1#include "common.cuh"
2#include "fattn-common.cuh"
3
4static int ggml_cuda_fattn_vec_get_nthreads_host(const int cc) {
5 return 128;
6 GGML_UNUSED(cc);
7}
8
9static constexpr __device__ int ggml_cuda_fattn_vec_get_nthreads_device() {
10 return 128;
11}
12
13// Currenlty llvm with the amdgcn target dose not support unrolling loops
14// that contain a break that can not be resolved at compile time.
15#ifdef __clang__
16#pragma clang diagnostic push
17#pragma clang diagnostic ignored "-Wpass-failed"
18#endif // __clang__
19template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
20__launch_bounds__(ggml_cuda_fattn_vec_get_nthreads_device(), 1)
21static __global__ void flash_attn_ext_vec(
22 const char * __restrict__ Q,
23 const char * __restrict__ K,
24 const char * __restrict__ V,
25 const char * __restrict__ mask,
26 const char * __restrict__ sinks,
27 const int * __restrict__ KV_max,
28 float * __restrict__ dst,
29 float2 * __restrict__ dst_meta,
30 const float scale,
31 const float max_bias,
32 const float m0,
33 const float m1,
34 const uint32_t n_head_log2,
35 const float logit_softcap,
36 const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
37 const int32_t nb01, const int32_t nb02, const int32_t nb03,
38 const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
39 const int32_t nb11, const int32_t nb12, const int64_t nb13,
40 const int32_t nb21, const int32_t nb22, const int64_t nb23,
41 const int32_t ne31, const int32_t ne32, const int32_t ne33,
42 const int32_t nb31, const int32_t nb32, const int64_t nb33) {
43#ifdef FLASH_ATTN_AVAILABLE
44
45 // Skip unused kernel variants for faster compilation:
46 if (use_logit_softcap && !(D == 128 || D == 256)) {
47 GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
48 max_bias, m0, m1, n_head_log2, logit_softcap,
49 ne00, ne01, ne02, ne03,
50 nb01, nb02, nb03,
51 ne10, ne11, ne12, ne13,
52 nb11, nb12, nb13,
53 nb21, nb22, nb23,
54 ne31, ne32, ne33,
55 nb31, nb32, nb33);
56 NO_DEVICE_CODE;
57 return;
58 }
59
60 //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
61
62 constexpr int cpy_nb = ggml_cuda_get_max_cpy_bytes();
63 constexpr int cpy_ne = cpy_nb / 4;
64
65#ifdef GGML_USE_HIP
66#ifdef RDNA
67 constexpr int nthreads_KQ_q = 2;
68#else
69 constexpr int nthreads_KQ_q = 4;
70#endif // RDNA
71 constexpr int nthreads_V_q = (D/4 < 32 ? D/4 : 32);
72#else
73 constexpr int nthreads_KQ_q = (D/4 < 32 ? D/4 : 32);
74 constexpr int nthreads_V_q = (D/4 < 32 ? D/4 : 32);
75#endif // GGML_USE_HIP
76
77 constexpr int nthreads = ggml_cuda_fattn_vec_get_nthreads_device();
78 constexpr int nthreads_KQ = type_K == GGML_TYPE_F16 ? 128 / cpy_nb : nthreads_KQ_q;
79 constexpr int nthreads_V = type_V == GGML_TYPE_F16 ? 128 / cpy_nb : nthreads_V_q;
80
81 static_assert(WARP_SIZE % nthreads_KQ == 0, "bad nthreads_K");
82 static_assert(WARP_SIZE % nthreads_V == 0, "bad nthreads_V");
83
84 constexpr int V_rows_per_thread = type_V == GGML_TYPE_F16 ? 2*cpy_ne : 4;
85 constexpr int V_cols_per_iter = WARP_SIZE / nthreads_V;
86
87 constexpr vec_dot_KQ_t vec_dot_KQ = get_vec_dot_KQ<type_K, D, nthreads_KQ>();
88 constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
89#ifdef FAST_FP16_AVAILABLE
90 constexpr dequantize_V_t dequantize_V = get_dequantize_V<type_V, half, V_rows_per_thread>();
91#else
92 constexpr dequantize_V_t dequantize_V = get_dequantize_V<type_V, float, V_rows_per_thread>();
93#endif // FAST_FP16_AVAILABLE
94
95 const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
96
97 const int sequence = blockIdx.z / ne02;
98 const int head = blockIdx.z - sequence*ne02;
99 const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
100 Q += nb03*sequence + nb02* head + nb01*ic0;
101 K += nb13*sequence + nb12*(head / gqa_ratio);
102 V += nb23*sequence + nb22*(head / gqa_ratio);
103
104 const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
105
106 const float slope = get_alibi_slope(max_bias, h: head, n_head_log2, m0, m1);
107
108 static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
109 constexpr int nwarps = nthreads / WARP_SIZE;
110 const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
111 __builtin_assume(tid < nthreads);
112
113 constexpr int ne_KQ = ncols*D;
114 constexpr int ne_combine = nwarps*V_cols_per_iter*D;
115#ifdef FAST_FP16_AVAILABLE
116 half2 VKQ[ncols][(D/2)/nthreads_V] = {{{0.0f, 0.0f}}};
117 __shared__ half KQ[ne_KQ > ne_combine ? ne_KQ : ne_combine];
118#else
119 float2 VKQ[ncols][(D/2)/nthreads_V] = {{{0.0f, 0.0f}}};
120 __shared__ float KQ[ne_KQ > ne_combine ? ne_KQ : ne_combine];
121#endif // FAST_FP16_AVAILABLE
122
123 float KQ_max[ncols];
124 float KQ_sum[ncols];
125#pragma unroll
126 for (int j = 0; j < ncols; ++j) {
127 KQ_max[j] = -FLT_MAX/2.0f;
128 KQ_sum[j] = 0.0f;
129 }
130
131 // Convert Q to float2 (f16 K) or q8_1 (quantized K) and store in registers:
132#ifdef FAST_FP16_AVAILABLE
133 half2 Q_reg[ncols][(D/2)/nthreads_KQ]; // Will be initialized completely.
134#else
135 float2 Q_reg[ncols][(D/2)/nthreads_KQ] = {{{0.0f, 0.0f}}}; // May be only partially initialized.
136#endif // FAST_FP16_AVAILABLE
137 int Q_i32[ncols][1 > D/(sizeof(int)*nthreads_KQ) ? 1 : D/(sizeof(int)*nthreads_KQ)];
138 float2 Q_ds[ncols][1 > D/(sizeof(int)*nthreads_KQ) ? 1 : D/(sizeof(int)*nthreads_KQ)];
139 if constexpr (Q_q8_1) {
140#pragma unroll
141 for (int j0 = 0; j0 < ncols; j0 += nwarps) {
142 const int j = j0 + threadIdx.y;
143
144 if (j0 + nwarps > ncols && j >= ncols) {
145 break;
146 }
147
148 // Reuse KQ as temporary storage for converting Q to q8_1:
149 int * tmp_q_i32 = (int *) &KQ[j*D];
150 float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
151
152 // Set memory to zero if out of bounds:
153 if (ncols > 1 && ic0 + j >= ne01) {
154#pragma unroll
155 for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += WARP_SIZE) {
156 const int i = i0 + threadIdx.x;
157
158 if (i0 + WARP_SIZE <= D/sizeof(int) || i < D/sizeof(int)) {
159 tmp_q_i32[i] = 0;
160 }
161 }
162 if (threadIdx.x < D/QK8_1) {
163 tmp_q_ds[threadIdx.x] = make_float2(x: 0.0f, y: 0.0f);
164 }
165 } else {
166 const float * Q_f = (const float *) (Q + j*nb01);
167 constexpr int nthreads_quantize = D/sizeof(int) < WARP_SIZE ? D/sizeof(int) : WARP_SIZE;
168#pragma unroll
169 for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += nthreads_quantize) {
170 quantize_q8_1_to_shared<float2, nthreads_quantize>
171 (Q_f + i0*sizeof(int), scale, tmp_q_i32 + i0, tmp_q_ds + i0/QI8_1);
172 }
173 }
174 }
175
176 __syncthreads();
177
178#pragma unroll
179 for (int j = 0; j < ncols; ++j) {
180 int * tmp_q_i32 = (int *) &KQ[j*D];
181 float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
182
183#pragma unroll
184 for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += nthreads_KQ) {
185 const int i = i0 + (nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ);
186
187 Q_i32[j][i0/nthreads_KQ] = tmp_q_i32[i];
188 Q_ds[j][i0/nthreads_KQ] = tmp_q_ds[i/QI8_1];
189 }
190 }
191
192 __syncthreads();
193 } else {
194#ifdef FAST_FP16_AVAILABLE
195 const half2 scale_h2 = make_half2(scale, scale);
196#pragma unroll
197 for (int j = 0; j < ncols; ++j) {
198 const float2 * Q_j = (const float2 *) (Q + j*nb01);
199#pragma unroll
200 for (int i0 = 0; i0 < D/2; i0 += nthreads_KQ*cpy_ne) {
201 const int i = i0 + (nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ)*cpy_ne;
202
203 float2 tmp[cpy_ne] = {{0.0f, 0.0f}};
204 if (ncols == 1 || ic0 + j < ne01) {
205 ggml_cuda_memcpy_1<cpy_nb>(tmp, &Q_j[i]);
206 ggml_cuda_memcpy_1<cpy_nb>(tmp + cpy_ne/2, &Q_j[i + cpy_ne/2]);
207 }
208#pragma unroll
209 for (int i1 = 0; i1 < cpy_ne; ++i1) {
210 Q_reg[j][i0/nthreads_KQ + i1] = make_half2(tmp[i1].x, tmp[i1].y);
211 }
212 }
213#pragma unroll
214 for (int k = 0; k < (D/2)/nthreads_KQ; ++k) {
215 Q_reg[j][k] *= scale_h2;
216 }
217 }
218#else
219#pragma unroll
220 for (int j = 0; j < ncols; ++j) {
221 const float2 * Q_j = (const float2 *) (Q + j*nb01);
222#pragma unroll
223 for (int i0 = 0; i0 < D/2; i0 += nthreads_KQ*cpy_ne) {
224 const int i = i0 + (nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ)*cpy_ne;
225 if (ncols == 1 || ic0 + j < ne01) {
226 ggml_cuda_memcpy_1<cpy_nb>(&Q_reg[j][i0/nthreads_KQ], &Q_j[i]);
227 ggml_cuda_memcpy_1<cpy_nb>(&Q_reg[j][i0/nthreads_KQ + cpy_ne/2], &Q_j[i + cpy_ne/2]);
228 }
229 }
230#pragma unroll
231 for (int k = 0; k < (D/2)/nthreads_KQ; ++k) {
232 Q_reg[j][k].x *= scale;
233 Q_reg[j][k].y *= scale;
234 }
235 }
236#endif // FAST_FP16_AVAILABLE
237 }
238
239 const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
240 K += blockIdx.y*nthreads * nb11;
241 V += blockIdx.y*nthreads * nb21;
242 maskh += blockIdx.y*nthreads;
243 for (int k_VKQ_0 = blockIdx.y*nthreads; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*nthreads,
244 // Increment pointers after each loop:
245 K += gridDim.y*nthreads*nb11, V += gridDim.y*nthreads*nb21, maskh += gridDim.y*nthreads) {
246
247 // Calculate KQ tile and keep track of new maximum KQ values:
248 float KQ_reg[ncols]; // KQ in registers.
249
250 float KQ_max_new[ncols];
251#pragma unroll
252 for (int j = 0; j < ncols; ++j) {
253 KQ_max_new[j] = KQ_max[j];
254 }
255
256#pragma unroll
257 for (int i_KQ_0 = 0; i_KQ_0 < nthreads_KQ; ++i_KQ_0) {
258 const int i_KQ = threadIdx.y*WARP_SIZE + (nthreads_KQ == WARP_SIZE ? 0 : (threadIdx.x & ~(nthreads_KQ-1))) + i_KQ_0;
259
260#pragma unroll
261 for (int j = 0; j < ncols; ++j) {
262 float sum = vec_dot_KQ(K + i_KQ*nb11, Q_reg[j], Q_i32[j], Q_ds[j]);
263 sum = warp_reduce_sum<nthreads_KQ>(sum);
264
265 if (use_logit_softcap) {
266 sum = logit_softcap*tanhf(a: sum);
267 }
268
269 if (mask) {
270 sum += slope*__half2float(a: maskh[j*ne11 + i_KQ]);
271 }
272
273 KQ_max_new[j] = fmaxf(KQ_max_new[j], sum);
274
275 if ((nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ) == i_KQ_0) {
276 KQ_reg[j] = sum;
277 }
278 }
279 }
280
281#pragma unroll
282 for (int j = 0; j < ncols; ++j) {
283#pragma unroll
284 for (int offset = nthreads_KQ; offset < WARP_SIZE; offset <<= 1) {
285 KQ_max_new[j] = fmaxf(KQ_max_new[j], __shfl_xor_sync(0xFFFFFFFF, KQ_max_new[j], offset, WARP_SIZE));
286 }
287 const float KQ_max_scale = expf(KQ_max[j] - KQ_max_new[j]);
288 KQ_max[j] = KQ_max_new[j];
289
290 KQ_reg[j] = expf(KQ_reg[j] - KQ_max[j]);
291 KQ_sum[j] = KQ_sum[j]*KQ_max_scale + KQ_reg[j];
292 KQ[j*nthreads + tid] = KQ_reg[j];
293
294#ifdef FAST_FP16_AVAILABLE
295 const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
296#pragma unroll
297 for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
298 VKQ[j][i_VKQ_0/nthreads_V] *= KQ_max_scale_h2;
299 }
300#else
301#pragma unroll
302 for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
303 VKQ[j][i_VKQ_0/nthreads_V].x *= KQ_max_scale;
304 VKQ[j][i_VKQ_0/nthreads_V].y *= KQ_max_scale;
305 }
306#endif // FAST_FP16_AVAILABLE
307 }
308
309#ifndef GGML_USE_HIP
310 __syncwarp();
311#endif // GGML_USE_HIP
312
313#pragma unroll
314 for (int k0 = 0; k0 < WARP_SIZE; k0 += V_cols_per_iter) {
315 const int k = threadIdx.y*WARP_SIZE + k0 + (nthreads_V == WARP_SIZE ? 0 : threadIdx.x / nthreads_V);
316
317#ifdef FAST_FP16_AVAILABLE
318 half2 KQ_k[ncols];
319#pragma unroll
320 for (int j = 0; j < ncols; ++j) {
321 KQ_k[j] = __half2half2(KQ[j*nthreads + k]);
322 }
323#pragma unroll
324 for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V*V_rows_per_thread/2) {
325 half2 tmp[V_rows_per_thread/2];
326 dequantize_V(V + k*nb21, tmp,
327 2*i_VKQ_0 + (nthreads_V == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_V)*V_rows_per_thread);
328#pragma unroll
329 for (int i_VKQ_1 = 0; i_VKQ_1 < V_rows_per_thread/2; ++i_VKQ_1) {
330#pragma unroll
331 for (int j = 0; j < ncols; ++j) {
332 VKQ[j][i_VKQ_0/nthreads_V + i_VKQ_1] += tmp[i_VKQ_1]*KQ_k[j];
333 }
334 }
335 }
336#else
337 float KQ_k[ncols];
338#pragma unroll
339 for (int j = 0; j < ncols; ++j) {
340 KQ_k[j] = KQ[j*nthreads + k];
341 }
342#pragma unroll
343 for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V*V_rows_per_thread/2) {
344 float2 tmp[V_rows_per_thread/2];
345 dequantize_V(V + k*nb21, tmp,
346 2*i_VKQ_0 + (nthreads_V == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_V)*V_rows_per_thread);
347#pragma unroll
348 for (int i_VKQ_1 = 0; i_VKQ_1 < V_rows_per_thread/2; ++i_VKQ_1) {
349#pragma unroll
350 for (int j = 0; j < ncols; ++j) {
351 VKQ[j][i_VKQ_0/nthreads_V + i_VKQ_1].x += tmp[i_VKQ_1].x*KQ_k[j];
352 VKQ[j][i_VKQ_0/nthreads_V + i_VKQ_1].y += tmp[i_VKQ_1].y*KQ_k[j];
353 }
354 }
355 }
356#endif // FAST_FP16_AVAILABLE
357 }
358 }
359
360 if (sinks && blockIdx.y == 0) {
361 const float sink = ((const float *) sinks)[head];
362
363#pragma unroll
364 for (int j0 = 0; j0 < ncols; j0 += nwarps) {
365 const int j = j0 + threadIdx.y;
366
367 if (j0 + nwarps > ncols && j >= ncols) {
368 break;
369 }
370
371 const float kqmax_new_j = fmaxf(sink, KQ_max[j]);
372 const float KQ_max_scale = expf(KQ_max[j] - kqmax_new_j);
373 KQ_max[j] = kqmax_new_j;
374
375 KQ_sum[j] = KQ_sum[j]*KQ_max_scale + (threadIdx.x == 0 ? expf(sink - KQ_max[j]) : 0.0f);
376
377#ifdef FAST_FP16_AVAILABLE
378 const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
379#pragma unroll
380 for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
381 VKQ[j][i_VKQ_0/nthreads_V] *= KQ_max_scale_h2;
382 }
383#else
384#pragma unroll
385 for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
386 VKQ[j][i_VKQ_0/nthreads_V].x *= KQ_max_scale;
387 VKQ[j][i_VKQ_0/nthreads_V].y *= KQ_max_scale;
388 }
389#endif // FAST_FP16_AVAILABLE
390 }
391 }
392
393 __shared__ float KQ_max_shared[ncols][WARP_SIZE];
394 __shared__ float KQ_sum_shared[ncols][WARP_SIZE];
395#pragma unroll
396 for (int j = 0; j < ncols; ++j) {
397 if (threadIdx.y == 0) {
398 KQ_max_shared[j][threadIdx.x] = -FLT_MAX/2.0f;
399 KQ_sum_shared[j][threadIdx.x] = 0.0f;
400 }
401 }
402
403 __syncthreads();
404
405#pragma unroll
406 for (int j = 0; j < ncols; ++j) {
407 if (threadIdx.x == 0) {
408 KQ_max_shared[j][threadIdx.y] = KQ_max[j];
409 }
410 }
411 __syncthreads();
412
413#pragma unroll
414 for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
415 if (ncols > 1 && ic0 + j_VKQ >= ne01) {
416 break;
417 }
418
419 float kqmax_new = KQ_max_shared[j_VKQ][threadIdx.x];
420 kqmax_new = warp_reduce_max(x: kqmax_new);
421 const float kqmax_scale = expf(KQ_max[j_VKQ] - kqmax_new);
422 KQ_max[j_VKQ] = kqmax_new;
423
424#ifdef FAST_FP16_AVAILABLE
425 half2 * VKQ_tmp = (half2 *) KQ + threadIdx.y*(V_cols_per_iter*D/2)
426 + (nthreads_V == WARP_SIZE ? 0 : threadIdx.x / nthreads_V)*(D/2);
427
428 const half2 kqmax_scale_h2 = make_half2(kqmax_scale, kqmax_scale);
429#pragma unroll
430 for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
431 VKQ[j_VKQ][i_VKQ_0/nthreads_V] *= kqmax_scale_h2;
432 }
433#pragma unroll
434 for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V*V_rows_per_thread/2) {
435 const int i_VKQ = i_VKQ_0 + (nthreads_V == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_V)*(V_rows_per_thread/2);
436
437 ggml_cuda_memcpy_1<V_rows_per_thread*sizeof(half)>(VKQ_tmp + i_VKQ, &VKQ[j_VKQ][i_VKQ_0/nthreads_V]);
438 }
439#else
440 float2 * VKQ_tmp = (float2 *) KQ + threadIdx.y*(V_cols_per_iter*D/2)
441 + (nthreads_V == WARP_SIZE ? 0 : threadIdx.x / nthreads_V)*(D/2);
442
443#pragma unroll
444 for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
445 VKQ[j_VKQ][i_VKQ_0/nthreads_V].x *= kqmax_scale;
446 VKQ[j_VKQ][i_VKQ_0/nthreads_V].y *= kqmax_scale;
447 }
448#pragma unroll
449 for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V*V_rows_per_thread/2) {
450 const int i_VKQ = i_VKQ_0 + (nthreads_V == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_V)*(V_rows_per_thread/2);
451
452 ggml_cuda_memcpy_1<V_rows_per_thread/2*sizeof(float)>(VKQ_tmp + i_VKQ, &VKQ[j_VKQ][i_VKQ_0/nthreads_V]);
453 ggml_cuda_memcpy_1<V_rows_per_thread/2*sizeof(float)>(VKQ_tmp + i_VKQ + V_rows_per_thread/4, &VKQ[j_VKQ][i_VKQ_0/nthreads_V + V_rows_per_thread/4]);
454 }
455#endif // FAST_FP16_AVAILABLE
456
457 KQ_sum[j_VKQ] *= kqmax_scale;
458 KQ_sum[j_VKQ] = warp_reduce_sum(KQ_sum[j_VKQ]);
459 if (threadIdx.x == 0) {
460 KQ_sum_shared[j_VKQ][threadIdx.y] = KQ_sum[j_VKQ];
461 }
462
463 __syncthreads();
464
465 if (nthreads <= D || tid < D) {
466 KQ_sum[j_VKQ] = KQ_sum_shared[j_VKQ][threadIdx.x];
467 KQ_sum[j_VKQ] = warp_reduce_sum(KQ_sum[j_VKQ]);
468
469#pragma unroll
470 for (int i0 = 0; i0 < D; i0 += nthreads) {
471 float dst_val = 0;
472#pragma unroll
473 for (int w = 0; w < nwarps; ++w) {
474#pragma unroll
475 for (int v = 0; v < V_cols_per_iter; ++v) {
476 dst_val += float(KQ[w*V_cols_per_iter*D + v*D + i0 + tid]);
477 }
478 }
479 if (gridDim.y == 1) {
480 dst_val /= KQ_sum[j_VKQ];
481 }
482 dst[(((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y)*D + i0 + tid] = dst_val;
483 }
484 }
485
486 if (j_VKQ < ncols-1) {
487 __syncthreads();
488 }
489
490 }
491
492 if (gridDim.y != 1 && tid < ncols && (ncols == 1 || ic0 + tid < ne01)) {
493 dst_meta[((sequence*ne01 + ic0 + tid)*ne02 + head)*gridDim.y + blockIdx.y] = make_float2(KQ_max[tid], KQ_sum[tid]);
494 }
495#else
496 GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
497 max_bias, m0, m1, n_head_log2, logit_softcap,
498 ne00, ne01, ne02, ne03,
499 nb01, nb02, nb03,
500 ne10, ne11, ne12, ne13,
501 nb11, nb12, nb13,
502 nb21, nb22, nb23,
503 ne31, ne32, ne33,
504 nb31, nb32, nb33);
505 NO_DEVICE_CODE;
506#endif // FLASH_ATTN_AVAILABLE
507}
508#ifdef __clang__
509#pragma clang diagnostic pop
510#endif // __clang__
511
512template <int D, int cols_per_block, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
513void ggml_cuda_flash_attn_ext_vec_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
514 const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
515
516 const int nthreads = ggml_cuda_fattn_vec_get_nthreads_host(cc);
517 const int nwarps = nthreads / WARP_SIZE;
518 fattn_kernel_t fattn_kernel = flash_attn_ext_vec<D, cols_per_block, type_K, type_V, use_logit_softcap>;
519 const bool need_f16_K = type_K == GGML_TYPE_F16;
520 const bool need_f16_V = type_V == GGML_TYPE_F16;
521 constexpr size_t nbytes_shared = 0;
522 launch_fattn<D, cols_per_block, 1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
523}
524
525template <int D, ggml_type type_K, ggml_type type_V>
526void ggml_cuda_flash_attn_ext_vec_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
527 const ggml_tensor * KQV = dst;
528 const ggml_tensor * Q = dst->src[0];
529
530 float logit_softcap;
531 memcpy(dest: &logit_softcap, src: (const float *) KQV->op_params + 2, n: sizeof(float));
532
533 if (Q->ne[1] == 1) {
534 constexpr int cols_per_block = 1;
535 if (logit_softcap == 0.0f) {
536 constexpr bool use_logit_softcap = false;
537 ggml_cuda_flash_attn_ext_vec_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
538 } else {
539 constexpr bool use_logit_softcap = true;
540 ggml_cuda_flash_attn_ext_vec_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
541 }
542 return;
543 }
544
545 constexpr int cols_per_block = 2;
546 if (logit_softcap == 0.0f) {
547 constexpr bool use_logit_softcap = false;
548 ggml_cuda_flash_attn_ext_vec_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
549 } else {
550 constexpr bool use_logit_softcap = true;
551 ggml_cuda_flash_attn_ext_vec_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
552 }
553}
554
555#define DECL_FATTN_VEC_CASE(D, type_K, type_V) \
556 template void ggml_cuda_flash_attn_ext_vec_case \
557 <D, type_K, type_V>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
558
559#define EXTERN_DECL_FATTN_VEC_CASES(D, type_K) \
560 extern DECL_FATTN_VEC_CASE(D, type_K, GGML_TYPE_F16); \
561 extern DECL_FATTN_VEC_CASE(D, type_K, GGML_TYPE_Q4_0); \
562 extern DECL_FATTN_VEC_CASE(D, type_K, GGML_TYPE_Q4_1); \
563 extern DECL_FATTN_VEC_CASE(D, type_K, GGML_TYPE_Q5_0); \
564 extern DECL_FATTN_VEC_CASE(D, type_K, GGML_TYPE_Q5_1); \
565 extern DECL_FATTN_VEC_CASE(D, type_K, GGML_TYPE_Q8_0); \
566
567EXTERN_DECL_FATTN_VEC_CASES( 64, GGML_TYPE_F16)
568EXTERN_DECL_FATTN_VEC_CASES( 64, GGML_TYPE_Q4_0)
569EXTERN_DECL_FATTN_VEC_CASES( 64, GGML_TYPE_Q4_1)
570EXTERN_DECL_FATTN_VEC_CASES( 64, GGML_TYPE_Q5_0)
571EXTERN_DECL_FATTN_VEC_CASES( 64, GGML_TYPE_Q5_1)
572EXTERN_DECL_FATTN_VEC_CASES( 64, GGML_TYPE_Q8_0)
573
574EXTERN_DECL_FATTN_VEC_CASES(128, GGML_TYPE_F16)
575EXTERN_DECL_FATTN_VEC_CASES(128, GGML_TYPE_Q4_0)
576EXTERN_DECL_FATTN_VEC_CASES(128, GGML_TYPE_Q4_1)
577EXTERN_DECL_FATTN_VEC_CASES(128, GGML_TYPE_Q5_0)
578EXTERN_DECL_FATTN_VEC_CASES(128, GGML_TYPE_Q5_1)
579EXTERN_DECL_FATTN_VEC_CASES(128, GGML_TYPE_Q8_0)
580
581EXTERN_DECL_FATTN_VEC_CASES(256, GGML_TYPE_F16)
582EXTERN_DECL_FATTN_VEC_CASES(256, GGML_TYPE_Q4_0)
583EXTERN_DECL_FATTN_VEC_CASES(256, GGML_TYPE_Q4_1)
584EXTERN_DECL_FATTN_VEC_CASES(256, GGML_TYPE_Q5_0)
585EXTERN_DECL_FATTN_VEC_CASES(256, GGML_TYPE_Q5_1)
586EXTERN_DECL_FATTN_VEC_CASES(256, GGML_TYPE_Q8_0)
587