1#include "concat.cuh"
2
3// contiguous kernels
4static __global__ void concat_f32_dim0(const float * x, const float * y, float * dst, const int ne0, const int ne00) {
5 int nidx = threadIdx.x + blockIdx.x * blockDim.x;
6 if (nidx >= ne0) {
7 return;
8 }
9
10 int offset_dst =
11 nidx +
12 blockIdx.y * ne0 +
13 blockIdx.z * ne0 * gridDim.y;
14
15 if (nidx < ne00) { // src0
16 int offset_src =
17 nidx +
18 blockIdx.y * ne00 +
19 blockIdx.z * ne00 * gridDim.y;
20 dst[offset_dst] = x[offset_src];
21 } else {
22 int offset_src =
23 (nidx - ne00) +
24 blockIdx.y * (ne0 - ne00) +
25 blockIdx.z * (ne0 - ne00) * gridDim.y;
26 dst[offset_dst] = y[offset_src];
27 }
28}
29
30static __global__ void concat_f32_dim1(const float * x, const float * y, float * dst, const int ne0, const int ne01) {
31 int nidx = threadIdx.x + blockIdx.x * blockDim.x;
32 if (nidx >= ne0) {
33 return;
34 }
35
36 int offset_dst =
37 nidx +
38 blockIdx.y * ne0 +
39 blockIdx.z * ne0 * gridDim.y;
40
41 if (blockIdx.y < (unsigned)ne01) { // src0
42 int offset_src =
43 nidx +
44 blockIdx.y * ne0 +
45 blockIdx.z * ne0 * ne01;
46 dst[offset_dst] = x[offset_src];
47 } else {
48 int offset_src =
49 nidx +
50 (blockIdx.y - ne01) * ne0 +
51 blockIdx.z * ne0 * (gridDim.y - ne01);
52 dst[offset_dst] = y[offset_src];
53 }
54}
55
56static __global__ void concat_f32_dim2(const float * x, const float * y, float * dst, const int ne0, const int ne02) {
57 int nidx = threadIdx.x + blockIdx.x * blockDim.x;
58 if (nidx >= ne0) {
59 return;
60 }
61
62 int offset_dst =
63 nidx +
64 blockIdx.y * ne0 +
65 blockIdx.z * ne0 * gridDim.y;
66
67 if (blockIdx.z < (unsigned)ne02) { // src0
68 int offset_src =
69 nidx +
70 blockIdx.y * ne0 +
71 blockIdx.z * ne0 * gridDim.y;
72 dst[offset_dst] = x[offset_src];
73 } else {
74 int offset_src =
75 nidx +
76 blockIdx.y * ne0 +
77 (blockIdx.z - ne02) * ne0 * gridDim.y;
78 dst[offset_dst] = y[offset_src];
79 }
80}
81
82static void concat_f32_cuda(const float * x, const float * y, float * dst, int ne00, int ne01, int ne02, int ne0, int ne1, int ne2, int dim, cudaStream_t stream) {
83 int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
84 dim3 gridDim(num_blocks, ne1, ne2);
85 if (dim == 0) {
86 concat_f32_dim0<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, sharedMem: 0, stream>>>(x, y, dst, ne0, ne00);
87 return;
88 }
89 if (dim == 1) {
90 concat_f32_dim1<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, sharedMem: 0, stream>>>(x, y, dst, ne0, ne01);
91 return;
92 }
93 concat_f32_dim2<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, sharedMem: 0, stream>>>(x, y, dst, ne0, ne02);
94}
95
96// non-contiguous kernel (slow)
97template <int dim>
98static __global__ void __launch_bounds__(CUDA_CONCAT_BLOCK_SIZE)
99 concat_f32_non_cont(
100 const char * src0,
101 const char * src1,
102 char * dst,
103 int64_t ne00,
104 int64_t ne01,
105 int64_t ne02,
106 int64_t ne03,
107 uint64_t nb00,
108 uint64_t nb01,
109 uint64_t nb02,
110 uint64_t nb03,
111 int64_t /*ne10*/,
112 int64_t /*ne11*/,
113 int64_t /*ne12*/,
114 int64_t /*ne13*/,
115 uint64_t nb10,
116 uint64_t nb11,
117 uint64_t nb12,
118 uint64_t nb13,
119 int64_t ne0,
120 int64_t /*ne1*/,
121 int64_t /*ne2*/,
122 int64_t /*ne3*/,
123 uint64_t nb0,
124 uint64_t nb1,
125 uint64_t nb2,
126 uint64_t nb3){
127 static_assert(dim >= 0 && dim <= 3, "dim must be in [0, 3]");
128
129 const int64_t i3 = blockIdx.z;
130 const int64_t i2 = blockIdx.y;
131 const int64_t i1 = blockIdx.x;
132
133 const float * x;
134
135 for (int64_t i0 = threadIdx.x; i0 < ne0; i0 += blockDim.x) {
136 if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
137 x = (const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00);
138 } else {
139 if constexpr (dim == 0) {
140 x = (const float *) (src1 + i3 * nb13 + i2 * nb12 + i1 * nb11 + (i0 - ne00) * nb10);
141 } else if constexpr (dim == 1) {
142 x = (const float *) (src1 + i3 * nb13 + i2 * nb12 + (i1 - ne01) * nb11 + i0 * nb10);
143 } else if constexpr (dim == 2) {
144 x = (const float *) (src1 + i3 * nb13 + (i2 - ne02) * nb12 + i1 * nb11 + i0 * nb10);
145 } else if constexpr (dim == 3) {
146 x = (const float *) (src1 + (i3 - ne03) * nb13 + i2 * nb12 + i1 * nb11 + i0 * nb10);
147 }
148 }
149
150 float * y = (float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
151
152 *y = *x;
153 }
154}
155
156
157void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
158 const ggml_tensor * src0 = dst->src[0];
159 const ggml_tensor * src1 = dst->src[1];
160
161 cudaStream_t stream = ctx.stream();
162
163 const int32_t dim = ((int32_t *) dst->op_params)[0];
164
165 GGML_ASSERT(src0->type == GGML_TYPE_F32);
166 GGML_ASSERT(src1->type == GGML_TYPE_F32);
167 GGML_ASSERT(dst->type == GGML_TYPE_F32);
168
169 if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
170 const float * src0_d = (const float *)src0->data;
171 const float * src1_d = (const float *)src1->data;
172
173 float * dst_d = (float *)dst->data;
174
175 if (dim != 3) {
176 for (int i3 = 0; i3 < dst->ne[3]; i3++) {
177 concat_f32_cuda(
178 src0_d + i3 * (src0->nb[3] / 4),
179 src1_d + i3 * (src1->nb[3] / 4),
180 dst_d + i3 * ( dst->nb[3] / 4),
181 src0->ne[0], src0->ne[1], src0->ne[2],
182 dst->ne[0], dst->ne[1], dst->ne[2], dim, stream);
183 }
184 } else {
185 const size_t size0 = ggml_nbytes(src0);
186 const size_t size1 = ggml_nbytes(src1);
187
188 CUDA_CHECK(cudaMemcpyAsync(dst_d, src0_d, size0, cudaMemcpyDeviceToDevice, stream));
189 CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream));
190 }
191 } else {
192 dim3 grid_dim(dst->ne[1], dst->ne[2], dst->ne[3]);
193 auto launch_kernel = [&](auto dim) {
194 concat_f32_non_cont<dim><<<gridDim: grid_dim, CUDA_CONCAT_BLOCK_SIZE, sharedMem: 0, stream>>>(
195 (const char *) src0->data, (const char *) src1->data, (char *) dst->data,
196 src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
197 src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
198 src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
199 src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3],
200 dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
201 dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3]);
202 };
203 switch (dim) {
204 case 0:
205 launch_kernel(std::integral_constant<int, 0>{});
206 break;
207 case 1:
208 launch_kernel(std::integral_constant<int, 1>{});
209 break;
210 case 2:
211 launch_kernel(std::integral_constant<int, 2>{});
212 break;
213 case 3:
214 launch_kernel(std::integral_constant<int, 3>{});
215 break;
216 default:
217 GGML_ABORT("Invalid dim: %d", dim);
218 break;
219 }
220 }
221}
222