1#include "conv2d.cuh"
2#include "convert.cuh"
3
4struct conv_params {
5 const int64_t IW, IH;
6 const int64_t OW, OH;
7 const int64_t KW, KH;
8 const int64_t ST_X, ST_Y;
9 const int64_t PD_X, PD_Y;
10 const int64_t DL_X, DL_Y;
11 const int64_t IC, OC;
12 const int64_t B;
13 const int64_t TOTAL;
14};
15
16struct kernel_bounds {
17 int64_t y_min, y_max;
18 int64_t x_min, x_max;
19};
20
21__device__ __forceinline__ int64_t max64(int64_t a, int64_t b) {
22 return (a > b) ? a : b;
23}
24
25__device__ __forceinline__ int64_t min64(int64_t a, int64_t b) {
26 return (a < b) ? a : b;
27}
28
29__device__ __forceinline__ kernel_bounds calculate_kernel_bounds(int64_t out_x, int64_t out_y, const conv_params & P) {
30 kernel_bounds bounds;
31 bounds.y_min = max64(a: 0, b: (P.PD_Y - out_y * P.ST_Y + P.DL_Y - 1) / P.DL_Y);
32 bounds.y_max = min64(a: P.KH, b: (P.IH + P.PD_Y - out_y * P.ST_Y + P.DL_Y - 1) / P.DL_Y);
33 bounds.x_min = max64(a: 0, b: (P.PD_X - out_x * P.ST_X + P.DL_X - 1) / P.DL_X);
34 bounds.x_max = min64(a: P.KW, b: (P.IW + P.PD_X - out_x * P.ST_X + P.DL_X - 1) / P.DL_X);
35 return bounds;
36}
37
38__device__ __forceinline__ int calculate_input_coord(int64_t out_coord,
39 int64_t kern_coord,
40 int64_t stride,
41 int64_t dilation,
42 int64_t padding) {
43 return out_coord * stride + kern_coord * dilation - padding;
44}
45
46struct whcn_layout {
47 __device__ static int64_t input_index(int64_t n, int64_t c, int64_t y, int64_t x, const conv_params & P) {
48 return n * (P.IC * P.IW * P.IH) + c * P.IW * P.IH + y * P.IW + x;
49 }
50
51 __device__ static int64_t kernel_index(int64_t c_out, int64_t c_in, int64_t ky, int64_t kx, const conv_params & P) {
52 return c_out * (P.IC * P.KH * P.KW) + c_in * (P.KH * P.KW) + ky * P.KW + kx;
53 }
54
55 __device__ static int64_t output_index(int64_t n, int64_t c, int64_t y, int64_t x, const conv_params & P) {
56 return n * (P.OC * P.OW * P.OH) + c * P.OW * P.OH + y * P.OW + x;
57 }
58
59 __device__ static void unpack_indices(int64_t global_idx,
60 const conv_params & P,
61 int64_t & n,
62 int64_t & c,
63 int64_t & out_y,
64 int64_t & out_x) {
65 out_x = global_idx % P.OW;
66 out_y = (global_idx / P.OW) % P.OH;
67 c = (global_idx / (P.OW * P.OH)) % P.OC;
68 n = global_idx / (P.OW * P.OH * P.OC);
69 }
70};
71
72template <typename T, typename Layout>
73static __global__ void conv2d_kernel(const float * __restrict__ input,
74 const T * __restrict__ kernel,
75 float * __restrict__ output,
76 const conv_params P) {
77 const int64_t global_idx = blockIdx.x * blockDim.x + threadIdx.x;
78
79 if (global_idx >= P.TOTAL) {
80 return;
81 }
82
83 int64_t n, c_out, out_y, out_x;
84 Layout::unpack_indices(global_idx, P, n, c_out, out_y, out_x);
85
86 float acc = 0.0f;
87
88 for (int64_t c_in = 0; c_in < P.IC; ++c_in) {
89 kernel_bounds bounds = calculate_kernel_bounds(out_x, out_y, P);
90
91 for (int64_t ky = bounds.y_min; ky < bounds.y_max; ++ky) {
92 const int64_t in_y = calculate_input_coord(out_coord: out_y, kern_coord: ky, stride: P.ST_Y, dilation: P.DL_Y, padding: P.PD_Y);
93
94 for (int64_t kx = bounds.x_min; kx < bounds.x_max; ++kx) {
95 const int64_t in_x = calculate_input_coord(out_coord: out_x, kern_coord: kx, stride: P.ST_X, dilation: P.DL_X, padding: P.PD_X);
96
97 const float input_val = input[Layout::input_index(n, c_in, in_y, in_x, P)];
98 const T kernel_val = kernel[Layout::kernel_index(c_out, c_in, ky, kx, P)];
99 acc += (input_val * ggml_cuda_cast<float>(kernel_val));
100 }
101 }
102 }
103
104 // [N, OC, OH, OW]
105 output[Layout::output_index(n, c_out, out_y, out_x, P)] = acc;
106}
107
108template <typename T>
109static void conv2d_cuda(const float * X_D, const T * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
110 const int blocks = (P.TOTAL + CUDA_CONV2D_BLOCK_SIZE - 1) / CUDA_CONV2D_BLOCK_SIZE;
111 conv2d_kernel<T, whcn_layout><<<gridDim: blocks, CUDA_CONV2D_BLOCK_SIZE, sharedMem: 0, stream: st>>>(X_D, K_D, Y_D, P);
112}
113
114static void conv2d_cuda_f16(const float * X_D, const half * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
115 conv2d_cuda<half>(X_D, K_D, Y_D, P, st);
116}
117
118static void conv2d_cuda_f32(const float * X_D, const float * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
119 conv2d_cuda<float>(X_D, K_D, Y_D, P, st);
120}
121
122void ggml_cuda_op_conv2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
123 const ggml_tensor * kernel = dst->src[0];
124 const ggml_tensor * input = dst->src[1];
125 float * K_D = (float *) kernel->data;
126 const float * X_D = (const float *) input->data;
127 float * Y_D = (float *) dst->data;
128
129 GGML_ASSERT(ggml_is_contiguous(kernel));
130 GGML_ASSERT(kernel->type == GGML_TYPE_F16 || kernel->type == GGML_TYPE_F32);
131
132 // same number of input channels
133 GGML_ASSERT(input->ne[2] == kernel->ne[2]);
134
135 cudaStream_t st = ctx.stream();
136
137 const int32_t * p = (const int32_t *) dst->op_params;
138 const int ST_X = p[0]; // stride_x
139 const int ST_Y = p[1]; // stride_y
140 const int PD_X = p[2]; // padding_x
141 const int PD_Y = p[3]; // padding_y
142 const int DL_X = p[4]; // dilation_x
143 const int DL_Y = p[5]; // dilation_y
144
145 // No cwhn
146 GGML_ASSERT(p[6] == false);
147
148 const int IW = input->ne[0]; // input_w
149 const int IH = input->ne[1]; // input_h
150 const int OW = dst->ne[0]; // output_w
151 const int OH = dst->ne[1]; // output_h
152 const int KW = kernel->ne[0]; // kernel_w
153 const int KH = kernel->ne[1]; // kernel_h
154 const int IC = input->ne[2]; // input_channels
155 const int OC = kernel->ne[3]; // ouptut_chanles
156 const int B = input->ne[3]; // n_batches
157
158 const int64_t total = B * OC * OH * OW;
159 conv_params params = { .IW: IW, .IH: IH, .OW: OW, .OH: OH, .KW: KW, .KH: KH, .ST_X: ST_X, .ST_Y: ST_Y, .PD_X: PD_X, .PD_Y: PD_Y, .DL_X: DL_X, .DL_Y: DL_Y, .IC: IC, .OC: OC, .B: B, .TOTAL: total };
160
161 if (kernel->type == GGML_TYPE_F16) {
162 conv2d_cuda_f16(X_D, K_D: (half *) K_D, Y_D, P: params, st);
163 } else {
164 conv2d_cuda_f32(X_D, K_D, Y_D, P: params, st);
165 }
166}
167