NB_COLS) : src0_cur_end; |
| 1835 | if (src0_cur_end > ne01) { |
| 1836 | src0_cur_end = ne01; |
| 1837 | } |
| 1838 | |
| 1839 | if (src0_cur_start >= src0_cur_end) { |
| 1840 | return; |
| 1841 | } |
| 1842 | |
| 1843 | for (int ir1 = 0; ir1 < nr1; ir1++) { |
| 1844 | struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1); |
| 1845 | |
| 1846 | const int id = row_mapping.i1; // selected expert index |
| 1847 | |
| 1848 | const int64_t i11 = id % ne11; |
| 1849 | const int64_t i12 = row_mapping.i2; // row index in src1 |
| 1850 | |
| 1851 | const int64_t i1 = id; // selected expert index |
| 1852 | const int64_t i2 = i12; // row |
| 1853 | |
| 1854 | const auto * src1_col = (const char *) wdata + (i11 * nbw1 + i12 * nbw2); |
| 1855 | |
| 1856 | gemv<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00, |
| 1857 | (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01, |
| 1858 | src0_cur + src0_cur_start * nb01, |
| 1859 | src1_col, 1, src0_cur_end - src0_cur_start); |
| 1860 | } |
| 1861 | } |
| 1862 | #undef MMID_MATRIX_ROW |
| 1863 | } |
| 1864 | |
| 1865 | int repack(struct ggml_tensor * t, const void * data, size_t data_size) override { |
| 1866 | GGML_LOG_DEBUG("%s: repack tensor %s with %s_%dx%d\n" , __func__, t->name, ggml_type_name(t->type), |
| 1867 | (int) NB_COLS, (int) INTER_SIZE); |
| 1868 | return ggml::cpu::repack::repack<BLOC_TYPE, INTER_SIZE, NB_COLS>(t, data, data_size); |
| 1869 | } |
| 1870 | }; |
| 1871 | |
| 1872 | } // namespace ggml::cpu::repack |
| 1873 | |
| 1874 | static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(const struct ggml_tensor * cur) { |
| 1875 | |
| 1876 | // instance for Q4 |
| 1877 | static const ggml::cpu::repack::tensor_traits<block_q4_0, 4, 4, GGML_TYPE_Q8_0> q4_0_4x4_q8_0; |
| 1878 | static const ggml::cpu::repack::tensor_traits<block_q4_0, 8, 4, GGML_TYPE_Q8_0> q4_0_4x8_q8_0; |
| 1879 | static const ggml::cpu::repack::tensor_traits<block_q4_0, 8, 8, GGML_TYPE_Q8_0> q4_0_8x8_q8_0; |
| 1880 | static const ggml::cpu::repack::tensor_traits<block_q4_K, 8, 8, GGML_TYPE_Q8_K> q4_K_8x8_q8_K; |
| 1881 | |
| 1882 | // instance for Q2 |
| 1883 | static const ggml::cpu::repack::tensor_traits<block_q2_K, 8, 8, GGML_TYPE_Q8_K> q2_K_8x8_q8_K; |
| 1884 | |
| 1885 | // instance for IQ4 |
| 1886 | static const ggml::cpu::repack::tensor_traits<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0> iq4_nl_4x4_q8_0; |
| 1887 | static const ggml::cpu::repack::tensor_traits<block_iq4_nl, 8, 8, GGML_TYPE_Q8_0> iq4_nl_8x8_q8_0; |
| 1888 | |
| 1889 | if (cur->type == GGML_TYPE_Q4_0) { |
| 1890 | if (ggml_cpu_has_avx2() || (ggml_cpu_has_sve() && ggml_cpu_has_matmul_int8() && ggml_cpu_get_sve_cnt() == QK8_0)) { |
| 1891 | if (cur->ne[1] % 8 == 0) { |
| 1892 | return &q4_0_8x8_q8_0; |
| 1893 | } |
| 1894 | } |
| 1895 | if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) { |
| 1896 | if (cur->ne[1] % 4 == 0) { |
| 1897 | return &q4_0_4x8_q8_0; |
| 1898 | } |
| 1899 | } |
| 1900 | if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) { |
| 1901 | if (cur->ne[1] % 4 == 0) { |
| 1902 | return &q4_0_4x4_q8_0; |
| 1903 | } |
| 1904 | } |
| 1905 | } else if (cur->type == GGML_TYPE_Q4_K) { |
| 1906 | if (ggml_cpu_has_avx2()) { |
| 1907 | if (cur->ne[1] % 8 == 0) { |
| 1908 | return &q4_K_8x8_q8_K; |
| 1909 | } |
| 1910 | } |
| 1911 | } else if (cur->type == GGML_TYPE_Q2_K) { |
| 1912 | if (ggml_cpu_has_avx512()) { |
| 1913 | if (cur->ne[1] % 8 == 0) { |
| 1914 | return &q2_K_8x8_q8_K; |
| 1915 | } |
| 1916 | } |
| 1917 | } else if (cur->type == GGML_TYPE_IQ4_NL) { |
| 1918 | if (ggml_cpu_has_avx2()) { |
| 1919 | if (cur->ne[1] % 8 == 0) { |
| 1920 | return &iq4_nl_8x8_q8_0; |
| 1921 | } |
| 1922 | } |
| 1923 | if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) { |
| 1924 | if (cur->ne[1] % 4 == 0) { |
| 1925 | return &iq4_nl_4x4_q8_0; |
| 1926 | } |
| 1927 | } |
| 1928 | } |
| 1929 | |
| 1930 | return nullptr; |
| 1931 | } |
| 1932 | |
| 1933 | static enum ggml_status ggml_backend_cpu_repack_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { |
| 1934 | tensor->extra = (void *) const_cast<ggml::cpu::tensor_traits *>(ggml_repack_get_optimal_repack_type(cur: tensor)); |
| 1935 | |
| 1936 | GGML_UNUSED(buffer); |
| 1937 | return GGML_STATUS_SUCCESS; |
| 1938 | } |
| 1939 | |
| 1940 | static void ggml_backend_cpu_repack_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, |
| 1941 | const void * data, size_t offset, size_t size) { |
| 1942 | GGML_ASSERT(offset == 0); |
| 1943 | GGML_ASSERT(size == ggml_nbytes(tensor)); |
| 1944 | |
| 1945 | auto tensor_traits = (ggml::cpu::repack::tensor_traits_base *) tensor->extra; |
| 1946 | auto OK = tensor_traits->repack(t: tensor, data, data_size: size); |
| 1947 | |
| 1948 | GGML_ASSERT(OK == 0); |
| 1949 | GGML_UNUSED(buffer); |
| 1950 | } |
| 1951 | |
| 1952 | static const char * ggml_backend_cpu_repack_buffer_type_get_name(ggml_backend_buffer_type_t buft) { |
| 1953 | return "CPU_REPACK" ; |
| 1954 | |
| 1955 | GGML_UNUSED(buft); |
| 1956 | } |
| 1957 | |
| 1958 | static ggml_backend_buffer_t ggml_backend_cpu_repack_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { |
| 1959 | ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft: ggml_backend_cpu_buffer_type(), size); |
| 1960 | |
| 1961 | if (buffer == nullptr) { |
| 1962 | return nullptr; |
| 1963 | } |
| 1964 | |
| 1965 | buffer->buft = buft; |
| 1966 | buffer->iface.init_tensor = ggml_backend_cpu_repack_buffer_init_tensor; |
| 1967 | buffer->iface.set_tensor = ggml_backend_cpu_repack_buffer_set_tensor; |
| 1968 | buffer->iface.get_tensor = nullptr; |
| 1969 | buffer->iface.cpy_tensor = nullptr; |
| 1970 | return buffer; |
| 1971 | } |
| 1972 | |
| 1973 | static size_t ggml_backend_cpu_repack_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { |
| 1974 | return TENSOR_ALIGNMENT; |
| 1975 | |
| 1976 | GGML_UNUSED(buft); |
| 1977 | } |
| 1978 | |
| 1979 | namespace ggml::cpu::repack { |
| 1980 | class : ggml::cpu::extra_buffer_type { |
| 1981 | bool (ggml_backend_dev_t, const struct ggml_tensor * op) override { |
| 1982 | if ( op->op == GGML_OP_MUL_MAT && |
| 1983 | op->src[0]->buffer && |
| 1984 | (ggml_n_dims(tensor: op->src[0]) == 2) && |
| 1985 | op->src[0]->buffer->buft == ggml_backend_cpu_repack_buffer_type() && |
| 1986 | ggml_repack_get_optimal_repack_type(cur: op->src[0]) |
| 1987 | ) { |
| 1988 | if (op->src[1]->buffer && !ggml_backend_buft_is_host(buft: op->src[1]->buffer->buft)) { |
| 1989 | return false; |
| 1990 | } |
| 1991 | if (op->src[1]->type == GGML_TYPE_F32) { |
| 1992 | return true; |
| 1993 | } |
| 1994 | //if (op->src[1]->type == GGML_TYPE_Q8_0) { |
| 1995 | // return true; |
| 1996 | //} |
| 1997 | // may be possible if Q8_0 packed... |
| 1998 | } else if (op->op == GGML_OP_MUL_MAT_ID |
| 1999 | && op->src[0]->buffer |
| 2000 | && (ggml_n_dims(tensor: op->src[0]) == 3) |
| 2001 | && op->src[0]->buffer->buft == ggml_backend_cpu_repack_buffer_type() |
| 2002 | && ggml_repack_get_optimal_repack_type(cur: op->src[0]) |
| 2003 | ) { |
| 2004 | if (op->src[1]->buffer && !ggml_backend_buft_is_host(buft: op->src[1]->buffer->buft)) { |
| 2005 | return false; |
| 2006 | } |
| 2007 | if (op->src[1]->type == GGML_TYPE_F32) { |
| 2008 | return true; |
| 2009 | } |
| 2010 | //if (op->src[1]->type == GGML_TYPE_Q8_0) { |
| 2011 | // return true; |
| 2012 | //} |
| 2013 | } |
| 2014 | return false; |
| 2015 | } |
| 2016 | |
| 2017 | ggml::cpu::tensor_traits * (const struct ggml_tensor * op) override { |
| 2018 | if (op->op == GGML_OP_MUL_MAT || op->op == GGML_OP_MUL_MAT_ID) { |
| 2019 | if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_repack_buffer_type()) { |
| 2020 | return (ggml::cpu::tensor_traits *) op->src[0]->extra; |
| 2021 | } |
| 2022 | } |
| 2023 | return nullptr; |
| 2024 | } |
| 2025 | }; |
| 2026 | } // namespace ggml::cpu::repack |
| 2027 | |
| 2028 | ggml_backend_buffer_type_t ggml_backend_cpu_repack_buffer_type(void) { |
| 2029 | static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_repack = { |
| 2030 | /* .iface = */ { |
| 2031 | /* .get_name = */ ggml_backend_cpu_repack_buffer_type_get_name, |
| 2032 | /* .alloc_buffer = */ ggml_backend_cpu_repack_buffer_type_alloc_buffer, |
| 2033 | /* .get_alignment = */ ggml_backend_cpu_repack_buffer_type_get_alignment, |
| 2034 | /* .get_max_size = */ nullptr, // defaults to SIZE_MAX |
| 2035 | /* .get_alloc_size = */ nullptr, // defaults to ggml_nbytes |
| 2036 | /* .is_host = */ nullptr, |
| 2037 | }, |
| 2038 | /* .device = */ ggml_backend_reg_dev_get(reg: ggml_backend_cpu_reg(), index: 0), |
| 2039 | /* .context = */ new ggml::cpu::repack::extra_buffer_type(), |
| 2040 | }; |
| 2041 | |
| 2042 | return &ggml_backend_cpu_buffer_type_repack; |
| 2043 | } |
| 2044 | |