1#include "getrows.cuh"
2#include "dequantize.cuh"
3#include "convert.cuh"
4
5template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
6static __global__ void k_get_rows(
7 const void * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst,
8 const int64_t ne00, /*const int64_t ne01, const int64_t ne02, const int64_t ne03,*/
9 /*const int64_t ne10,*/ const int64_t ne11, const int64_t ne12, /*const int64_t ne13,*/
10 /*const size_t s0,*/ const size_t s1, const size_t s2, const size_t s3,
11 /*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
12 const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
13
14 for (int64_t z = blockIdx.z; z < ne11*ne12; z += gridDim.z) {
15 for (int64_t i00 = 2*(blockIdx.y*blockDim.x + threadIdx.x); i00 < ne00; i00 += gridDim.y*blockDim.x) {
16 // The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
17 const int i10 = blockIdx.x;
18 const int i11 = z / ne12; // TODO fastdiv
19 const int i12 = z % ne12;
20
21 const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
22
23 dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
24 const void * src0_row = (const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03;
25
26 const int ib = i00/qk; // block index
27 const int iqs = (i00%qk)/qr; // quant index
28 const int iybs = i00 - i00%qk; // dst block start index
29 const int y_offset = qr == 1 ? 1 : qk/2;
30
31 // dequantize
32 float2 v;
33 dequantize_kernel(src0_row, ib, iqs, v);
34
35 dst_row[iybs + iqs + 0] = ggml_cuda_cast<dst_t>(v.x);
36 dst_row[iybs + iqs + y_offset] = ggml_cuda_cast<dst_t>(v.y);
37 }
38 }
39}
40
41template<typename src0_t, typename dst_t>
42static __global__ void k_get_rows_float(
43 const src0_t * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst,
44 const int64_t ne00, /*const int64_t ne01, const int64_t ne02, const int64_t ne03,*/
45 /*const int64_t ne10,*/ const int64_t ne11, const int64_t ne12, /*const int64_t ne13,*/
46 /*const size_t s0,*/ const size_t s1, const size_t s2, const size_t s3,
47 /*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
48 const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
49
50 for (int64_t z = blockIdx.z; z < ne11*ne12; z += gridDim.z) {
51 for (int64_t i00 = blockIdx.y*blockDim.x + threadIdx.x; i00 < ne00; i00 += gridDim.y*blockDim.x) {
52 // The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
53 const int i10 = blockIdx.x;
54 const int i11 = z / ne12; // TODO fastdiv
55 const int i12 = z % ne12;
56
57 if (i00 >= ne00) {
58 return;
59 }
60
61 const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
62
63 dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
64 const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03);
65
66 dst_row[i00] = ggml_cuda_cast<dst_t>(src0_row[i00]);
67 }
68 }
69}
70
71template<typename grad_t, typename dst_t>
72static __global__ void k_get_rows_back_float(
73 const grad_t * __restrict__ grad, const int32_t * __restrict__ rows, dst_t * __restrict__ dst, const int64_t ncols, const int64_t nrows_grad) {
74 const int col = blockIdx.x*blockDim.x + threadIdx.x;
75
76 if (col >= ncols) {
77 return;
78 }
79
80 const int dst_row = blockIdx.y*blockDim.y + threadIdx.y;
81
82 float sum = 0.0f;
83
84 for (int64_t i = 0; i < nrows_grad; ++i) {
85 if (rows[i] != dst_row) {
86 continue;
87 }
88 sum += grad[i*ncols + col];
89 }
90
91 dst[dst_row*ncols + col] = sum;
92}
93
94template<int qk, int qr, dequantize_kernel_t dq, typename dst_t>
95static void get_rows_cuda_q(
96 const void * src0_d, const int32_t * src1_d, dst_t * dst_d,
97 const int64_t ne00, const size_t nb01, const size_t nb02, const size_t nb03,
98 const int64_t ne10, const int64_t ne11, const int64_t ne12, const size_t nb10, const size_t nb11, const size_t nb12,
99 const size_t nb1, const size_t nb2, const size_t nb3,
100 cudaStream_t stream) {
101 const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
102 const int block_num_y = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
103 const dim3 block_nums(ne10, MIN(block_num_y, UINT16_MAX), MIN(ne11*ne12, UINT16_MAX));
104
105 // strides in elements
106 // const size_t s0 = nb0 / sizeof(dst_t);
107 const size_t s1 = nb1 / sizeof(dst_t);
108 const size_t s2 = nb2 / sizeof(dst_t);
109 const size_t s3 = nb3 / sizeof(dst_t);
110
111 const size_t s10 = nb10 / sizeof(int32_t);
112 const size_t s11 = nb11 / sizeof(int32_t);
113 const size_t s12 = nb12 / sizeof(int32_t);
114 // const size_t s13 = nb13 / sizeof(int32_t);
115
116 GGML_ASSERT(ne00 % 2 == 0);
117
118 k_get_rows<qk, qr, dq><<<gridDim: block_nums, blockDim: block_dims, sharedMem: 0, stream>>>(
119 src0_d, src1_d, dst_d,
120 ne00, /*ne01, ne02, ne03,*/
121 /*ne10,*/ ne11, ne12, /*ne13,*/
122 /* s0,*/ s1, s2, s3,
123 /* nb00,*/ nb01, nb02, nb03,
124 s10, s11, s12/*, s13*/);
125}
126
127template<typename src0_t, typename dst_t>
128static void get_rows_cuda_float(
129 const src0_t * src0_d, const int32_t * src1_d, dst_t * dst_d,
130 const int64_t ne00, const size_t nb01, const size_t nb02, const size_t nb03,
131 const int64_t ne10, const int64_t ne11, const int64_t ne12, const size_t nb10, const size_t nb11, const size_t nb12,
132 const size_t nb1, const size_t nb2, const size_t nb3,
133 cudaStream_t stream) {
134 const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
135 const int block_num_y = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
136 const dim3 block_nums(ne10, MIN(block_num_y, UINT16_MAX), MIN(ne11*ne12, UINT16_MAX));
137
138 // strides in elements
139 // const size_t s0 = nb0 / sizeof(dst_t);
140 const size_t s1 = nb1 / sizeof(dst_t);
141 const size_t s2 = nb2 / sizeof(dst_t);
142 const size_t s3 = nb3 / sizeof(dst_t);
143
144 const size_t s10 = nb10 / sizeof(int32_t);
145 const size_t s11 = nb11 / sizeof(int32_t);
146 const size_t s12 = nb12 / sizeof(int32_t);
147 // const size_t s13 = nb13 / sizeof(int32_t);
148
149 k_get_rows_float<<<gridDim: block_nums, blockDim: block_dims, sharedMem: 0, stream>>>(
150 src0_d, src1_d, dst_d,
151 ne00, /*ne01, ne02, ne03,*/
152 /*ne10,*/ ne11, ne12, /*ne13,*/
153 /* s0,*/ s1, s2, s3,
154 /* nb00,*/ nb01, nb02, nb03,
155 s10, s11, s12/*, s13*/);
156}
157
158template <typename dst_t>
159static void ggml_cuda_get_rows_switch_src0_type(
160 const void * src0_d, const ggml_type src0_type, const int32_t * src1_d, dst_t * dst_d,
161 const int64_t ne00, const size_t nb01, const size_t nb02, const size_t nb03,
162 const int64_t ne10, const int64_t ne11, const int64_t ne12, const size_t nb10, const size_t nb11, const size_t nb12,
163 const size_t nb1, const size_t nb2, const size_t nb3,
164 cudaStream_t stream) {
165 switch (src0_type) {
166 case GGML_TYPE_F16:
167 get_rows_cuda_float((const half *) src0_d, src1_d, dst_d,
168 ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
169 break;
170 case GGML_TYPE_F32:
171 get_rows_cuda_float((const float *) src0_d, src1_d, dst_d,
172 ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
173 break;
174 case GGML_TYPE_I32:
175 get_rows_cuda_float((const int32_t *) src0_d, src1_d, dst_d,
176 ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
177 break;
178 case GGML_TYPE_BF16:
179 get_rows_cuda_float((const nv_bfloat16 *) src0_d, src1_d, dst_d,
180 ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
181 break;
182 case GGML_TYPE_Q4_0:
183 get_rows_cuda_q<QK4_0, QR4_0, dequantize_q4_0>(src0_d, src1_d, dst_d,
184 ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
185 break;
186 case GGML_TYPE_Q4_1:
187 get_rows_cuda_q<QK4_1, QR4_1, dequantize_q4_1>(src0_d, src1_d, dst_d,
188 ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
189 break;
190 case GGML_TYPE_Q5_0:
191 get_rows_cuda_q<QK5_0, QR5_0, dequantize_q5_0>(src0_d, src1_d, dst_d,
192 ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
193 break;
194 case GGML_TYPE_Q5_1:
195 get_rows_cuda_q<QK5_1, QR5_1, dequantize_q5_1>(src0_d, src1_d, dst_d,
196 ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
197 break;
198 case GGML_TYPE_Q8_0:
199 get_rows_cuda_q<QK8_0, QR8_0, dequantize_q8_0>(src0_d, src1_d, dst_d,
200 ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
201 break;
202 default:
203 // TODO: k-quants
204 GGML_ABORT("%s: unsupported src0 type: %s\n", __func__, ggml_type_name(src0_type));
205 break;
206 }
207}
208
209void get_rows_cuda(
210 const void * src0_d, ggml_type src0_type, const int32_t * src1_d, void * dst_d, ggml_type dst_type,
211 int64_t ne00, size_t nb01, size_t nb02, size_t nb03,
212 int64_t ne10, int64_t ne11, int64_t ne12, size_t nb10, size_t nb11, size_t nb12,
213 size_t nb1, size_t nb2, size_t nb3,
214 cudaStream_t stream) {
215 switch (dst_type) {
216 case GGML_TYPE_F32:
217 ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (float *) dst_d,
218 ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
219 break;
220 case GGML_TYPE_I32:
221 ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (int32_t *) dst_d,
222 ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
223 break;
224 case GGML_TYPE_F16:
225 ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (half *) dst_d,
226 ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
227 break;
228 case GGML_TYPE_BF16:
229 ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (nv_bfloat16 *) dst_d,
230 ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
231 break;
232 default:
233 GGML_ABORT("%s: unsupported dst type: %s\n", __func__, ggml_type_name(dst_type));
234 break;
235 }
236}
237
238void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
239 const ggml_tensor * src0 = dst->src[0];
240 const ggml_tensor * src1 = dst->src[1];
241
242 cudaStream_t stream = ctx.stream();
243
244 GGML_TENSOR_BINARY_OP_LOCALS
245
246 GGML_ASSERT(src1->type == GGML_TYPE_I32);
247 GGML_ASSERT(ne13 == 1);
248
249 GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
250 GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
251 GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
252
253 get_rows_cuda(src0->data, src0->type, (const int32_t *) src1->data, dst->data, dst->type,
254 ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
255}
256
257void ggml_cuda_op_get_rows_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
258 const ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output
259 const ggml_tensor * src1 = dst->src[1]; // src1 in forward pass
260
261 GGML_TENSOR_BINARY_OP_LOCALS
262
263 const float * src0_d = (const float *) src0->data;
264 const int32_t * src1_d = (const int32_t *) src1->data;
265 float * dst_d = (float *) dst->data;
266
267 cudaStream_t stream = ctx.stream();
268
269 GGML_ASSERT(src0->type == GGML_TYPE_F32);
270 GGML_ASSERT(src1->type == GGML_TYPE_I32);
271 GGML_ASSERT(dst->type == GGML_TYPE_F32);
272
273 GGML_ASSERT(ggml_is_contiguous(src0));
274 GGML_ASSERT(ggml_is_contiguous(src1));
275 GGML_ASSERT(ggml_is_contiguous(dst));
276
277 GGML_ASSERT(ne02*ne03 == 1);
278 GGML_ASSERT(ne12*ne13 == 1);
279 GGML_ASSERT(ne2*ne3 == 1);
280
281 const dim3 block_dims(CUDA_GET_ROWS_BACK_BLOCK_SIZE, 1, 1);
282 const int block_num_x = (ne00 + CUDA_GET_ROWS_BACK_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BACK_BLOCK_SIZE;
283 const dim3 block_nums(block_num_x, ne1, 1);
284
285 k_get_rows_back_float<<<block_nums, block_dims, 0, stream>>>(src0_d, src1_d, dst_d, ne00, ne10);
286}
287