| 1 | #include <algorithm> |
| 2 | |
| 3 | #include "conv2d-transpose.cuh" |
| 4 | #include "ggml.h" |
| 5 | |
| 6 | __global__ void conv2d_transpose_kernel(const float * __restrict__ input, const half * __restrict__ kernel, |
| 7 | float * __restrict__ output, const int in_w, const int in_h, const int out_w, |
| 8 | const int out_h, const int kernel_w, const int kernel_h, const int stride, |
| 9 | const int c_in, const int c_out, const int batches) { |
| 10 | const int global_idx = blockIdx.x * blockDim.x + threadIdx.x; |
| 11 | |
| 12 | const int total_elements = out_w * out_h * c_out * batches; |
| 13 | |
| 14 | if (global_idx >= total_elements) { |
| 15 | return; |
| 16 | } |
| 17 | |
| 18 | const int out_x_idx = global_idx % out_w; |
| 19 | const int out_y_idx = (global_idx / out_w) % out_h; |
| 20 | const int c_idx = (global_idx / (out_w * out_h)) % c_out; |
| 21 | const int n_idx = global_idx / (out_w * out_h * c_out); |
| 22 | |
| 23 | float accumulator = 0; |
| 24 | // For each output idx, find the inputs that contribute to it by checking stride alignment and bounds |
| 25 | |
| 26 | for (int c_in_idx = 0; c_in_idx < c_in; c_in_idx++) { |
| 27 | for (int kh = 0; kh < kernel_h; ++kh) { |
| 28 | int in_y = out_y_idx - kh; |
| 29 | if (in_y < 0 || in_y % stride) continue; |
| 30 | in_y /= stride; |
| 31 | if (in_y >= in_h) continue; |
| 32 | |
| 33 | for (int kw = 0; kw < kernel_w; ++kw) { |
| 34 | int in_x = out_x_idx - kw; |
| 35 | if (in_x < 0 || in_x % stride) continue; |
| 36 | in_x /= stride; |
| 37 | if (in_x >= in_w) continue; |
| 38 | |
| 39 | const int input_idx = (in_w * in_h * c_in) * n_idx + (in_w * in_h) * c_in_idx + (in_w) *in_y + in_x; |
| 40 | const int kernel_idx = |
| 41 | (kernel_h * kernel_w * c_out) * c_in_idx + (kernel_h * kernel_w) * c_idx + (kernel_w) *kh + kw; |
| 42 | |
| 43 | float input_val = input[input_idx]; |
| 44 | half kern_val = kernel[kernel_idx]; |
| 45 | |
| 46 | accumulator += input_val * (float) kern_val; |
| 47 | } |
| 48 | } |
| 49 | } |
| 50 | |
| 51 | output[(out_w * out_h * c_out) * n_idx + (out_w * out_h) * c_idx + (out_w) *out_y_idx + out_x_idx] = accumulator; |
| 52 | } |
| 53 | |
| 54 | //input is (W, H, C_in, N), Kernel is (W, H, C_out, C_in) |
| 55 | void ggml_cuda_conv_2d_transpose_p0(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { |
| 56 | const ggml_tensor * kernel = dst->src[0]; |
| 57 | const ggml_tensor * input = dst->src[1]; |
| 58 | |
| 59 | GGML_ASSERT(kernel->type == GGML_TYPE_F16 && input->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); |
| 60 | |
| 61 | const float * input_data = (const float *) input->data; |
| 62 | float * output_data = (float *) dst->data; |
| 63 | const half * kernel_data = (const half *) kernel->data; |
| 64 | |
| 65 | const int input_w = input->ne[0]; |
| 66 | const int input_h = input->ne[1]; |
| 67 | const int output_w = dst->ne[0]; |
| 68 | const int output_h = dst->ne[1]; |
| 69 | const int channels_in = input->ne[2]; |
| 70 | const int channels_out = kernel->ne[2]; |
| 71 | const int kernel_w = kernel->ne[0]; |
| 72 | const int kernel_h = kernel->ne[1]; |
| 73 | const int stride = dst->op_params[0]; |
| 74 | const int batches = input->ne[3]; |
| 75 | |
| 76 | GGML_ASSERT(channels_in == kernel->ne[3]); |
| 77 | GGML_ASSERT(stride > 0); |
| 78 | |
| 79 | cudaStream_t st = ctx.stream(); |
| 80 | |
| 81 | GGML_ASSERT(ggml_is_contiguous(input)); |
| 82 | GGML_ASSERT(ggml_is_contiguous(kernel)); |
| 83 | GGML_ASSERT(ggml_is_contiguous(dst)); |
| 84 | |
| 85 | const int total = (output_w * output_h * channels_out * batches); |
| 86 | const int blocks = (total + CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE - 1) / CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE; |
| 87 | |
| 88 | conv2d_transpose_kernel<<<gridDim: blocks, CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE, sharedMem: 0, stream: st>>>( |
| 89 | input: input_data, kernel: kernel_data, output: output_data, in_w: input_w, in_h: input_h, out_w: output_w, out_h: output_h, kernel_w, kernel_h, stride, |
| 90 | c_in: channels_in, c_out: channels_out, batches); |
| 91 | } |
| 92 | |