| 1 | #include "ggml-cuda.h" |
| 2 | #include "ggml-impl.h" |
| 3 | #include "ggml-backend-impl.h" |
| 4 | |
| 5 | #include "ggml-cuda/common.cuh" |
| 6 | #include "ggml-cuda/acc.cuh" |
| 7 | #include "ggml-cuda/add-id.cuh" |
| 8 | #include "ggml-cuda/arange.cuh" |
| 9 | #include "ggml-cuda/argmax.cuh" |
| 10 | #include "ggml-cuda/argsort.cuh" |
| 11 | #include "ggml-cuda/binbcast.cuh" |
| 12 | #include "ggml-cuda/clamp.cuh" |
| 13 | #include "ggml-cuda/concat.cuh" |
| 14 | #include "ggml-cuda/conv-transpose-1d.cuh" |
| 15 | #include "ggml-cuda/conv2d.cuh" |
| 16 | #include "ggml-cuda/conv2d-dw.cuh" |
| 17 | #include "ggml-cuda/conv2d-transpose.cuh" |
| 18 | #include "ggml-cuda/convert.cuh" |
| 19 | #include "ggml-cuda/count-equal.cuh" |
| 20 | #include "ggml-cuda/cpy.cuh" |
| 21 | #include "ggml-cuda/cross-entropy-loss.cuh" |
| 22 | #include "ggml-cuda/diagmask.cuh" |
| 23 | #include "ggml-cuda/fattn.cuh" |
| 24 | #include "ggml-cuda/getrows.cuh" |
| 25 | #include "ggml-cuda/im2col.cuh" |
| 26 | #include "ggml-cuda/mmf.cuh" |
| 27 | #include "ggml-cuda/mmq.cuh" |
| 28 | #include "ggml-cuda/mmvf.cuh" |
| 29 | #include "ggml-cuda/mmvq.cuh" |
| 30 | #include "ggml-cuda/norm.cuh" |
| 31 | #include "ggml-cuda/opt-step-adamw.cuh" |
| 32 | #include "ggml-cuda/opt-step-sgd.cuh" |
| 33 | #include "ggml-cuda/out-prod.cuh" |
| 34 | #include "ggml-cuda/pad.cuh" |
| 35 | #include "ggml-cuda/pool2d.cuh" |
| 36 | #include "ggml-cuda/quantize.cuh" |
| 37 | #include "ggml-cuda/rope.cuh" |
| 38 | #include "ggml-cuda/roll.cuh" |
| 39 | #include "ggml-cuda/scale.cuh" |
| 40 | #include "ggml-cuda/softcap.cuh" |
| 41 | #include "ggml-cuda/softmax.cuh" |
| 42 | #include "ggml-cuda/ssm-conv.cuh" |
| 43 | #include "ggml-cuda/ssm-scan.cuh" |
| 44 | #include "ggml-cuda/sum.cuh" |
| 45 | #include "ggml-cuda/sumrows.cuh" |
| 46 | #include "ggml-cuda/mean.cuh" |
| 47 | #include "ggml-cuda/tsembd.cuh" |
| 48 | #include "ggml-cuda/topk-moe.cuh" |
| 49 | #include "ggml-cuda/unary.cuh" |
| 50 | #include "ggml-cuda/upscale.cuh" |
| 51 | #include "ggml-cuda/wkv.cuh" |
| 52 | #include "ggml-cuda/gla.cuh" |
| 53 | #include "ggml-cuda/set.cuh" |
| 54 | #include "ggml-cuda/set-rows.cuh" |
| 55 | #include "ggml-cuda/pad_reflect_1d.cuh" |
| 56 | #include "ggml.h" |
| 57 | |
| 58 | #include <algorithm> |
| 59 | #include <array> |
| 60 | #include <atomic> |
| 61 | #include <charconv> |
| 62 | #include <cinttypes> |
| 63 | #include <condition_variable> |
| 64 | #include <cstddef> |
| 65 | #include <cstdint> |
| 66 | #include <float.h> |
| 67 | #include <initializer_list> |
| 68 | #include <limits> |
| 69 | #include <map> |
| 70 | #include <memory> |
| 71 | #include <mutex> |
| 72 | #include <stdarg.h> |
| 73 | #include <stdio.h> |
| 74 | #include <stdlib.h> |
| 75 | #include <string> |
| 76 | #include <vector> |
| 77 | |
| 78 | static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size" ); |
| 79 | |
| 80 | [[noreturn]] |
| 81 | void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) { |
| 82 | int id = -1; // in case cudaGetDevice fails |
| 83 | (void)cudaGetDevice(device: &id); |
| 84 | |
| 85 | GGML_LOG_ERROR(GGML_CUDA_NAME " error: %s\n" , msg); |
| 86 | GGML_LOG_ERROR(" current device: %d, in function %s at %s:%d\n" , id, func, file, line); |
| 87 | GGML_LOG_ERROR(" %s\n" , stmt); |
| 88 | // abort with GGML_ABORT to get a stack trace |
| 89 | GGML_ABORT(GGML_CUDA_NAME " error" ); |
| 90 | } |
| 91 | |
| 92 | // this is faster on Windows |
| 93 | // probably because the Windows CUDA libraries forget to make this check before invoking the drivers |
| 94 | void ggml_cuda_set_device(int device) { |
| 95 | int current_device; |
| 96 | CUDA_CHECK(cudaGetDevice(device: ¤t_device)); |
| 97 | |
| 98 | if (device == current_device) { |
| 99 | return; |
| 100 | } |
| 101 | |
| 102 | CUDA_CHECK(cudaSetDevice(device)); |
| 103 | } |
| 104 | |
| 105 | int ggml_cuda_get_device() { |
| 106 | int id; |
| 107 | CUDA_CHECK(cudaGetDevice(device: &id)); |
| 108 | return id; |
| 109 | } |
| 110 | |
| 111 | static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) { |
| 112 | ggml_cuda_set_device(device); |
| 113 | cudaError_t err; |
| 114 | if (getenv(name: "GGML_CUDA_ENABLE_UNIFIED_MEMORY" ) != nullptr) { |
| 115 | err = cudaMallocManaged(devPtr: ptr, size); |
| 116 | #if defined(GGML_USE_HIP) |
| 117 | if (err == hipSuccess) { |
| 118 | CUDA_CHECK(cudaMemAdvise(*ptr, size, hipMemAdviseSetCoarseGrain, device)); |
| 119 | } |
| 120 | |
| 121 | // fall back to cudaMalloc if not supported (e.g. on Windows) |
| 122 | if (err == hipErrorNotSupported) { |
| 123 | static bool warned_unsupported = false; |
| 124 | if (!warned_unsupported) { |
| 125 | GGML_LOG_WARN("hipMallocManaged unsupported, falling back to hipMalloc.\n" ); |
| 126 | warned_unsupported = true; |
| 127 | } |
| 128 | |
| 129 | err = cudaMalloc(ptr, size); |
| 130 | } |
| 131 | #endif // defined(GGML_USE_HIP) |
| 132 | } else { |
| 133 | err = cudaMalloc(devPtr: ptr, size); |
| 134 | } |
| 135 | return err; |
| 136 | } |
| 137 | |
| 138 | #if defined(GGML_USE_HIP) |
| 139 | static int ggml_cuda_parse_id(char devName[]) { |
| 140 | // A list of possible Target IDs can be found under the rocclr/clr repo in device.cpp |
| 141 | // these values are not stable so this is susceptible to breakage |
| 142 | // https://github.com/ROCm/clr/blob/amd-staging/rocclr/device/device.cpp |
| 143 | int archMajor = 0x0; |
| 144 | int archMinor = 0x0; |
| 145 | int archNum = GGML_CUDA_CC_OFFSET_AMD; |
| 146 | int archLen = strlen(devName); |
| 147 | char archName[archLen + 1]; |
| 148 | |
| 149 | // strip leading 'gfx' while copying into our buffer |
| 150 | if (archLen > 3) { |
| 151 | strcpy(archName, &devName[3]); |
| 152 | archLen -= 3; |
| 153 | } |
| 154 | |
| 155 | // trim trailing :xnack- or :sramecc- statuses |
| 156 | archLen = strcspn(archName, ":" ); |
| 157 | archName[archLen] = '\0'; |
| 158 | |
| 159 | // tease out the version information |
| 160 | if (archLen > 8) { |
| 161 | // versions labeled generic use '-' as delimiter |
| 162 | // strip the trailing "-generic" then iterate through what remains |
| 163 | if ((strstr(archName, "-generic" ))) { |
| 164 | archName[archLen - 8] = '\0'; |
| 165 | char * pch; |
| 166 | if ((pch = strtok(archName, "-" ))) { |
| 167 | archMajor = (int)strtoul(pch, 0, 16); |
| 168 | if ((pch = strtok(NULL, "-" ))) { |
| 169 | archMinor = 0x10 * (int)strtoul(pch, 0, 16); |
| 170 | } |
| 171 | } |
| 172 | } |
| 173 | } else if (archLen >= 3) { |
| 174 | // last two digits should be the minor * 0x10 + stepping |
| 175 | archMinor = (int)strtoul(&archName[archLen - 2], 0, 16); |
| 176 | archName[archLen - 2] = '\0'; |
| 177 | |
| 178 | // only the major version remains |
| 179 | archMajor = (int)strtoul(archName, 0, 16); |
| 180 | } |
| 181 | archNum += archMajor * 0x100; |
| 182 | archNum += archMinor; |
| 183 | return archNum; |
| 184 | } |
| 185 | #endif // defined(GGML_USE_HIP) |
| 186 | |
| 187 | static ggml_cuda_device_info ggml_cuda_init() { |
| 188 | ggml_cuda_device_info info = {}; |
| 189 | |
| 190 | cudaError_t err = cudaGetDeviceCount(&info.device_count); |
| 191 | if (err != cudaSuccess) { |
| 192 | GGML_LOG_ERROR("%s: failed to initialize " GGML_CUDA_NAME ": %s\n" , __func__, cudaGetErrorString(err)); |
| 193 | return info; |
| 194 | } |
| 195 | |
| 196 | GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES); |
| 197 | |
| 198 | int64_t total_vram = 0; |
| 199 | #ifdef GGML_CUDA_FORCE_MMQ |
| 200 | GGML_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: yes\n" , __func__); |
| 201 | #else |
| 202 | GGML_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: no\n" , __func__); |
| 203 | #endif // GGML_CUDA_FORCE_MMQ |
| 204 | #ifdef GGML_CUDA_FORCE_CUBLAS |
| 205 | GGML_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: yes\n" , __func__); |
| 206 | #else |
| 207 | GGML_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: no\n" , __func__); |
| 208 | #endif // GGML_CUDA_FORCE_CUBLAS |
| 209 | GGML_LOG_INFO("%s: found %d " GGML_CUDA_NAME " devices:\n" , __func__, info.device_count); |
| 210 | |
| 211 | std::vector<std::pair<int, std::string>> turing_devices_without_mma; |
| 212 | for (int id = 0; id < info.device_count; ++id) { |
| 213 | int device_vmm = 0; |
| 214 | |
| 215 | #if defined(GGML_USE_VMM) |
| 216 | CUdevice device; |
| 217 | CU_CHECK(cuDeviceGet(&device, id)); |
| 218 | CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device)); |
| 219 | |
| 220 | if (device_vmm) { |
| 221 | CUmemAllocationProp alloc_prop = {}; |
| 222 | alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED; |
| 223 | alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE; |
| 224 | alloc_prop.location.id = id; |
| 225 | CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED)); |
| 226 | } |
| 227 | #endif // defined(GGML_USE_VMM) |
| 228 | info.devices[id].vmm = !!device_vmm; |
| 229 | |
| 230 | cudaDeviceProp prop; |
| 231 | CUDA_CHECK(cudaGetDeviceProperties(prop: &prop, device: id)); |
| 232 | |
| 233 | info.default_tensor_split[id] = total_vram; |
| 234 | total_vram += prop.totalGlobalMem; |
| 235 | info.devices[id].integrated = false; // Temporarily disabled due to issues with corrupted output (e.g. #15034) |
| 236 | info.devices[id].nsm = prop.multiProcessorCount; |
| 237 | info.devices[id].smpb = prop.sharedMemPerBlock; |
| 238 | info.devices[id].warp_size = prop.warpSize; |
| 239 | #if defined(GGML_USE_HIP) |
| 240 | info.devices[id].smpbo = prop.sharedMemPerBlock; |
| 241 | |
| 242 | info.devices[id].cc = ggml_cuda_parse_id(prop.gcnArchName); |
| 243 | if ((info.devices[id].cc & 0xff00) == 0x0) { |
| 244 | GGML_LOG_WARN("invalid architecture ID received for device %d %s: %s cc %d.%d\n" , |
| 245 | id, prop.name, prop.gcnArchName, prop.major, prop.minor); |
| 246 | |
| 247 | // Fallback to prop.major and prop.minor |
| 248 | if (prop.major > 0) { |
| 249 | info.devices[id].cc = GGML_CUDA_CC_OFFSET_AMD + prop.major * 0x100; |
| 250 | info.devices[id].cc += prop.minor * 0x10; |
| 251 | } |
| 252 | } |
| 253 | GGML_LOG_INFO(" Device %d: %s, %s (0x%x), VMM: %s, Wave Size: %d\n" , |
| 254 | id, prop.name, prop.gcnArchName, info.devices[id].cc & 0xffff, |
| 255 | device_vmm ? "yes" : "no" , prop.warpSize); |
| 256 | #elif defined(GGML_USE_MUSA) |
| 257 | // FIXME: Ensure compatibility with varying warp sizes across different MUSA archs. |
| 258 | info.devices[id].warp_size = 32; |
| 259 | info.devices[id].smpbo = prop.sharedMemPerBlockOptin; |
| 260 | info.devices[id].cc = GGML_CUDA_CC_OFFSET_MTHREADS + prop.major * 0x100; |
| 261 | info.devices[id].cc += prop.minor * 0x10; |
| 262 | GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n" , |
| 263 | id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no" ); |
| 264 | #else |
| 265 | info.devices[id].smpbo = prop.sharedMemPerBlockOptin; |
| 266 | info.devices[id].cc = 100*prop.major + 10*prop.minor; |
| 267 | GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n" , |
| 268 | id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no" ); |
| 269 | std::string device_name(prop.name); |
| 270 | if (device_name == "NVIDIA GeForce MX450" ) { |
| 271 | turing_devices_without_mma.push_back(x: { id, device_name }); |
| 272 | } else if (device_name == "NVIDIA GeForce MX550" ) { |
| 273 | turing_devices_without_mma.push_back(x: { id, device_name }); |
| 274 | } else if (device_name.substr(pos: 0, n: 21) == "NVIDIA GeForce GTX 16" ) { |
| 275 | turing_devices_without_mma.push_back(x: { id, device_name }); |
| 276 | } |
| 277 | |
| 278 | // Temporary performance fix: |
| 279 | // Setting device scheduling strategy for iGPUs with cc121 to "spinning" to avoid delays in cuda synchronize calls. |
| 280 | // TODO: Check for future drivers the default scheduling strategy and |
| 281 | // remove this call again when cudaDeviceScheduleSpin is default. |
| 282 | if (prop.major == 12 && prop.minor == 1) { |
| 283 | CUDA_CHECK(cudaSetDeviceFlags(cudaDeviceScheduleSpin)); |
| 284 | } |
| 285 | |
| 286 | #endif // defined(GGML_USE_HIP) |
| 287 | } |
| 288 | |
| 289 | if (ggml_cuda_highest_compiled_arch(GGML_CUDA_CC_TURING) >= GGML_CUDA_CC_TURING && !turing_devices_without_mma.empty()) { |
| 290 | GGML_LOG_INFO("The following devices will have suboptimal performance due to a lack of tensor cores:\n" ); |
| 291 | for (size_t device_pos = 0; device_pos < turing_devices_without_mma.size(); device_pos++) { |
| 292 | GGML_LOG_INFO( |
| 293 | " Device %d: %s\n" , turing_devices_without_mma[device_pos].first, turing_devices_without_mma[device_pos].second.c_str()); |
| 294 | } |
| 295 | GGML_LOG_INFO( |
| 296 | "Consider compiling with CMAKE_CUDA_ARCHITECTURES=61-virtual;80-virtual and DGGML_CUDA_FORCE_MMQ to force the use of the Pascal code for Turing.\n" ); |
| 297 | } |
| 298 | |
| 299 | for (int id = 0; id < info.device_count; ++id) { |
| 300 | info.default_tensor_split[id] /= total_vram; |
| 301 | } |
| 302 | |
| 303 | // configure logging to stdout |
| 304 | // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr)); |
| 305 | |
| 306 | return info; |
| 307 | } |
| 308 | |
| 309 | const ggml_cuda_device_info & ggml_cuda_info() { |
| 310 | static ggml_cuda_device_info info = ggml_cuda_init(); |
| 311 | return info; |
| 312 | } |
| 313 | |
| 314 | // #define DEBUG_CUDA_MALLOC |
| 315 | |
| 316 | // buffer pool for cuda (legacy) |
| 317 | struct ggml_cuda_pool_leg : public ggml_cuda_pool { |
| 318 | static const int MAX_BUFFERS = 256; |
| 319 | |
| 320 | int device; |
| 321 | struct ggml_cuda_buffer { |
| 322 | void * ptr = nullptr; |
| 323 | size_t size = 0; |
| 324 | }; |
| 325 | |
| 326 | ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {}; |
| 327 | size_t pool_size = 0; |
| 328 | |
| 329 | explicit ggml_cuda_pool_leg(int device) : |
| 330 | device(device) { |
| 331 | } |
| 332 | |
| 333 | ~ggml_cuda_pool_leg() { |
| 334 | ggml_cuda_set_device(device); |
| 335 | for (int i = 0; i < MAX_BUFFERS; ++i) { |
| 336 | ggml_cuda_buffer & b = buffer_pool[i]; |
| 337 | if (b.ptr != nullptr) { |
| 338 | CUDA_CHECK(cudaFree(devPtr: b.ptr)); |
| 339 | pool_size -= b.size; |
| 340 | } |
| 341 | } |
| 342 | GGML_ASSERT(pool_size == 0); |
| 343 | } |
| 344 | |
| 345 | void * alloc(size_t size, size_t * actual_size) override { |
| 346 | #ifdef DEBUG_CUDA_MALLOC |
| 347 | int nnz = 0; |
| 348 | size_t max_size = 0; |
| 349 | #endif |
| 350 | size_t best_diff = 1ull << 36; |
| 351 | int ibest = -1; |
| 352 | for (int i = 0; i < MAX_BUFFERS; ++i) { |
| 353 | ggml_cuda_buffer& b = buffer_pool[i]; |
| 354 | if (b.ptr != nullptr) { |
| 355 | #ifdef DEBUG_CUDA_MALLOC |
| 356 | ++nnz; |
| 357 | if (b.size > max_size) max_size = b.size; |
| 358 | #endif |
| 359 | if (b.size >= size) { |
| 360 | size_t diff = b.size - size; |
| 361 | if (diff < best_diff) { |
| 362 | best_diff = diff; |
| 363 | ibest = i; |
| 364 | if (!best_diff) { |
| 365 | void * ptr = b.ptr; |
| 366 | *actual_size = b.size; |
| 367 | b.ptr = nullptr; |
| 368 | b.size = 0; |
| 369 | return ptr; |
| 370 | } |
| 371 | } |
| 372 | } |
| 373 | } |
| 374 | } |
| 375 | if (ibest >= 0) { |
| 376 | ggml_cuda_buffer& b = buffer_pool[ibest]; |
| 377 | void * ptr = b.ptr; |
| 378 | *actual_size = b.size; |
| 379 | b.ptr = nullptr; |
| 380 | b.size = 0; |
| 381 | return ptr; |
| 382 | } |
| 383 | void * ptr; |
| 384 | size_t look_ahead_size = (size_t) (1.05 * size); |
| 385 | look_ahead_size = 256 * ((look_ahead_size + 255)/256); |
| 386 | ggml_cuda_set_device(device); |
| 387 | CUDA_CHECK(ggml_cuda_device_malloc(ptr: &ptr, size: look_ahead_size, device)); |
| 388 | *actual_size = look_ahead_size; |
| 389 | pool_size += look_ahead_size; |
| 390 | #ifdef DEBUG_CUDA_MALLOC |
| 391 | GGML_LOG_INFO("%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n" , __func__, device, nnz, |
| 392 | (uint32_t)(max_size / 1024 / 1024), (uint32_t)(pool_size / 1024 / 1024), (uint32_t)(size / 1024 / 1024)); |
| 393 | #endif |
| 394 | return ptr; |
| 395 | } |
| 396 | |
| 397 | void free(void * ptr, size_t size) override { |
| 398 | for (int i = 0; i < MAX_BUFFERS; ++i) { |
| 399 | ggml_cuda_buffer& b = buffer_pool[i]; |
| 400 | if (b.ptr == nullptr) { |
| 401 | b.ptr = ptr; |
| 402 | b.size = size; |
| 403 | return; |
| 404 | } |
| 405 | } |
| 406 | GGML_LOG_DEBUG(GGML_CUDA_NAME " buffer pool full, increase MAX_CUDA_BUFFERS\n" ); |
| 407 | ggml_cuda_set_device(device); |
| 408 | CUDA_CHECK(cudaFree(devPtr: ptr)); |
| 409 | pool_size -= size; |
| 410 | } |
| 411 | }; |
| 412 | |
| 413 | // pool with virtual memory |
| 414 | #if defined(GGML_USE_VMM) |
| 415 | struct ggml_cuda_pool_vmm : public ggml_cuda_pool { |
| 416 | static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB |
| 417 | |
| 418 | int device; |
| 419 | CUdeviceptr pool_addr = 0; |
| 420 | size_t pool_used = 0; |
| 421 | size_t pool_size = 0; |
| 422 | size_t granularity; |
| 423 | #if defined(GGML_USE_HIP) |
| 424 | std::vector<std::pair<CUdeviceptr, size_t>> mappings; |
| 425 | #endif |
| 426 | |
| 427 | explicit ggml_cuda_pool_vmm(int device) : |
| 428 | device(device), |
| 429 | granularity(ggml_cuda_info().devices[device].vmm_granularity) { |
| 430 | } |
| 431 | |
| 432 | ~ggml_cuda_pool_vmm() { |
| 433 | if (pool_addr != 0) { |
| 434 | #if defined(GGML_USE_HIP) |
| 435 | // Workaround for https://github.com/ROCm/ROCR-Runtime/issues/285 |
| 436 | for (std::pair<CUdeviceptr, size_t> & mapping : mappings) { |
| 437 | CU_CHECK(cuMemUnmap(mapping.first, mapping.second)); |
| 438 | } |
| 439 | #else |
| 440 | CU_CHECK(cuMemUnmap(pool_addr, pool_size)); |
| 441 | #endif |
| 442 | CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE)); |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | void * alloc(size_t size, size_t * actual_size) override { |
| 447 | // round up the allocation size to the alignment to ensure that all allocations are aligned for all data types |
| 448 | const size_t alignment = 128; |
| 449 | size = alignment * ((size + alignment - 1) / alignment); |
| 450 | |
| 451 | size_t avail = pool_size - pool_used; |
| 452 | |
| 453 | if (size > avail) { |
| 454 | // round up to the next multiple of the granularity |
| 455 | size_t reserve_size = size - avail; |
| 456 | reserve_size = granularity * ((reserve_size + granularity - 1) / granularity); |
| 457 | |
| 458 | GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE); |
| 459 | |
| 460 | // allocate more physical memory |
| 461 | CUmemAllocationProp prop = {}; |
| 462 | prop.type = CU_MEM_ALLOCATION_TYPE_PINNED; |
| 463 | prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE; |
| 464 | prop.location.id = device; |
| 465 | CUmemGenericAllocationHandle handle; |
| 466 | CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0)); |
| 467 | |
| 468 | // reserve virtual address space (if not already reserved) |
| 469 | if (pool_addr == 0) { |
| 470 | CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0)); |
| 471 | } |
| 472 | |
| 473 | // map at the end of the pool |
| 474 | CUdeviceptr start_ptr = (CUdeviceptr)((char *)(pool_addr) + pool_size); |
| 475 | CU_CHECK(cuMemMap(start_ptr, reserve_size, 0, handle, 0)); |
| 476 | #if defined(GGML_USE_HIP) |
| 477 | mappings.push_back({start_ptr, reserve_size}); |
| 478 | #endif |
| 479 | |
| 480 | // the memory allocation handle is no longer needed after mapping |
| 481 | CU_CHECK(cuMemRelease(handle)); |
| 482 | |
| 483 | // set access |
| 484 | CUmemAccessDesc access = {}; |
| 485 | access.location.type = CU_MEM_LOCATION_TYPE_DEVICE; |
| 486 | access.location.id = device; |
| 487 | access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE; |
| 488 | CU_CHECK(cuMemSetAccess((CUdeviceptr)((char *)(pool_addr) + pool_size), reserve_size, &access, 1)); |
| 489 | |
| 490 | // add to the pool |
| 491 | pool_size += reserve_size; |
| 492 | |
| 493 | //printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n", |
| 494 | // device, (unsigned long long) (pool_size/1024/1024), |
| 495 | // (unsigned long long) (reserve_size/1024/1024)); |
| 496 | } |
| 497 | |
| 498 | GGML_ASSERT(pool_addr != 0); |
| 499 | |
| 500 | void * ptr = (void *) ((CUdeviceptr)((char *)(pool_addr) + pool_used)); |
| 501 | *actual_size = size; |
| 502 | pool_used += size; |
| 503 | |
| 504 | #ifdef DEBUG_CUDA_MALLOC |
| 505 | printf("cuda pool[%d]: allocated %llu bytes at %llx\n" , device, (unsigned long long) size, ptr); |
| 506 | #endif |
| 507 | |
| 508 | return ptr; |
| 509 | } |
| 510 | |
| 511 | void free(void * ptr, size_t size) override { |
| 512 | #ifdef DEBUG_CUDA_MALLOC |
| 513 | printf("cuda pool[%d]: freed %llu bytes at %llx\n" , device, (unsigned long long) size, ptr); |
| 514 | #endif |
| 515 | |
| 516 | pool_used -= size; |
| 517 | |
| 518 | // all deallocations must be in reverse order of the allocations |
| 519 | GGML_ASSERT(ptr == (void *) ((char *)(pool_addr) + pool_used)); |
| 520 | } |
| 521 | }; |
| 522 | #endif // defined(GGML_USE_VMM) |
| 523 | |
| 524 | std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) { |
| 525 | #if defined(GGML_USE_VMM) |
| 526 | if (ggml_cuda_info().devices[device].vmm) { |
| 527 | return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device)); |
| 528 | } |
| 529 | #endif // defined(GGML_USE_VMM) |
| 530 | return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device)); |
| 531 | } |
| 532 | |
| 533 | // destroying a cuBLAS handle while a graph is being captured in a different thread can result in a CUDA error |
| 534 | // this lock is used to ensure that no cuBLAS handle is destroyed while a graph is being captured |
| 535 | |
| 536 | static std::mutex ggml_cuda_lock; |
| 537 | static std::condition_variable ggml_cuda_lock_cv; |
| 538 | static std::atomic<int> ggml_cuda_lock_counter; |
| 539 | |
| 540 | ggml_backend_cuda_context::~ggml_backend_cuda_context() { |
| 541 | std::unique_lock<std::mutex> lock(ggml_cuda_lock); |
| 542 | ggml_cuda_lock_cv.wait(lock, []{ return ggml_cuda_lock_counter.load(std::memory_order_relaxed) == 0; }); |
| 543 | |
| 544 | if (copy_event != nullptr) { |
| 545 | CUDA_CHECK(cudaEventDestroy(copy_event)); |
| 546 | } |
| 547 | for (int i = 0; i < GGML_CUDA_MAX_DEVICES; ++i) { |
| 548 | for (int j = 0; j < GGML_CUDA_MAX_STREAMS; ++j) { |
| 549 | if (streams[i][j] != nullptr) { |
| 550 | CUDA_CHECK(cudaStreamDestroy(streams[i][j])); |
| 551 | } |
| 552 | } |
| 553 | if (cublas_handles[i] != nullptr) { |
| 554 | CUBLAS_CHECK(cublasDestroy(cublas_handles[i])); |
| 555 | } |
| 556 | } |
| 557 | } |
| 558 | |
| 559 | |
| 560 | // cuda buffer |
| 561 | |
| 562 | struct ggml_backend_cuda_buffer_context { |
| 563 | int device; |
| 564 | void * dev_ptr = nullptr; |
| 565 | std::string name; |
| 566 | |
| 567 | ggml_backend_cuda_buffer_context(int device, void * dev_ptr) : |
| 568 | device(device), dev_ptr(dev_ptr), |
| 569 | name(GGML_CUDA_NAME + std::to_string(device)) { |
| 570 | } |
| 571 | |
| 572 | ~ggml_backend_cuda_buffer_context() { |
| 573 | CUDA_CHECK(cudaFree(devPtr: dev_ptr)); |
| 574 | } |
| 575 | }; |
| 576 | |
| 577 | static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) { |
| 578 | ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; |
| 579 | delete ctx; |
| 580 | } |
| 581 | |
| 582 | static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) { |
| 583 | return buffer->iface.free_buffer == ggml_backend_cuda_buffer_free_buffer; |
| 584 | } |
| 585 | |
| 586 | static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) { |
| 587 | ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; |
| 588 | return ctx->dev_ptr; |
| 589 | } |
| 590 | |
| 591 | static enum ggml_status ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { |
| 592 | ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; |
| 593 | |
| 594 | if (tensor->view_src != NULL) { |
| 595 | assert(tensor->view_src->buffer->buft == buffer->buft); |
| 596 | return GGML_STATUS_SUCCESS; |
| 597 | } |
| 598 | |
| 599 | if (ggml_is_quantized(tensor->type) && tensor->view_src == nullptr && ggml_backend_buffer_get_usage(buffer) != GGML_BACKEND_BUFFER_USAGE_COMPUTE) { |
| 600 | // initialize padding to 0 to avoid possible NaN values |
| 601 | const size_t original_size = ggml_nbytes(tensor); |
| 602 | const size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor); |
| 603 | |
| 604 | if (padded_size > original_size) { |
| 605 | ggml_cuda_set_device(device: ctx->device); |
| 606 | CUDA_CHECK(cudaMemset(devPtr: (char *)tensor->data + original_size, value: 0, count: padded_size - original_size)); |
| 607 | } |
| 608 | } |
| 609 | return GGML_STATUS_SUCCESS; |
| 610 | } |
| 611 | |
| 612 | static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { |
| 613 | ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; |
| 614 | |
| 615 | ggml_cuda_set_device(device: ctx->device); |
| 616 | CUDA_CHECK(cudaMemsetAsync(devPtr: (char *)tensor->data + offset, value, count: size, cudaStreamPerThread)); |
| 617 | CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); |
| 618 | } |
| 619 | |
| 620 | static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { |
| 621 | ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; |
| 622 | |
| 623 | ggml_cuda_set_device(device: ctx->device); |
| 624 | CUDA_CHECK(cudaMemcpyAsync(dst: (char *)tensor->data + offset, src: data, count: size, kind: cudaMemcpyHostToDevice, cudaStreamPerThread)); |
| 625 | CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); |
| 626 | } |
| 627 | |
| 628 | static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { |
| 629 | ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; |
| 630 | |
| 631 | ggml_cuda_set_device(device: ctx->device); |
| 632 | CUDA_CHECK(cudaMemcpyAsync(dst: data, src: (const char *)tensor->data + offset, count: size, kind: cudaMemcpyDeviceToHost, cudaStreamPerThread)); |
| 633 | CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); |
| 634 | } |
| 635 | |
| 636 | static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) { |
| 637 | if (ggml_backend_buffer_is_cuda(src->buffer)) { |
| 638 | ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context; |
| 639 | ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context; |
| 640 | if (src_ctx->device == dst_ctx->device) { |
| 641 | CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread)); |
| 642 | } else { |
| 643 | #ifdef GGML_CUDA_NO_PEER_COPY |
| 644 | return false; |
| 645 | #else |
| 646 | CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread)); |
| 647 | #endif |
| 648 | } |
| 649 | CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); |
| 650 | return true; |
| 651 | } |
| 652 | return false; |
| 653 | |
| 654 | GGML_UNUSED(buffer); |
| 655 | } |
| 656 | |
| 657 | static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { |
| 658 | ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; |
| 659 | |
| 660 | ggml_cuda_set_device(device: ctx->device); |
| 661 | CUDA_CHECK(cudaMemsetAsync(ctx->dev_ptr, value, buffer->size, cudaStreamPerThread)); |
| 662 | CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); |
| 663 | } |
| 664 | |
| 665 | static const ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = { |
| 666 | /* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer, |
| 667 | /* .get_base = */ ggml_backend_cuda_buffer_get_base, |
| 668 | /* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor, |
| 669 | /* .memset_tensor = */ ggml_backend_cuda_buffer_memset_tensor, |
| 670 | /* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor, |
| 671 | /* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor, |
| 672 | /* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor, |
| 673 | /* .clear = */ ggml_backend_cuda_buffer_clear, |
| 674 | /* .reset = */ NULL, |
| 675 | }; |
| 676 | |
| 677 | // cuda buffer type |
| 678 | struct ggml_backend_cuda_buffer_type_context { |
| 679 | int device; |
| 680 | std::string name; |
| 681 | }; |
| 682 | |
| 683 | static const char * ggml_backend_cuda_buffer_type_get_name(ggml_backend_buffer_type_t buft) { |
| 684 | ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context; |
| 685 | |
| 686 | return ctx->name.c_str(); |
| 687 | } |
| 688 | |
| 689 | static bool ggml_backend_buft_is_cuda(ggml_backend_buffer_type_t buft) { |
| 690 | return buft->iface.get_name == ggml_backend_cuda_buffer_type_get_name; |
| 691 | } |
| 692 | |
| 693 | static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { |
| 694 | ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context; |
| 695 | |
| 696 | ggml_cuda_set_device(device: buft_ctx->device); |
| 697 | |
| 698 | void * dev_ptr; |
| 699 | cudaError_t err = ggml_cuda_device_malloc(ptr: &dev_ptr, size, device: buft_ctx->device); |
| 700 | if (err != cudaSuccess) { |
| 701 | // clear the error |
| 702 | (void)cudaGetLastError(); |
| 703 | GGML_LOG_ERROR("%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n" , __func__, size / 1024.0 / 1024.0, buft_ctx->device, cudaGetErrorString(error: err)); |
| 704 | return nullptr; |
| 705 | } |
| 706 | |
| 707 | ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr); |
| 708 | |
| 709 | return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size); |
| 710 | } |
| 711 | |
| 712 | static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { |
| 713 | return 128; |
| 714 | |
| 715 | GGML_UNUSED(buft); |
| 716 | } |
| 717 | |
| 718 | static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { |
| 719 | size_t size = ggml_nbytes(tensor); |
| 720 | int64_t ne0 = tensor->ne[0]; |
| 721 | |
| 722 | if (ggml_is_quantized(tensor->type)) { |
| 723 | if (ne0 % MATRIX_ROW_PADDING != 0) { |
| 724 | GGML_ASSERT(tensor->nb[0] == ggml_element_size(tensor)); |
| 725 | size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); |
| 726 | } |
| 727 | } |
| 728 | |
| 729 | return size; |
| 730 | |
| 731 | GGML_UNUSED(buft); |
| 732 | } |
| 733 | |
| 734 | static const ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = { |
| 735 | /* .get_name = */ ggml_backend_cuda_buffer_type_get_name, |
| 736 | /* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer, |
| 737 | /* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment, |
| 738 | /* .get_max_size = */ NULL, // defaults to SIZE_MAX |
| 739 | /* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size, |
| 740 | /* .is_host = */ NULL, |
| 741 | }; |
| 742 | |
| 743 | ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) { |
| 744 | static std::mutex mutex; |
| 745 | std::lock_guard<std::mutex> lock(mutex); |
| 746 | |
| 747 | if (device >= ggml_backend_cuda_get_device_count()) { |
| 748 | return nullptr; |
| 749 | } |
| 750 | |
| 751 | static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES]; |
| 752 | |
| 753 | static bool ggml_backend_cuda_buffer_type_initialized = false; |
| 754 | |
| 755 | if (!ggml_backend_cuda_buffer_type_initialized) { |
| 756 | for (int i = 0; i < ggml_backend_cuda_get_device_count(); i++) { |
| 757 | ggml_backend_cuda_buffer_types[i] = { |
| 758 | /* .iface = */ ggml_backend_cuda_buffer_type_interface, |
| 759 | /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), i), |
| 760 | /* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)}, |
| 761 | }; |
| 762 | } |
| 763 | ggml_backend_cuda_buffer_type_initialized = true; |
| 764 | } |
| 765 | |
| 766 | return &ggml_backend_cuda_buffer_types[device]; |
| 767 | } |
| 768 | |
| 769 | // cuda split buffer |
| 770 | |
| 771 | static int64_t get_row_rounding(const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) { |
| 772 | int64_t row_rounding = 0; |
| 773 | for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { |
| 774 | if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) { |
| 775 | continue; |
| 776 | } |
| 777 | |
| 778 | const int cc = ggml_cuda_info().devices[id].cc; |
| 779 | row_rounding = std::max(a: row_rounding, b: (int64_t)get_mmq_y_host(cc)); |
| 780 | } |
| 781 | return row_rounding; |
| 782 | } |
| 783 | |
| 784 | static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) { |
| 785 | const int64_t nrows = ggml_nrows(tensor); |
| 786 | const int64_t rounding = get_row_rounding(tensor_split); |
| 787 | |
| 788 | *row_low = id == 0 ? 0 : nrows*tensor_split[id]; |
| 789 | *row_low -= *row_low % rounding; |
| 790 | |
| 791 | if (id == ggml_backend_cuda_get_device_count() - 1) { |
| 792 | *row_high = nrows; |
| 793 | } else { |
| 794 | *row_high = nrows*tensor_split[id + 1]; |
| 795 | *row_high -= *row_high % rounding; |
| 796 | } |
| 797 | } |
| 798 | |
| 799 | static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) { |
| 800 | static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function" ); |
| 801 | |
| 802 | return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]); |
| 803 | } |
| 804 | |
| 805 | struct ggml_backend_cuda_split_buffer_type_context { |
| 806 | int main_device; |
| 807 | std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split; |
| 808 | std::string name; |
| 809 | }; |
| 810 | |
| 811 | struct ggml_backend_cuda_split_buffer_context { |
| 812 | ~ggml_backend_cuda_split_buffer_context() { |
| 813 | for (ggml_tensor_extra_gpu * extra : tensor_extras) { |
| 814 | for (int id = 0; id < GGML_CUDA_MAX_DEVICES; ++id) { |
| 815 | for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) { |
| 816 | if (extra->events[id][is] != nullptr) { |
| 817 | CUDA_CHECK(cudaEventDestroy(extra->events[id][is])); |
| 818 | } |
| 819 | } |
| 820 | if (extra->data_device[id] != nullptr) { |
| 821 | CUDA_CHECK(cudaFree(extra->data_device[id])); |
| 822 | } |
| 823 | } |
| 824 | delete extra; |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | std::vector<ggml_tensor_extra_gpu *> ; |
| 829 | }; |
| 830 | |
| 831 | |
| 832 | static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) { |
| 833 | ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context; |
| 834 | delete ctx; |
| 835 | } |
| 836 | |
| 837 | static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) { |
| 838 | // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced |
| 839 | return (void *)0x1000; |
| 840 | |
| 841 | GGML_UNUSED(buffer); |
| 842 | } |
| 843 | |
| 844 | static enum ggml_status ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { |
| 845 | GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported |
| 846 | GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors" ); |
| 847 | |
| 848 | ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context; |
| 849 | ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context; |
| 850 | |
| 851 | const int64_t ne0 = tensor->ne[0]; |
| 852 | |
| 853 | ggml_tensor_extra_gpu * = new ggml_tensor_extra_gpu{}; |
| 854 | ctx->tensor_extras.push_back(extra); |
| 855 | |
| 856 | for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { |
| 857 | int64_t row_low, row_high; |
| 858 | get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id); |
| 859 | |
| 860 | int64_t nrows_split = row_high - row_low; |
| 861 | if (nrows_split == 0) { |
| 862 | continue; |
| 863 | } |
| 864 | |
| 865 | size_t size = ggml_nbytes_split(tensor, nrows_split); |
| 866 | const size_t original_size = size; |
| 867 | |
| 868 | // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses |
| 869 | if (ne0 % MATRIX_ROW_PADDING != 0) { |
| 870 | size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); |
| 871 | } |
| 872 | |
| 873 | // FIXME: do not crash if cudaMalloc fails |
| 874 | // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first |
| 875 | ggml_cuda_set_device(device: id); |
| 876 | char * buf; |
| 877 | CUDA_CHECK(ggml_cuda_device_malloc(ptr: (void**)&buf, size, device: id)); |
| 878 | |
| 879 | // set padding to 0 to avoid possible NaN values |
| 880 | if (size > original_size) { |
| 881 | CUDA_CHECK(cudaMemset(devPtr: buf + original_size, value: 0, count: size - original_size)); |
| 882 | } |
| 883 | |
| 884 | extra->data_device[id] = buf; |
| 885 | |
| 886 | for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) { |
| 887 | CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming)); |
| 888 | } |
| 889 | } |
| 890 | tensor->extra = extra; |
| 891 | return GGML_STATUS_SUCCESS; |
| 892 | } |
| 893 | |
| 894 | static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { |
| 895 | // split tensors must always be set in their entirety at once |
| 896 | GGML_ASSERT(offset == 0); |
| 897 | GGML_ASSERT(size == ggml_nbytes(tensor)); |
| 898 | GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors" ); |
| 899 | |
| 900 | ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context; |
| 901 | |
| 902 | const int64_t ne0 = tensor->ne[0]; |
| 903 | const size_t nb1 = tensor->nb[1]; |
| 904 | ggml_tensor_extra_gpu * = (ggml_tensor_extra_gpu *)tensor->extra; |
| 905 | |
| 906 | for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { |
| 907 | int64_t row_low, row_high; |
| 908 | get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id); |
| 909 | |
| 910 | int64_t nrows_split = row_high - row_low; |
| 911 | if (nrows_split == 0) { |
| 912 | continue; |
| 913 | } |
| 914 | |
| 915 | const size_t offset_split = row_low*nb1; |
| 916 | size_t size = ggml_nbytes_split(tensor, nrows_split); |
| 917 | const size_t original_size = size; |
| 918 | |
| 919 | // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses |
| 920 | if (ne0 % MATRIX_ROW_PADDING != 0) { |
| 921 | size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); |
| 922 | } |
| 923 | |
| 924 | const char * buf_host = (const char *)data + offset_split; |
| 925 | CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread)); |
| 926 | } |
| 927 | |
| 928 | for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { |
| 929 | CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); |
| 930 | } |
| 931 | } |
| 932 | |
| 933 | static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { |
| 934 | // split tensors must always be set in their entirety at once |
| 935 | GGML_ASSERT(offset == 0); |
| 936 | GGML_ASSERT(size == ggml_nbytes(tensor)); |
| 937 | GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors" ); |
| 938 | |
| 939 | ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context; |
| 940 | |
| 941 | const int64_t ne0 = tensor->ne[0]; |
| 942 | const size_t nb1 = tensor->nb[1]; |
| 943 | ggml_tensor_extra_gpu * = (ggml_tensor_extra_gpu *)tensor->extra; |
| 944 | |
| 945 | for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { |
| 946 | int64_t row_low, row_high; |
| 947 | get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id); |
| 948 | |
| 949 | int64_t nrows_split = row_high - row_low; |
| 950 | if (nrows_split == 0) { |
| 951 | continue; |
| 952 | } |
| 953 | |
| 954 | const size_t offset_split = row_low*nb1; |
| 955 | size_t size = ggml_nbytes_split(tensor, nrows_split); |
| 956 | const size_t original_size = size; |
| 957 | |
| 958 | // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses |
| 959 | if (ne0 % MATRIX_ROW_PADDING != 0) { |
| 960 | size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); |
| 961 | } |
| 962 | |
| 963 | char * buf_host = (char *)data + offset_split; |
| 964 | CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread)); |
| 965 | } |
| 966 | |
| 967 | for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { |
| 968 | CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); |
| 969 | } |
| 970 | } |
| 971 | |
| 972 | static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { |
| 973 | GGML_UNUSED(buffer); |
| 974 | GGML_UNUSED(value); |
| 975 | } |
| 976 | |
| 977 | static const ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = { |
| 978 | /* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer, |
| 979 | /* .get_base = */ ggml_backend_cuda_split_buffer_get_base, |
| 980 | /* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor, |
| 981 | /* .memset_tensor = */ NULL, |
| 982 | /* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor, |
| 983 | /* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor, |
| 984 | /* .cpy_tensor = */ NULL, |
| 985 | /* .clear = */ ggml_backend_cuda_split_buffer_clear, |
| 986 | /* .reset = */ NULL, |
| 987 | }; |
| 988 | |
| 989 | // cuda split buffer type |
| 990 | |
| 991 | static const char * ggml_backend_cuda_split_buffer_type_get_name(ggml_backend_buffer_type_t buft) { |
| 992 | ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context; |
| 993 | |
| 994 | return ctx->name.c_str(); |
| 995 | } |
| 996 | |
| 997 | static bool ggml_backend_buft_is_cuda_split(ggml_backend_buffer_type_t buft) { |
| 998 | return buft->iface.get_name == ggml_backend_cuda_split_buffer_type_get_name; |
| 999 | } |
| 1000 | |
| 1001 | static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { |
| 1002 | // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point |
| 1003 | // instead, we allocate them for each tensor separately in init_tensor |
| 1004 | // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated, |
| 1005 | // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct. |
| 1006 | ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context(); |
| 1007 | |
| 1008 | return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size); |
| 1009 | } |
| 1010 | |
| 1011 | static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { |
| 1012 | return 128; |
| 1013 | |
| 1014 | GGML_UNUSED(buft); |
| 1015 | } |
| 1016 | |
| 1017 | static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { |
| 1018 | ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context; |
| 1019 | GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors" ); |
| 1020 | |
| 1021 | size_t total_size = 0; |
| 1022 | |
| 1023 | const int64_t ne0 = tensor->ne[0]; |
| 1024 | |
| 1025 | for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { |
| 1026 | int64_t row_low, row_high; |
| 1027 | get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id); |
| 1028 | |
| 1029 | int64_t nrows_split = row_high - row_low; |
| 1030 | if (nrows_split == 0) { |
| 1031 | continue; |
| 1032 | } |
| 1033 | |
| 1034 | total_size += ggml_nbytes_split(tensor, nrows_split); |
| 1035 | |
| 1036 | // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses |
| 1037 | if (ne0 % MATRIX_ROW_PADDING != 0) { |
| 1038 | total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); |
| 1039 | } |
| 1040 | } |
| 1041 | |
| 1042 | return total_size; |
| 1043 | } |
| 1044 | |
| 1045 | static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) { |
| 1046 | return false; |
| 1047 | |
| 1048 | GGML_UNUSED(buft); |
| 1049 | } |
| 1050 | |
| 1051 | static const ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = { |
| 1052 | /* .get_name = */ ggml_backend_cuda_split_buffer_type_get_name, |
| 1053 | /* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer, |
| 1054 | /* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment, |
| 1055 | /* .get_max_size = */ NULL, // defaults to SIZE_MAX |
| 1056 | /* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size, |
| 1057 | /* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host, |
| 1058 | }; |
| 1059 | |
| 1060 | ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(int main_device, const float * tensor_split) { |
| 1061 | static std::mutex mutex; |
| 1062 | std::lock_guard<std::mutex> lock(mutex); |
| 1063 | |
| 1064 | static std::map<std::pair<int, std::array<float, GGML_CUDA_MAX_DEVICES>>, struct ggml_backend_buffer_type> buft_map; |
| 1065 | |
| 1066 | std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {}; |
| 1067 | |
| 1068 | bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; }); |
| 1069 | if (all_zero) { |
| 1070 | tensor_split_arr = ggml_cuda_info().default_tensor_split; |
| 1071 | } else { |
| 1072 | float split_sum = 0.0f; |
| 1073 | for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) { |
| 1074 | tensor_split_arr[i] = split_sum; |
| 1075 | split_sum += tensor_split[i]; |
| 1076 | } |
| 1077 | for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) { |
| 1078 | tensor_split_arr[i] /= split_sum; |
| 1079 | } |
| 1080 | } |
| 1081 | |
| 1082 | auto it = buft_map.find({main_device, tensor_split_arr}); |
| 1083 | if (it != buft_map.end()) { |
| 1084 | return &it->second; |
| 1085 | } |
| 1086 | auto * ctx = new ggml_backend_cuda_split_buffer_type_context{ |
| 1087 | main_device, |
| 1088 | tensor_split_arr, |
| 1089 | GGML_CUDA_NAME + std::to_string(main_device) + "_Split" , |
| 1090 | }; |
| 1091 | |
| 1092 | struct ggml_backend_buffer_type buft { |
| 1093 | /* .iface = */ ggml_backend_cuda_split_buffer_type_interface, |
| 1094 | /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), main_device), |
| 1095 | /* .context = */ ctx, |
| 1096 | }; |
| 1097 | |
| 1098 | auto result = buft_map.emplace(std::make_pair(main_device, tensor_split_arr), buft); |
| 1099 | return &result.first->second; |
| 1100 | } |
| 1101 | |
| 1102 | // host buffer type |
| 1103 | |
| 1104 | static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) { |
| 1105 | return GGML_CUDA_NAME "_Host" ; |
| 1106 | |
| 1107 | GGML_UNUSED(buft); |
| 1108 | } |
| 1109 | |
| 1110 | static bool ggml_backend_buft_is_cuda_host(ggml_backend_buffer_type_t buft) { |
| 1111 | return buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name; |
| 1112 | } |
| 1113 | |
| 1114 | static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) { |
| 1115 | CUDA_CHECK(cudaFreeHost(buffer->context)); |
| 1116 | } |
| 1117 | |
| 1118 | static void * ggml_cuda_host_malloc(size_t size) { |
| 1119 | if (getenv(name: "GGML_CUDA_NO_PINNED" ) != nullptr) { |
| 1120 | return nullptr; |
| 1121 | } |
| 1122 | |
| 1123 | void * ptr = nullptr; |
| 1124 | cudaError_t err = cudaMallocHost(ptr: (void **) &ptr, size); |
| 1125 | if (err != cudaSuccess) { |
| 1126 | // clear the error |
| 1127 | (void)cudaGetLastError(); |
| 1128 | GGML_LOG_DEBUG("%s: failed to allocate %.2f MiB of pinned memory: %s\n" , __func__, |
| 1129 | size / 1024.0 / 1024.0, cudaGetErrorString(error: err)); |
| 1130 | return nullptr; |
| 1131 | } |
| 1132 | |
| 1133 | return ptr; |
| 1134 | } |
| 1135 | |
| 1136 | static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { |
| 1137 | void * ptr = ggml_cuda_host_malloc(size); |
| 1138 | |
| 1139 | if (ptr == nullptr) { |
| 1140 | // fallback to cpu buffer |
| 1141 | return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size); |
| 1142 | } |
| 1143 | |
| 1144 | ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size); |
| 1145 | buffer->buft = buft; |
| 1146 | buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer; |
| 1147 | |
| 1148 | return buffer; |
| 1149 | } |
| 1150 | |
| 1151 | ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() { |
| 1152 | static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = { |
| 1153 | /* .iface = */ { |
| 1154 | /* .get_name = */ ggml_backend_cuda_host_buffer_type_name, |
| 1155 | /* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer, |
| 1156 | /* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment, |
| 1157 | /* .get_max_size = */ NULL, // defaults to SIZE_MAX |
| 1158 | /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size, |
| 1159 | /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host, |
| 1160 | }, |
| 1161 | /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), 0), |
| 1162 | /* .context = */ nullptr, |
| 1163 | }; |
| 1164 | |
| 1165 | return &ggml_backend_cuda_buffer_type_host; |
| 1166 | } |
| 1167 | |
| 1168 | //static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) { |
| 1169 | // return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name; |
| 1170 | //} |
| 1171 | |
| 1172 | /// kernels |
| 1173 | |
| 1174 | typedef void (*ggml_cuda_op_mul_mat_t)( |
| 1175 | ggml_backend_cuda_context & ctx, |
| 1176 | const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, |
| 1177 | const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, |
| 1178 | const int64_t src1_padded_row_size, cudaStream_t stream); |
| 1179 | |
| 1180 | #ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE |
| 1181 | #define GGML_CUDA_PEER_MAX_BATCH_SIZE 128 |
| 1182 | #endif // GGML_CUDA_PEER_MAX_BATCH_SIZE |
| 1183 | |
| 1184 | #define MUL_MAT_SRC1_COL_STRIDE 128 |
| 1185 | |
| 1186 | static cudaError_t ggml_cuda_cpy_tensor_2d( |
| 1187 | void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) { |
| 1188 | |
| 1189 | const char * src_ptr = (const char *) src->data; |
| 1190 | char * dst_ptr = (char *) dst; |
| 1191 | |
| 1192 | const int64_t ne0 = src->ne[0]; |
| 1193 | const int64_t nb0 = src->nb[0]; |
| 1194 | const int64_t nb1 = src->nb[1]; |
| 1195 | const int64_t nb2 = src->nb[2]; |
| 1196 | const int64_t nb3 = src->nb[3]; |
| 1197 | const enum ggml_type type = src->type; |
| 1198 | const int64_t ts = ggml_type_size(type); |
| 1199 | const int64_t bs = ggml_blck_size(type); |
| 1200 | const int64_t i1_diff = i1_high - i1_low; |
| 1201 | |
| 1202 | const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3; |
| 1203 | if (nb0 == ts && nb1 == ts*ne0/bs) { |
| 1204 | return cudaMemcpyAsync(dst: dst_ptr, src: x, count: i1_diff*nb1, kind: cudaMemcpyDeviceToDevice, stream); |
| 1205 | } else if (nb0 == ts) { |
| 1206 | return cudaMemcpy2DAsync(dst: dst_ptr, dpitch: ts*ne0/bs, src: x, spitch: nb1, width: ts*ne0/bs, height: i1_diff, kind: cudaMemcpyDeviceToDevice, stream); |
| 1207 | } else { |
| 1208 | for (int64_t i1 = 0; i1 < i1_diff; i1++) { |
| 1209 | const void * rx = (const void *) ((const char *) x + i1*nb1); |
| 1210 | void * rd = (void *) (dst_ptr + i1*ts*ne0/bs); |
| 1211 | // pretend the row is a matrix with cols=1 |
| 1212 | cudaError_t r = cudaMemcpy2DAsync(dst: rd, dpitch: ts/bs, src: rx, spitch: nb0, width: ts/bs, height: ne0, kind: cudaMemcpyDeviceToDevice, stream); |
| 1213 | if (r != cudaSuccess) { |
| 1214 | return r; |
| 1215 | } |
| 1216 | } |
| 1217 | return cudaSuccess; |
| 1218 | } |
| 1219 | } |
| 1220 | |
| 1221 | static void ggml_cuda_op_mul_mat_cublas( |
| 1222 | ggml_backend_cuda_context & ctx, |
| 1223 | const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, |
| 1224 | const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, |
| 1225 | const int64_t src1_padded_row_size, cudaStream_t stream) { |
| 1226 | |
| 1227 | GGML_ASSERT(src0_dd_i != nullptr); |
| 1228 | GGML_ASSERT(src1_ddf_i != nullptr); |
| 1229 | GGML_ASSERT(dst_dd_i != nullptr); |
| 1230 | |
| 1231 | const int64_t ne00 = src0->ne[0]; |
| 1232 | const int64_t ne10 = src1->ne[0]; |
| 1233 | |
| 1234 | const int64_t ne0 = dst->ne[0]; |
| 1235 | |
| 1236 | const int64_t row_diff = row_high - row_low; |
| 1237 | |
| 1238 | int id = ggml_cuda_get_device(); |
| 1239 | |
| 1240 | // the main device has a larger memory buffer to hold the results from all GPUs |
| 1241 | // ldc == nrows of the matrix that cuBLAS writes into |
| 1242 | int64_t ldc = id == ctx.device ? ne0 : row_diff; |
| 1243 | |
| 1244 | const int cc = ggml_cuda_info().devices[id].cc; |
| 1245 | |
| 1246 | const bool supports_bf16 = GGML_CUDA_CC_IS_NVIDIA(cc) || GGML_CUDA_CC_IS_AMD(cc) || |
| 1247 | (GGML_CUDA_CC_IS_MTHREADS(cc) && cc >= GGML_CUDA_CC_QY2); |
| 1248 | |
| 1249 | const bool use_fp16 = (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT; |
| 1250 | |
| 1251 | if (supports_bf16 && src0->type == GGML_TYPE_BF16 && ggml_is_contiguous(src0) && row_diff == src0->ne[1]) { |
| 1252 | ggml_cuda_pool_alloc<nv_bfloat16> src1_as_bf16(ctx.pool(id)); |
| 1253 | if (src1->type != GGML_TYPE_BF16) { |
| 1254 | const to_bf16_cuda_t to_bf16_cuda = ggml_get_to_bf16_cuda(src1->type); |
| 1255 | GGML_ASSERT(to_bf16_cuda != nullptr); |
| 1256 | size_t ne = src1_ncols*ne10; |
| 1257 | src1_as_bf16.alloc(ne); |
| 1258 | to_bf16_cuda(src1_ddf_i, src1_as_bf16.get(), ne, stream); |
| 1259 | } |
| 1260 | const nv_bfloat16 * src1_ptr = src1->type == GGML_TYPE_BF16 ? (const nv_bfloat16 *) src1_ddf_i : src1_as_bf16.get(); |
| 1261 | const nv_bfloat16 * src0_ptr = (const nv_bfloat16 *)src0_dd_i; |
| 1262 | ggml_cuda_pool_alloc<nv_bfloat16> dst_bf16(ctx.pool(id), row_diff*src1_ncols); |
| 1263 | |
| 1264 | const float alpha_f32 = 1.0f; |
| 1265 | const float beta_f32 = 0.0f; |
| 1266 | |
| 1267 | CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream)); |
| 1268 | CUBLAS_CHECK( |
| 1269 | cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N, |
| 1270 | row_diff, src1_ncols, ne10, |
| 1271 | &alpha_f32, src0_ptr, CUDA_R_16BF, ne00, |
| 1272 | src1_ptr, CUDA_R_16BF, ne10, |
| 1273 | &beta_f32, dst_bf16.get(), CUDA_R_16BF, ldc, |
| 1274 | CUBLAS_COMPUTE_32F, |
| 1275 | CUBLAS_GEMM_DEFAULT_TENSOR_OP)); |
| 1276 | |
| 1277 | const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_BF16); |
| 1278 | to_fp32_cuda(dst_bf16.get(), dst_dd_i, row_diff*src1_ncols, stream); |
| 1279 | } else if (fast_fp16_hardware_available(cc) && use_fp16) { |
| 1280 | // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32 |
| 1281 | ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id)); |
| 1282 | if (src0->type != GGML_TYPE_F16) { |
| 1283 | const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type); |
| 1284 | GGML_ASSERT(to_fp16_cuda != nullptr); |
| 1285 | size_t ne = row_diff*ne00; |
| 1286 | src0_as_f16.alloc(ne); |
| 1287 | to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream); |
| 1288 | } |
| 1289 | const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get(); |
| 1290 | |
| 1291 | ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool(id)); |
| 1292 | if (src1->type != GGML_TYPE_F16) { |
| 1293 | const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); |
| 1294 | GGML_ASSERT(to_fp16_cuda != nullptr); |
| 1295 | size_t ne = src1_ncols*ne10; |
| 1296 | src1_as_f16.alloc(ne); |
| 1297 | to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream); |
| 1298 | } |
| 1299 | const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get(); |
| 1300 | |
| 1301 | CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream)); |
| 1302 | |
| 1303 | if (GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA4(cc)) { |
| 1304 | const float alpha = 1.0f; |
| 1305 | const float beta = 0.0f; |
| 1306 | CUBLAS_CHECK( |
| 1307 | cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N, |
| 1308 | row_diff, src1_ncols, ne10, |
| 1309 | &alpha, src0_ptr, CUDA_R_16F, ne00, |
| 1310 | src1_ptr, CUDA_R_16F, ne10, |
| 1311 | &beta, dst_dd_i, CUDA_R_32F, ldc, |
| 1312 | CUBLAS_COMPUTE_32F, |
| 1313 | CUBLAS_GEMM_DEFAULT_TENSOR_OP)); |
| 1314 | } else { |
| 1315 | ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols); |
| 1316 | |
| 1317 | const half alpha_f16 = 1.0f; |
| 1318 | const half beta_f16 = 0.0f; |
| 1319 | |
| 1320 | CUBLAS_CHECK( |
| 1321 | cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N, |
| 1322 | row_diff, src1_ncols, ne10, |
| 1323 | &alpha_f16, src0_ptr, CUDA_R_16F, ne00, |
| 1324 | src1_ptr, CUDA_R_16F, ne10, |
| 1325 | &beta_f16, dst_f16.get(), CUDA_R_16F, ldc, |
| 1326 | CUBLAS_COMPUTE_16F, |
| 1327 | CUBLAS_GEMM_DEFAULT_TENSOR_OP)); |
| 1328 | |
| 1329 | const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); |
| 1330 | to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream); |
| 1331 | } |
| 1332 | } else { |
| 1333 | ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id)); |
| 1334 | ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id)); |
| 1335 | |
| 1336 | if (src0->type != GGML_TYPE_F32) { |
| 1337 | const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type); |
| 1338 | GGML_ASSERT(to_fp32_cuda != nullptr); |
| 1339 | src0_ddq_as_f32.alloc(row_diff*ne00); |
| 1340 | to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream); |
| 1341 | } |
| 1342 | if (src1->type != GGML_TYPE_F32) { |
| 1343 | const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type); |
| 1344 | GGML_ASSERT(to_fp32_cuda != nullptr); |
| 1345 | src1_ddq_as_f32.alloc(src1_ncols*ne10); |
| 1346 | to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream); |
| 1347 | } |
| 1348 | |
| 1349 | const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get(); |
| 1350 | const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get(); |
| 1351 | |
| 1352 | const float alpha = 1.0f; |
| 1353 | const float beta = 0.0f; |
| 1354 | |
| 1355 | CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream)); |
| 1356 | CUBLAS_CHECK( |
| 1357 | cublasSgemm(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N, |
| 1358 | row_diff, src1_ncols, ne10, |
| 1359 | &alpha, src0_ddf_i, ne00, |
| 1360 | src1_ddf1_i, ne10, |
| 1361 | &beta, dst_dd_i, ldc)); |
| 1362 | } |
| 1363 | |
| 1364 | GGML_UNUSED_VARS(dst, src1_ddq_i, src1_padded_row_size); |
| 1365 | } |
| 1366 | |
| 1367 | static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) { |
| 1368 | static bool peer_access_enabled = false; |
| 1369 | |
| 1370 | const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE; |
| 1371 | |
| 1372 | if (peer_access_enabled == enable_peer_access) { |
| 1373 | return; |
| 1374 | } |
| 1375 | |
| 1376 | #ifdef NDEBUG |
| 1377 | for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { |
| 1378 | ggml_cuda_set_device(device: id); |
| 1379 | CUDA_CHECK(cudaDeviceSynchronize()); |
| 1380 | } |
| 1381 | |
| 1382 | for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { |
| 1383 | ggml_cuda_set_device(device: id); |
| 1384 | |
| 1385 | for (int id_other = 0; id_other < ggml_backend_cuda_get_device_count(); ++id_other) { |
| 1386 | if (id == id_other) { |
| 1387 | continue; |
| 1388 | } |
| 1389 | if (id != main_device && id_other != main_device) { |
| 1390 | continue; |
| 1391 | } |
| 1392 | |
| 1393 | int can_access_peer; |
| 1394 | CUDA_CHECK(cudaDeviceCanAccessPeer(canAccessPeer: &can_access_peer, device: id, peerDevice: id_other)); |
| 1395 | if (can_access_peer) { |
| 1396 | if (enable_peer_access) { |
| 1397 | cudaError_t err = cudaDeviceEnablePeerAccess(peerDevice: id_other, flags: 0); |
| 1398 | if (err != cudaErrorPeerAccessAlreadyEnabled) { |
| 1399 | CUDA_CHECK(err); |
| 1400 | } else { |
| 1401 | // reset the error |
| 1402 | (void)cudaGetLastError(); |
| 1403 | } |
| 1404 | } else { |
| 1405 | cudaError_t err = cudaDeviceDisablePeerAccess(peerDevice: id_other); |
| 1406 | if (err != cudaErrorPeerAccessNotEnabled) { |
| 1407 | CUDA_CHECK(err); |
| 1408 | } else { |
| 1409 | // reset the error |
| 1410 | (void)cudaGetLastError(); |
| 1411 | } |
| 1412 | } |
| 1413 | } |
| 1414 | } |
| 1415 | } |
| 1416 | |
| 1417 | ggml_cuda_set_device(device: main_device); |
| 1418 | #endif // NDEBUG |
| 1419 | |
| 1420 | peer_access_enabled = enable_peer_access; |
| 1421 | |
| 1422 | GGML_UNUSED(main_device); |
| 1423 | } |
| 1424 | |
| 1425 | static cudaError_t ggml_cuda_Memcpy2DPeerAsync( |
| 1426 | void * dst, int dstDevice, size_t dpitch, void * src, int srcDevice, size_t spitch, size_t width, size_t height, cudaStream_t stream) { |
| 1427 | |
| 1428 | #if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) |
| 1429 | // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices |
| 1430 | cudaMemcpy3DPeerParms p = {}; |
| 1431 | p.dstDevice = dstDevice; |
| 1432 | p.dstPtr = make_cudaPitchedPtr(d: dst, p: dpitch, xsz: dpitch, ysz: height); |
| 1433 | p.srcDevice = srcDevice; |
| 1434 | p.srcPtr = make_cudaPitchedPtr(d: src, p: spitch, xsz: spitch, ysz: height); |
| 1435 | p.extent = make_cudaExtent(w: width, h: height, d: 1); |
| 1436 | return cudaMemcpy3DPeerAsync(p: &p, stream); |
| 1437 | #else |
| 1438 | // HIP does not support cudaMemcpy3DPeerAsync or vmm pools |
| 1439 | GGML_UNUSED(dstDevice); |
| 1440 | GGML_UNUSED(srcDevice); |
| 1441 | return cudaMemcpy2DAsync(dst, dpitch, src, spitch, width, height, cudaMemcpyDeviceToDevice, stream); |
| 1442 | #endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) |
| 1443 | } |
| 1444 | |
| 1445 | static void ggml_cuda_op_mul_mat( |
| 1446 | ggml_backend_cuda_context & ctx, |
| 1447 | const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op, |
| 1448 | quantize_cuda_t quantize_src1) { |
| 1449 | |
| 1450 | const int64_t ne00 = src0->ne[0]; |
| 1451 | const int64_t ne01 = src0->ne[1]; |
| 1452 | const int64_t ne02 = src0->ne[2]; |
| 1453 | const int64_t ne03 = src0->ne[3]; |
| 1454 | |
| 1455 | const int64_t ne10 = src1->ne[0]; |
| 1456 | const int64_t ne11 = src1->ne[1]; |
| 1457 | const int64_t ne12 = src1->ne[2]; |
| 1458 | const int64_t ne13 = src1->ne[3]; |
| 1459 | const int64_t nrows1 = ggml_nrows(src1); |
| 1460 | |
| 1461 | const int64_t ne0 = dst->ne[0]; |
| 1462 | const int64_t ne1 = dst->ne[1]; |
| 1463 | |
| 1464 | // const int64_t nb10 = src1->nb[0]; |
| 1465 | const int64_t nb11 = src1->nb[1]; |
| 1466 | const int64_t nb12 = src1->nb[2]; |
| 1467 | const int64_t nb13 = src1->nb[3]; |
| 1468 | |
| 1469 | const int64_t nb2 = dst->nb[2]; |
| 1470 | const int64_t nb3 = dst->nb[3]; |
| 1471 | |
| 1472 | ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context; |
| 1473 | ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *) dst->buffer->context; |
| 1474 | |
| 1475 | GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1)); |
| 1476 | |
| 1477 | GGML_ASSERT(ne12 % ne02 == 0); |
| 1478 | GGML_ASSERT(ne13 % ne03 == 0); |
| 1479 | |
| 1480 | const int64_t i02_divisor = ne12 / ne02; |
| 1481 | const int64_t i03_divisor = ne13 / ne03; |
| 1482 | |
| 1483 | const size_t src0_ts = ggml_type_size(src0->type); |
| 1484 | const size_t src0_bs = ggml_blck_size(src0->type); |
| 1485 | const size_t q8_1_ts = sizeof(block_q8_1); |
| 1486 | const size_t q8_1_bs = QK8_1; |
| 1487 | |
| 1488 | const bool src0_is_contiguous = ggml_is_contiguous(src0); |
| 1489 | const bool src1_is_contiguous = ggml_is_contiguous(src1); |
| 1490 | |
| 1491 | const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING); |
| 1492 | |
| 1493 | const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft); |
| 1494 | GGML_ASSERT(!(split && ne02 > 1)); |
| 1495 | GGML_ASSERT(!(split && ne03 > 1)); |
| 1496 | GGML_ASSERT(!(split && ne02 < ne12)); |
| 1497 | GGML_ASSERT(!(split && ne03 < ne13)); |
| 1498 | |
| 1499 | ggml_tensor_extra_gpu * = split ? (ggml_tensor_extra_gpu *) src0->extra : nullptr; |
| 1500 | |
| 1501 | |
| 1502 | std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split; |
| 1503 | if (split) { |
| 1504 | ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context; |
| 1505 | tensor_split = buft_ctx->tensor_split; |
| 1506 | } |
| 1507 | |
| 1508 | struct dev_data { |
| 1509 | int cc; |
| 1510 | |
| 1511 | ggml_cuda_pool_alloc<char> src0_dd_alloc; |
| 1512 | ggml_cuda_pool_alloc<float> src1_ddf_alloc; |
| 1513 | ggml_cuda_pool_alloc<char> src1_ddq_alloc; |
| 1514 | ggml_cuda_pool_alloc<float> dst_dd_alloc; |
| 1515 | |
| 1516 | char * src0_dd = nullptr; |
| 1517 | float * src1_ddf = nullptr; // float |
| 1518 | char * src1_ddq = nullptr; // q8_1 |
| 1519 | float * dst_dd = nullptr; |
| 1520 | |
| 1521 | int64_t row_low; |
| 1522 | int64_t row_high; |
| 1523 | }; |
| 1524 | |
| 1525 | dev_data dev[GGML_CUDA_MAX_DEVICES]; |
| 1526 | |
| 1527 | int used_devices = 0; |
| 1528 | |
| 1529 | for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { |
| 1530 | dev[id].cc = ggml_cuda_info().devices[id].cc; |
| 1531 | |
| 1532 | // by default, use all rows |
| 1533 | dev[id].row_low = 0; |
| 1534 | dev[id].row_high = ne01; |
| 1535 | |
| 1536 | // for multi GPU, get the row boundaries from tensor split |
| 1537 | // and round to mul_mat_q tile sizes |
| 1538 | if (split) { |
| 1539 | const int64_t rounding = get_row_rounding(tensor_split); |
| 1540 | |
| 1541 | if (id != 0) { |
| 1542 | dev[id].row_low = ne01*tensor_split[id]; |
| 1543 | if (dev[id].row_low < ne01) { |
| 1544 | dev[id].row_low -= dev[id].row_low % rounding; |
| 1545 | } |
| 1546 | } |
| 1547 | |
| 1548 | if (id != ggml_backend_cuda_get_device_count() - 1) { |
| 1549 | dev[id].row_high = ne01*tensor_split[id + 1]; |
| 1550 | if (dev[id].row_high < ne01) { |
| 1551 | dev[id].row_high -= dev[id].row_high % rounding; |
| 1552 | } |
| 1553 | } |
| 1554 | } |
| 1555 | } |
| 1556 | |
| 1557 | for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { |
| 1558 | if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) { |
| 1559 | continue; |
| 1560 | } |
| 1561 | |
| 1562 | used_devices++; |
| 1563 | |
| 1564 | const bool src1_on_device = id == src1_ctx->device; |
| 1565 | const bool dst_on_device = id == dst_ctx->device; |
| 1566 | |
| 1567 | ggml_cuda_set_device(device: id); |
| 1568 | cudaStream_t stream = ctx.stream(id, 0); |
| 1569 | |
| 1570 | if (src0_is_contiguous) { |
| 1571 | dev[id].src0_dd = split ? (char *) src0_extra->data_device[id] : (char *) src0->data; |
| 1572 | } else { |
| 1573 | // If src0 is not contiguous it will be copied to a temporary buffer. |
| 1574 | // This buffer needs to be cleared entirely because multiple regions will function as padding. |
| 1575 | const size_t nbytes_data = ggml_nbytes(src0); |
| 1576 | const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING); |
| 1577 | dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), nbytes_data + nbytes_padding); |
| 1578 | CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd, 0, nbytes_data + nbytes_padding, stream)); |
| 1579 | } |
| 1580 | |
| 1581 | // If src0 is on a temporary compute buffer (partial offloading) there may be some padding that needs to be cleared: |
| 1582 | if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_is_quantized(src0->type) && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) { |
| 1583 | GGML_ASSERT(ggml_is_contiguously_allocated(src0)); |
| 1584 | GGML_ASSERT(!src0->view_src); |
| 1585 | const size_t nbytes_data = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00); |
| 1586 | const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING); |
| 1587 | CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data, 0, nbytes_padding, stream)); |
| 1588 | } |
| 1589 | |
| 1590 | if (src1_on_device && src1_is_contiguous) { |
| 1591 | dev[id].src1_ddf = (float *) src1->data; |
| 1592 | } else { |
| 1593 | dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ctx.pool(id), ggml_nelements(src1)); |
| 1594 | } |
| 1595 | |
| 1596 | if (quantize_src1) { |
| 1597 | size_t src_1_ddq_size = nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs; |
| 1598 | if (quantize_src1 == quantize_mmq_q8_1_cuda) { |
| 1599 | src_1_ddq_size += get_mmq_x_max_host(dev[id].cc)*sizeof(block_q8_1_mmq); |
| 1600 | } |
| 1601 | dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(ctx.pool(id), src_1_ddq_size); |
| 1602 | |
| 1603 | if (src1_on_device && src1_is_contiguous) { |
| 1604 | quantize_src1( |
| 1605 | dev[id].src1_ddf, nullptr, dev[id].src1_ddq, src0->type, ne10, |
| 1606 | nb11/sizeof(float), nb12/sizeof(float), nb13/sizeof(float), |
| 1607 | src1_padded_col_size, ne11, ne12, ne13, stream); |
| 1608 | CUDA_CHECK(cudaGetLastError()); |
| 1609 | } |
| 1610 | } |
| 1611 | |
| 1612 | if (dst_on_device) { |
| 1613 | dev[id].dst_dd = (float *) dst->data; |
| 1614 | } else { |
| 1615 | const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst); |
| 1616 | dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(ctx.pool(id), size_dst_ddf); |
| 1617 | } |
| 1618 | } |
| 1619 | |
| 1620 | // if multiple devices are used they need to wait for the main device |
| 1621 | // here an event is recorded that signals that the main device has finished calculating the input data |
| 1622 | if (split && used_devices > 1) { |
| 1623 | ggml_cuda_set_device(ctx.device); |
| 1624 | CUDA_CHECK(cudaEventRecord(src0_extra->events[ctx.device][0], ctx.stream())); |
| 1625 | } |
| 1626 | |
| 1627 | const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11; |
| 1628 | for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) { |
| 1629 | const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_CUDA_MAX_STREAMS : 0; |
| 1630 | const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride; |
| 1631 | |
| 1632 | for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { |
| 1633 | if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) { |
| 1634 | continue; |
| 1635 | } |
| 1636 | |
| 1637 | const bool src1_on_device = id == src1_ctx->device; |
| 1638 | const bool dst_on_device = id == dst_ctx->device; |
| 1639 | const int64_t row_diff = dev[id].row_high - dev[id].row_low; |
| 1640 | |
| 1641 | ggml_cuda_set_device(device: id); |
| 1642 | cudaStream_t stream = ctx.stream(id, is); |
| 1643 | |
| 1644 | // wait for main GPU data if necessary |
| 1645 | if (split && (id != ctx.device || is != 0)) { |
| 1646 | CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[ctx.device][0], 0)); |
| 1647 | } |
| 1648 | |
| 1649 | for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) { |
| 1650 | const int64_t i03 = i0 / ne12; |
| 1651 | const int64_t i02 = i0 % ne12; |
| 1652 | |
| 1653 | size_t src1_ddq_i_offset = i0*ne11 * src1_padded_col_size*q8_1_ts/q8_1_bs; |
| 1654 | if (quantize_src1 == quantize_mmq_q8_1_cuda) { |
| 1655 | src1_ddq_i_offset += src1_col_0 * sizeof(block_q8_1_mmq); |
| 1656 | } else { |
| 1657 | src1_ddq_i_offset += src1_col_0 * src1_padded_col_size*q8_1_ts/q8_1_bs; |
| 1658 | } |
| 1659 | |
| 1660 | // for split tensors the data begins at i0 == i0_offset_low |
| 1661 | const size_t nbytes_src0_matrix = ne01*ne00*src0_ts / src0_bs; |
| 1662 | char * src0_dd_i = dev[id].src0_dd + ((i03/i03_divisor)*ne02 + (i02/i02_divisor)) * nbytes_src0_matrix; |
| 1663 | float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10; |
| 1664 | char * src1_ddq_i = dev[id].src1_ddq + src1_ddq_i_offset; |
| 1665 | float * dst_dd_i = dev[id].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff); |
| 1666 | |
| 1667 | // the main device memory buffer can be on VRAM scratch, with space for all partial results |
| 1668 | // in that case an offset on dst_ddf_i is needed |
| 1669 | if (id == ctx.device) { |
| 1670 | dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split |
| 1671 | } |
| 1672 | |
| 1673 | // copy src0, src1 to device if necessary |
| 1674 | if (src1_is_contiguous) { |
| 1675 | if (id != ctx.device) { |
| 1676 | if (quantize_src1) { |
| 1677 | char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset; |
| 1678 | if (quantize_src1 == quantize_mmq_q8_1_cuda) { |
| 1679 | const size_t pitch = ne11*sizeof(block_q8_1_mmq); |
| 1680 | const size_t width = src1_ncols*sizeof(block_q8_1_mmq); |
| 1681 | const size_t height = src1_padded_col_size/(4*QK8_1); |
| 1682 | CUDA_CHECK(ggml_cuda_Memcpy2DPeerAsync(src1_ddq_i, id, pitch, src1_ddq_i_source, ctx.device, pitch, width, height, stream)); |
| 1683 | } else { |
| 1684 | CUDA_CHECK(cudaMemcpyPeerAsync( |
| 1685 | src1_ddq_i, id, src1_ddq_i_source, ctx.device, src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream)); |
| 1686 | } |
| 1687 | } else { |
| 1688 | float * src1_ddf_i_source = (float *) src1->data; |
| 1689 | src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10; |
| 1690 | CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, ctx.device, |
| 1691 | src1_ncols*ne10*sizeof(float), stream)); |
| 1692 | } |
| 1693 | } |
| 1694 | } else if (src1_on_device && !src1_is_contiguous) { |
| 1695 | CUDA_CHECK(ggml_cuda_cpy_tensor_2d( |
| 1696 | dst: src1_ddf_i, src: src1, i3: i03, i2: i02, i1_low: src1_col_0, i1_high: src1_col_0+src1_ncols, stream)); |
| 1697 | } else { |
| 1698 | GGML_ABORT("fatal error" ); |
| 1699 | } |
| 1700 | |
| 1701 | if (quantize_src1 && !src1_is_contiguous) { |
| 1702 | quantize_src1( |
| 1703 | src1_ddf_i, nullptr, src1_ddq_i, src0->type, ne10, ne10, ne11*ne10, ne12*ne11*ne10, |
| 1704 | src1_padded_col_size, src1_ncols, 1, 1, stream); |
| 1705 | CUDA_CHECK(cudaGetLastError()); |
| 1706 | } |
| 1707 | |
| 1708 | if (src1_col_0 == 0 && !src0_is_contiguous && i03 % i03_divisor == 0 && i02 % i02_divisor == 0) { |
| 1709 | CUDA_CHECK(ggml_cuda_cpy_tensor_2d( |
| 1710 | src0_dd_i, src0, i03/i03_divisor, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream)); |
| 1711 | } |
| 1712 | |
| 1713 | // do the computation |
| 1714 | op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i, |
| 1715 | dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream); |
| 1716 | CUDA_CHECK(cudaGetLastError()); |
| 1717 | |
| 1718 | // copy dst to host or other device if necessary |
| 1719 | if (!dst_on_device) { |
| 1720 | void * dst_off_device = dst->data; |
| 1721 | if (split) { |
| 1722 | // src0 = weight matrix is saved as a transposed matrix for better memory layout. |
| 1723 | // dst is NOT transposed. |
| 1724 | // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU. |
| 1725 | // Instead they need to be copied to the correct slice in ne0 = dst row index. |
| 1726 | // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results. |
| 1727 | float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3); |
| 1728 | GGML_ASSERT(dst->nb[1] == ne0*sizeof(float)); |
| 1729 | dhf_dst_i += src1_col_0*ne0 + dev[id].row_low; |
| 1730 | CUDA_CHECK(ggml_cuda_Memcpy2DPeerAsync( |
| 1731 | dhf_dst_i, ctx.device, ne0*sizeof(float), dst_dd_i, id, row_diff*sizeof(float), row_diff*sizeof(float), src1_ncols, stream)); |
| 1732 | } else { |
| 1733 | float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3); |
| 1734 | GGML_ASSERT(dst->nb[1] == ne0*sizeof(float)); |
| 1735 | dhf_dst_i += src1_col_0*ne0; |
| 1736 | CUDA_CHECK(cudaMemcpyAsync(dst: dhf_dst_i, src: dst_dd_i, count: src1_ncols*ne0*sizeof(float), kind: cudaMemcpyDeviceToDevice, stream)); |
| 1737 | } |
| 1738 | } |
| 1739 | |
| 1740 | // add event for the main device to wait on until other device is done |
| 1741 | if (split && (id != ctx.device || is != 0)) { |
| 1742 | CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream)); |
| 1743 | } |
| 1744 | } |
| 1745 | } |
| 1746 | } |
| 1747 | |
| 1748 | // main device waits for all other devices to be finished |
| 1749 | if (split && ggml_backend_cuda_get_device_count() > 1) { |
| 1750 | int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE; |
| 1751 | is_max = is_max <= GGML_CUDA_MAX_STREAMS ? is_max : GGML_CUDA_MAX_STREAMS; |
| 1752 | |
| 1753 | ggml_cuda_set_device(ctx.device); |
| 1754 | for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { |
| 1755 | if (dev[id].row_low == dev[id].row_high) { |
| 1756 | continue; |
| 1757 | } |
| 1758 | for (int64_t is = 0; is < is_max; ++is) { |
| 1759 | CUDA_CHECK(cudaStreamWaitEvent(ctx.stream(), src0_extra->events[id][is], 0)); |
| 1760 | } |
| 1761 | } |
| 1762 | } |
| 1763 | } |
| 1764 | |
| 1765 | static __global__ void k_compute_batched_ptrs( |
| 1766 | const void * src0_as_f16, const void * src1_as_f16, char * dst, |
| 1767 | const void ** ptrs_src, void ** ptrs_dst, |
| 1768 | int64_t ne12, int64_t ne13, |
| 1769 | int64_t ne23, |
| 1770 | size_t nb02, size_t nb03, |
| 1771 | size_t nb12, size_t nb13, |
| 1772 | size_t nbd2, size_t nbd3, |
| 1773 | int64_t r2, int64_t r3) { |
| 1774 | const int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x; |
| 1775 | const int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y; |
| 1776 | |
| 1777 | if (i13 >= ne13 || i12 >= ne12) { |
| 1778 | return; |
| 1779 | } |
| 1780 | |
| 1781 | const int64_t i03 = i13 / r3; |
| 1782 | const int64_t i02 = i12 / r2; |
| 1783 | |
| 1784 | ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03; |
| 1785 | ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13; |
| 1786 | ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3; |
| 1787 | } |
| 1788 | |
| 1789 | // Type traits for mapping ggml types to CUDA/cuBLAS types |
| 1790 | template<ggml_type T> |
| 1791 | struct batched_mul_mat_traits; |
| 1792 | |
| 1793 | template<> |
| 1794 | struct batched_mul_mat_traits<GGML_TYPE_F32> { |
| 1795 | using cuda_type = float; |
| 1796 | static inline const cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F; |
| 1797 | static inline const cudaDataType_t data_type = CUDA_R_32F; |
| 1798 | static inline const ggml_type ggml_type_val = GGML_TYPE_F32; |
| 1799 | static inline const float alpha = 1.0f; |
| 1800 | static inline const float beta = 0.0f; |
| 1801 | static inline const void* get_alpha() { static const float val = alpha; return &val; } |
| 1802 | static inline const void* get_beta() { static const float val = beta; return &val; } |
| 1803 | static inline auto get_nc_converter(ggml_type src_type) { return ggml_get_to_fp32_nc_cuda(src_type); } |
| 1804 | }; |
| 1805 | |
| 1806 | template<> |
| 1807 | struct batched_mul_mat_traits<GGML_TYPE_BF16> { |
| 1808 | using cuda_type = nv_bfloat16; |
| 1809 | static inline const cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F; |
| 1810 | static inline const cudaDataType_t data_type = CUDA_R_16BF; |
| 1811 | static inline const ggml_type ggml_type_val = GGML_TYPE_BF16; |
| 1812 | static inline const float alpha = 1.0f; |
| 1813 | static inline const float beta = 0.0f; |
| 1814 | static inline const void* get_alpha() { static const float val = alpha; return &val; } |
| 1815 | static inline const void* get_beta() { static const float val = beta; return &val; } |
| 1816 | static inline auto get_nc_converter(ggml_type src_type) { return ggml_get_to_bf16_nc_cuda(src_type); } |
| 1817 | }; |
| 1818 | |
| 1819 | template<> |
| 1820 | struct batched_mul_mat_traits<GGML_TYPE_F16> { |
| 1821 | using cuda_type = half; |
| 1822 | static inline const cublasComputeType_t compute_type = CUBLAS_COMPUTE_16F; |
| 1823 | static inline const cudaDataType_t data_type = CUDA_R_16F; |
| 1824 | static inline const ggml_type ggml_type_val = GGML_TYPE_F16; |
| 1825 | static inline const half alpha = 1.0; |
| 1826 | static inline const half beta = 0.0; |
| 1827 | static inline const void* get_alpha() { static const half val = alpha; return &val; } |
| 1828 | static inline const void* get_beta() { static const half val = beta; return &val; } |
| 1829 | static inline auto get_nc_converter(ggml_type src_type) { return ggml_get_to_fp16_nc_cuda(src_type); } |
| 1830 | }; |
| 1831 | |
| 1832 | template<ggml_type src0_type> |
| 1833 | static void ggml_cuda_mul_mat_batched_cublas_impl(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { |
| 1834 | using traits = batched_mul_mat_traits<src0_type>; |
| 1835 | using cuda_t = typename traits::cuda_type; |
| 1836 | |
| 1837 | GGML_ASSERT(!ggml_is_transposed(src0)); |
| 1838 | GGML_ASSERT(!ggml_is_transposed(src1)); |
| 1839 | GGML_ASSERT(!ggml_backend_buft_is_cuda_split(src0->buffer->buft)); |
| 1840 | GGML_ASSERT(src0->type == src0_type); |
| 1841 | GGML_ASSERT(ggml_is_contiguous(dst)); |
| 1842 | |
| 1843 | // Byte offsets and tensor dimensions are currently used in an inconsistent way for dst. |
| 1844 | // As long as dst is contiguous this does not matter though. |
| 1845 | |
| 1846 | GGML_TENSOR_BINARY_OP_LOCALS |
| 1847 | |
| 1848 | const int64_t ne_dst = ggml_nelements(dst); |
| 1849 | cudaStream_t main_stream = ctx.stream(); |
| 1850 | CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream)); |
| 1851 | |
| 1852 | float * dst_ddf = (float *) dst->data; |
| 1853 | const size_t ts_src1 = ggml_type_size(src1->type); |
| 1854 | GGML_ASSERT(nb10 == ts_src1); |
| 1855 | int64_t s11 = nb11 / ts_src1; |
| 1856 | int64_t s12 = nb12 / ts_src1; |
| 1857 | int64_t s13 = nb13 / ts_src1; |
| 1858 | |
| 1859 | const cuda_t * src0_ptr = nullptr; |
| 1860 | const cuda_t * src1_ptr = nullptr; |
| 1861 | |
| 1862 | ggml_cuda_pool_alloc<cuda_t> src0_alloc(ctx.pool()); |
| 1863 | ggml_cuda_pool_alloc<cuda_t> src1_alloc(ctx.pool()); |
| 1864 | |
| 1865 | bool is_src0_cont_2 = ggml_is_contiguous_2(src0); |
| 1866 | bool is_src1_cont_2 = ggml_is_contiguous_2(src1); |
| 1867 | |
| 1868 | // Handle src0 |
| 1869 | src0_ptr = (const cuda_t *) src0->data; |
| 1870 | |
| 1871 | // Handle src1 - convert if necessary |
| 1872 | if (src1->type == src0_type) { |
| 1873 | src1_ptr = (const cuda_t *) src1->data; |
| 1874 | } else { |
| 1875 | // Convert src1 to target type using traits conversion functions |
| 1876 | const int64_t ne_src1 = ggml_nelements(src1); |
| 1877 | src1_alloc.alloc(ne_src1); |
| 1878 | |
| 1879 | const auto convert_func = traits::get_nc_converter(src1->type); |
| 1880 | GGML_ASSERT(convert_func != nullptr); |
| 1881 | convert_func(src1->data, src1_alloc.get(), ne10, ne11, ne12, ne13, s11, s12, s13, main_stream); |
| 1882 | src1_ptr = src1_alloc.get(); |
| 1883 | s11 = ne10; |
| 1884 | s12 = ne11*s11; |
| 1885 | s13 = ne12*s12; |
| 1886 | |
| 1887 | is_src1_cont_2 = true; |
| 1888 | } |
| 1889 | |
| 1890 | // Setup destination buffer |
| 1891 | ggml_cuda_pool_alloc<cuda_t> dst_temp(ctx.pool()); |
| 1892 | char * dst_t; |
| 1893 | size_t nbd2 = dst->nb[2]; |
| 1894 | size_t nbd3 = dst->nb[3]; |
| 1895 | |
| 1896 | cublasComputeType_t cu_compute_type = traits::compute_type; |
| 1897 | cudaDataType_t cu_data_type = traits::data_type; |
| 1898 | cudaDataType_t cu_data_type_a = traits::data_type; |
| 1899 | cudaDataType_t cu_data_type_b = traits::data_type; |
| 1900 | const void * alpha = traits::get_alpha(); |
| 1901 | const void * beta = traits::get_beta(); |
| 1902 | const float alpha_f32 = 1.0f; |
| 1903 | const float beta_f32 = 0.0f; |
| 1904 | |
| 1905 | if (dst->op_params[0] == GGML_PREC_DEFAULT) { |
| 1906 | if constexpr (src0_type == GGML_TYPE_F32) { |
| 1907 | dst_t = (char *) dst_ddf; // Direct F32 output |
| 1908 | } else { |
| 1909 | dst_t = (char *) dst_temp.alloc(ne_dst); |
| 1910 | nbd2 /= sizeof(float) / sizeof(cuda_t); |
| 1911 | nbd3 /= sizeof(float) / sizeof(cuda_t); |
| 1912 | } |
| 1913 | } else { |
| 1914 | dst_t = (char *) dst_ddf; |
| 1915 | cu_compute_type = CUBLAS_COMPUTE_32F; |
| 1916 | cu_data_type = CUDA_R_32F; |
| 1917 | alpha = &alpha_f32; |
| 1918 | beta = &beta_f32; |
| 1919 | } |
| 1920 | |
| 1921 | int id = ggml_cuda_get_device(); |
| 1922 | const int cc = ggml_cuda_info().devices[id].cc; |
| 1923 | if (GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA4(cc)) { |
| 1924 | cu_compute_type = CUBLAS_COMPUTE_32F; |
| 1925 | alpha = &alpha_f32; |
| 1926 | beta = &beta_f32; |
| 1927 | } |
| 1928 | |
| 1929 | GGML_ASSERT(ne12 % ne02 == 0); |
| 1930 | GGML_ASSERT(ne13 % ne03 == 0); |
| 1931 | |
| 1932 | // broadcast factors |
| 1933 | const int64_t r2 = ne12/ne02; |
| 1934 | const int64_t r3 = ne13/ne03; |
| 1935 | |
| 1936 | if (r2 == 1 && r3 == 1 && is_src0_cont_2 && is_src1_cont_2) { |
| 1937 | // with a [0, 2, 1, 3] perm. and ne02==1 the matrix strides need to be determined from dim 3: |
| 1938 | const int64_t sma = ne02 == 1 ? nb03/nb00 : nb02/nb00; |
| 1939 | const int64_t smb = ne12 == 1 ? s13 : s12; |
| 1940 | |
| 1941 | // there is no broadcast and src0, src1 are contiguous across dims 2, 3 |
| 1942 | // use cublasGemmStridedBatchedEx |
| 1943 | CUBLAS_CHECK( |
| 1944 | cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N, |
| 1945 | ne01, ne11, ne10, |
| 1946 | alpha, src0_ptr, cu_data_type_a, nb01/nb00, sma, // strideA |
| 1947 | src1_ptr, cu_data_type_b, s11, smb, // strideB |
| 1948 | beta, dst_t, cu_data_type, ne0, ne1*ne0, // strideC |
| 1949 | ne12*ne13, |
| 1950 | cu_compute_type, |
| 1951 | CUBLAS_GEMM_DEFAULT_TENSOR_OP)); |
| 1952 | } else { |
| 1953 | // use cublasGemmBatchedEx |
| 1954 | const int64_t ne23 = ne12*ne13; |
| 1955 | |
| 1956 | ggml_cuda_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23); |
| 1957 | ggml_cuda_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23); |
| 1958 | |
| 1959 | size_t src1_stride_size = sizeof(cuda_t); |
| 1960 | |
| 1961 | const int threads_x = 16; |
| 1962 | const int threads_y = 16; |
| 1963 | dim3 block_dims(threads_x, threads_y); |
| 1964 | |
| 1965 | dim3 grid_dims( |
| 1966 | (ne13 + threads_x - 1) / threads_x, |
| 1967 | (ne12 + threads_y - 1) / threads_y |
| 1968 | ); |
| 1969 | k_compute_batched_ptrs<<<grid_dims, block_dims, 0, main_stream>>>( |
| 1970 | src0_ptr, src1_ptr, dst_t, |
| 1971 | ptrs_src.get(), ptrs_dst.get(), |
| 1972 | ne12, ne13, |
| 1973 | ne23, |
| 1974 | nb02, nb03, |
| 1975 | (src1->type == src0_type) ? nb12 : s12*src1_stride_size, |
| 1976 | (src1->type == src0_type) ? nb13 : s13*src1_stride_size, |
| 1977 | nbd2, nbd3, |
| 1978 | r2, r3); |
| 1979 | |
| 1980 | CUDA_CHECK(cudaGetLastError()); |
| 1981 | |
| 1982 | CUBLAS_CHECK( |
| 1983 | cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N, |
| 1984 | ne01, ne11, ne10, |
| 1985 | alpha, (const void **) (ptrs_src.get() + 0*ne23), cu_data_type_a, nb01/nb00, |
| 1986 | (const void **) (ptrs_src.get() + 1*ne23), cu_data_type_b, s11, |
| 1987 | beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne0, |
| 1988 | ne23, |
| 1989 | cu_compute_type, |
| 1990 | CUBLAS_GEMM_DEFAULT_TENSOR_OP)); |
| 1991 | } |
| 1992 | |
| 1993 | // Convert output back to F32 if needed |
| 1994 | if (dst->op_params[0] == GGML_PREC_DEFAULT && cu_data_type != CUDA_R_32F) { |
| 1995 | const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(traits::ggml_type_val); |
| 1996 | to_fp32_cuda(dst_temp.get(), dst_ddf, ne_dst, main_stream); |
| 1997 | } |
| 1998 | } |
| 1999 | |
| 2000 | static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { |
| 2001 | GGML_ASSERT(src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16 || src0->type == GGML_TYPE_F32); |
| 2002 | |
| 2003 | switch (src0->type) { |
| 2004 | case GGML_TYPE_F32: |
| 2005 | ggml_cuda_mul_mat_batched_cublas_impl<GGML_TYPE_F32>(ctx, src0, src1, dst); |
| 2006 | break; |
| 2007 | case GGML_TYPE_BF16: |
| 2008 | ggml_cuda_mul_mat_batched_cublas_impl<GGML_TYPE_BF16>(ctx, src0, src1, dst); |
| 2009 | break; |
| 2010 | case GGML_TYPE_F16: |
| 2011 | ggml_cuda_mul_mat_batched_cublas_impl<GGML_TYPE_F16>(ctx, src0, src1, dst); |
| 2012 | break; |
| 2013 | default: |
| 2014 | GGML_ABORT("Unsupported type" ); |
| 2015 | } |
| 2016 | } |
| 2017 | |
| 2018 | static bool ggml_cuda_should_fuse_mul_mat(const ggml_tensor * ffn_up, |
| 2019 | const ggml_tensor * ffn_gate, |
| 2020 | const ggml_tensor * glu, |
| 2021 | const ggml_tensor * ffn_up_bias = nullptr, |
| 2022 | const ggml_tensor * ffn_gate_bias = nullptr) { |
| 2023 | const bool has_bias = ffn_up_bias != nullptr || ffn_gate_bias != nullptr; |
| 2024 | |
| 2025 | if (has_bias && (!ffn_up_bias || !ffn_gate_bias)) { |
| 2026 | return false; |
| 2027 | } |
| 2028 | |
| 2029 | const bool is_mul_mat = ffn_up->op == GGML_OP_MUL_MAT && ffn_gate->op == GGML_OP_MUL_MAT && glu->op == GGML_OP_GLU; |
| 2030 | const bool is_mul_mat_id = ffn_up->op == GGML_OP_MUL_MAT_ID && ffn_gate->op == GGML_OP_MUL_MAT_ID && glu->op == GGML_OP_GLU; |
| 2031 | |
| 2032 | GGML_ASSERT(ffn_up && ffn_gate && glu); |
| 2033 | |
| 2034 | if (!is_mul_mat && !is_mul_mat_id) { |
| 2035 | return false; |
| 2036 | } |
| 2037 | |
| 2038 | const ggml_op expected_bias_op = is_mul_mat ? GGML_OP_ADD : GGML_OP_ADD_ID; |
| 2039 | |
| 2040 | if (has_bias) { |
| 2041 | if (ffn_up_bias->op != expected_bias_op || ffn_gate_bias->op != expected_bias_op) { |
| 2042 | return false; |
| 2043 | } |
| 2044 | |
| 2045 | if (glu->src[0] != ffn_gate_bias || glu->src[1] != ffn_up_bias) { |
| 2046 | return false; |
| 2047 | } |
| 2048 | |
| 2049 | if (expected_bias_op == GGML_OP_ADD) { |
| 2050 | const bool up_has_mul = ffn_up_bias->src[0] == ffn_up || ffn_up_bias->src[1] == ffn_up; |
| 2051 | const bool gate_has_mul = ffn_gate_bias->src[0] == ffn_gate || ffn_gate_bias->src[1] == ffn_gate; |
| 2052 | if (!up_has_mul || !gate_has_mul) { |
| 2053 | return false; |
| 2054 | } |
| 2055 | } else { // GGML_OP_ADD_ID |
| 2056 | if (ffn_up_bias->src[0] != ffn_up || ffn_gate_bias->src[0] != ffn_gate) { |
| 2057 | return false; |
| 2058 | } |
| 2059 | if (ffn_up_bias->src[2] != ffn_up->src[2] || ffn_gate_bias->src[2] != ffn_gate->src[2]) { |
| 2060 | return false; |
| 2061 | } |
| 2062 | } |
| 2063 | } else { |
| 2064 | if (glu->src[0] != ffn_gate && glu->src[1] != ffn_up) { |
| 2065 | return false; |
| 2066 | } |
| 2067 | } |
| 2068 | |
| 2069 | if (ffn_up->src[0]->type != ffn_gate->src[0]->type || !ggml_are_same_shape(ffn_up->src[0], ffn_gate->src[0]) || |
| 2070 | !ggml_are_same_stride(ffn_up->src[0], ffn_gate->src[0])) { |
| 2071 | return false; |
| 2072 | } |
| 2073 | |
| 2074 | if (ffn_up->src[1] != ffn_gate->src[1]) { |
| 2075 | return false; |
| 2076 | } |
| 2077 | |
| 2078 | if (ffn_up->src[2] && (ffn_up->src[2] != ffn_gate->src[2])) { |
| 2079 | return false; |
| 2080 | } |
| 2081 | |
| 2082 | static constexpr std::array<ggml_glu_op, 3> valid_glu_ops = { GGML_GLU_OP_SWIGLU, GGML_GLU_OP_GEGLU, GGML_GLU_OP_SWIGLU_OAI }; |
| 2083 | |
| 2084 | if (std::find(valid_glu_ops.begin(), valid_glu_ops.end(), ggml_get_glu_op(glu)) == valid_glu_ops.end()) { |
| 2085 | return false; |
| 2086 | } |
| 2087 | |
| 2088 | if (const bool swapped = ggml_get_op_params_i32(glu, 1); swapped) { |
| 2089 | return false; |
| 2090 | } |
| 2091 | |
| 2092 | const bool split = ggml_backend_buft_is_cuda_split(ffn_up->src[0]->buffer->buft) || |
| 2093 | ggml_backend_buft_is_cuda_split(ffn_gate->src[0]->buffer->buft); |
| 2094 | |
| 2095 | //TODO: add support for fusion for split buffers |
| 2096 | if (split) { |
| 2097 | return false; |
| 2098 | } |
| 2099 | |
| 2100 | return true; |
| 2101 | } |
| 2102 | |
| 2103 | static bool ggml_cuda_should_fuse_mul_mat_vec_f(const ggml_tensor * tensor) { |
| 2104 | ggml_tensor * src0 = tensor->src[0]; |
| 2105 | ggml_tensor * src1 = tensor->src[1]; |
| 2106 | const ggml_tensor * dst = tensor; |
| 2107 | |
| 2108 | const bool is_mul_mat_id = tensor->op == GGML_OP_MUL_MAT_ID; |
| 2109 | |
| 2110 | bool use_mul_mat_vec_f = |
| 2111 | (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16) && |
| 2112 | src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32; |
| 2113 | |
| 2114 | const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc; |
| 2115 | use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src0->nb, is_mul_mat_id ? src1->ne[2] : src1->ne[1]); |
| 2116 | |
| 2117 | const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft) || |
| 2118 | ggml_backend_buft_is_cuda_split(src1->buffer->buft); |
| 2119 | |
| 2120 | //TODO: add support for fusion for split buffers |
| 2121 | if (split) { |
| 2122 | return false; |
| 2123 | } |
| 2124 | |
| 2125 | //we only support fusion for ncols_dst = 1 |
| 2126 | if (tensor->op == GGML_OP_MUL_MAT && dst->ne[1] != 1) { |
| 2127 | return false; |
| 2128 | } |
| 2129 | |
| 2130 | if (tensor->op == GGML_OP_MUL_MAT_ID && dst->ne[2] != 1) { |
| 2131 | return false; |
| 2132 | } |
| 2133 | |
| 2134 | |
| 2135 | return use_mul_mat_vec_f; |
| 2136 | } |
| 2137 | |
| 2138 | static bool ggml_cuda_should_fuse_mul_mat_vec_q(const ggml_tensor * tensor) { |
| 2139 | ggml_tensor * src0 = tensor->src[0]; |
| 2140 | ggml_tensor * src1 = tensor->src[1]; |
| 2141 | const ggml_tensor * dst = tensor; |
| 2142 | |
| 2143 | const bool bad_padding_clear = ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && |
| 2144 | ggml_nbytes(src0) != ggml_backend_buffer_get_alloc_size(src0->buffer, src0) && |
| 2145 | src0->view_src; |
| 2146 | |
| 2147 | bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) && !bad_padding_clear && src1->type == GGML_TYPE_F32 && |
| 2148 | dst->type == GGML_TYPE_F32 && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE; |
| 2149 | |
| 2150 | // fusion is not universally faster on Pascal |
| 2151 | const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc; |
| 2152 | if (cc <= GGML_CUDA_CC_PASCAL) { |
| 2153 | return false; |
| 2154 | } |
| 2155 | //we only support fusion for ncols_dst = 1 |
| 2156 | if (tensor->op == GGML_OP_MUL_MAT && dst->ne[1] != 1) { |
| 2157 | return false; |
| 2158 | } |
| 2159 | |
| 2160 | if (tensor->op == GGML_OP_MUL_MAT_ID && dst->ne[2] != 1) { |
| 2161 | return false; |
| 2162 | } |
| 2163 | |
| 2164 | |
| 2165 | const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft) || |
| 2166 | ggml_backend_buft_is_cuda_split(src1->buffer->buft); |
| 2167 | |
| 2168 | //TODO: add support for fusion for split buffers |
| 2169 | if (split) { |
| 2170 | return false; |
| 2171 | } |
| 2172 | |
| 2173 | return use_mul_mat_vec_q; |
| 2174 | } |
| 2175 | |
| 2176 | static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { |
| 2177 | const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft); |
| 2178 | |
| 2179 | // If src0 is a temporary compute buffer it may have some padding that needs to be cleared for mul_mat_vec_q or mul_mat_q. |
| 2180 | // But if src0 is also a view of another tensor then this cannot be done safely because it may overwrite valid tensor data. |
| 2181 | // Therefore, in such cases use cuBLAS. |
| 2182 | const bool bad_padding_clear = ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE |
| 2183 | && ggml_nbytes(src0) != ggml_backend_buffer_get_alloc_size(src0->buffer, src0) && src0->view_src; |
| 2184 | |
| 2185 | bool use_mul_mat_vec_f = (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16) |
| 2186 | && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32; |
| 2187 | bool use_mul_mat_f = !ggml_is_quantized(src0->type) |
| 2188 | && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32; |
| 2189 | bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) && !bad_padding_clear |
| 2190 | && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 |
| 2191 | && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE; |
| 2192 | bool use_mul_mat_q = ggml_is_quantized(src0->type) && !bad_padding_clear |
| 2193 | && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32; |
| 2194 | |
| 2195 | bool any_gpus_with_slow_fp16 = false; |
| 2196 | |
| 2197 | if (split) { |
| 2198 | ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context; |
| 2199 | auto & tensor_split = buft_ctx->tensor_split; |
| 2200 | for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { |
| 2201 | // skip devices that are not going to do any work: |
| 2202 | if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) { |
| 2203 | continue; |
| 2204 | } |
| 2205 | |
| 2206 | const int cc = ggml_cuda_info().devices[id].cc; |
| 2207 | const int warp_size = ggml_cuda_info().devices[id].warp_size; |
| 2208 | use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]); |
| 2209 | use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src0->nb, src1->ne[1], /*mul_mat_id=*/false); |
| 2210 | use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src0->nb, src1->ne[1]); |
| 2211 | any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available(cc); |
| 2212 | } |
| 2213 | } else { |
| 2214 | const int cc = ggml_cuda_info().devices[ctx.device].cc; |
| 2215 | const int warp_size = ggml_cuda_info().devices[ctx.device].warp_size; |
| 2216 | use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]); |
| 2217 | use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src0->nb, src1->ne[1], /*mul_mat_id=*/false); |
| 2218 | use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src0->nb, src1->ne[1]); |
| 2219 | any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available(cc); |
| 2220 | } |
| 2221 | |
| 2222 | // debug helpers |
| 2223 | //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]); |
| 2224 | //printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]); |
| 2225 | //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]); |
| 2226 | //printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]); |
| 2227 | //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name); |
| 2228 | //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name); |
| 2229 | |
| 2230 | //TODO update for generic tensor parallelism |
| 2231 | const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc; |
| 2232 | bool use_batched_cublas_f16 = src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16); |
| 2233 | bool use_batched_cublas_bf16 = src0->type == GGML_TYPE_BF16 && bf16_mma_hardware_available(cc); |
| 2234 | bool use_batched_cublas_f32 = src0->type == GGML_TYPE_F32; |
| 2235 | |
| 2236 | if (!split && use_mul_mat_vec_f) { |
| 2237 | // the custom F16 vector kernel can be used over batched cuBLAS GEMM |
| 2238 | // but this is only faster for GPUs without tensor cores or with a thin src0 matrix (particularly KQV in attention) |
| 2239 | ggml_cuda_mul_mat_vec_f(ctx, src0, src1, nullptr, dst); |
| 2240 | } else if (!split && use_mul_mat_f) { |
| 2241 | ggml_cuda_mul_mat_f(ctx, src0, src1, nullptr, dst); |
| 2242 | } else if (!split && use_mul_mat_vec_q) { |
| 2243 | ggml_cuda_mul_mat_vec_q(ctx, src0, src1, nullptr, dst); |
| 2244 | } else if (!split && use_mul_mat_q) { |
| 2245 | ggml_cuda_mul_mat_q(ctx, src0, src1, nullptr, dst); |
| 2246 | } else if (!split && (use_batched_cublas_f16 || use_batched_cublas_bf16 || use_batched_cublas_f32) |
| 2247 | && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) { |
| 2248 | // general KQ + KQV multi-batch without FlashAttention |
| 2249 | ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst); |
| 2250 | } else if (use_mul_mat_vec_f) { |
| 2251 | ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_f, nullptr); |
| 2252 | } else if (use_mul_mat_vec_q) { |
| 2253 | ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, quantize_row_q8_1_cuda); |
| 2254 | } else if (use_mul_mat_q) { |
| 2255 | ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_q, quantize_mmq_q8_1_cuda); |
| 2256 | } else { |
| 2257 | ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_cublas, nullptr); |
| 2258 | } |
| 2259 | } |
| 2260 | |
| 2261 | static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { |
| 2262 | const ggml_tensor * src0 = dst->src[0]; |
| 2263 | const ggml_tensor * src1 = dst->src[1]; |
| 2264 | const ggml_tensor * ids = dst->src[2]; |
| 2265 | |
| 2266 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
| 2267 | GGML_ASSERT(dst->type == GGML_TYPE_F32); |
| 2268 | GGML_ASSERT(!ggml_backend_buft_is_cuda_split(src0->buffer->buft) && "mul_mat_id does not support split buffers" ); |
| 2269 | |
| 2270 | GGML_TENSOR_BINARY_OP_LOCALS |
| 2271 | |
| 2272 | const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc; |
| 2273 | |
| 2274 | if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { |
| 2275 | if (ne2 == 1) { |
| 2276 | if (ggml_is_quantized(src0->type)) { |
| 2277 | ggml_cuda_mul_mat_vec_q(ctx, src0, src1, ids, dst); |
| 2278 | } else { |
| 2279 | ggml_cuda_mul_mat_vec_f(ctx, src0, src1, ids, dst); |
| 2280 | } |
| 2281 | return; |
| 2282 | } |
| 2283 | |
| 2284 | if (ggml_cuda_should_use_mmq(src0->type, cc, ne12)) { |
| 2285 | ggml_cuda_mul_mat_q(ctx, src0, src1, ids, dst); |
| 2286 | return; |
| 2287 | } |
| 2288 | |
| 2289 | if (ggml_cuda_should_use_mmf(src0->type, cc, WARP_SIZE, src0->ne, src0->nb, src1->ne[2], /*mul_mat_id=*/true)) { |
| 2290 | ggml_cuda_mul_mat_f(ctx, src0, src1, ids, dst); |
| 2291 | return; |
| 2292 | } |
| 2293 | } |
| 2294 | |
| 2295 | cudaStream_t stream = ctx.stream(); |
| 2296 | |
| 2297 | GGML_ASSERT(nb12 % nb11 == 0); |
| 2298 | GGML_ASSERT(nb2 % nb1 == 0); |
| 2299 | |
| 2300 | const ggml_type type_src1_sorted = (src0->type == GGML_TYPE_F16 && !fast_fp16_hardware_available(cc)) |
| 2301 | || ggml_is_quantized(src0->type) ? GGML_TYPE_F32 : src0->type; |
| 2302 | const ggml_type type_dst_sorted = GGML_TYPE_F32; |
| 2303 | const size_t ts_src1_sorted = ggml_type_size(type_src1_sorted); |
| 2304 | const size_t ts_dst_sorted = ggml_type_size(type_dst_sorted); |
| 2305 | |
| 2306 | const int64_t n_expert_used = ids->ne[0]; |
| 2307 | const int64_t ne_get_rows = ne12 * n_expert_used; |
| 2308 | |
| 2309 | std::vector<int32_t> ids_to_sorted_host; |
| 2310 | ids_to_sorted_host.reserve(n: 2*ne_get_rows); |
| 2311 | std::vector<int32_t> ids_from_sorted_host(ne_get_rows); |
| 2312 | |
| 2313 | ggml_cuda_pool_alloc<int32_t> ids_buf_dev(ctx.pool(), 2*ne_get_rows); |
| 2314 | |
| 2315 | std::vector<int32_t> tokens_per_expert(ne02); |
| 2316 | |
| 2317 | ggml_cuda_pool_alloc<char> src1_sorted(ctx.pool(), ne12*n_expert_used*ne10*ts_src1_sorted); |
| 2318 | ggml_cuda_pool_alloc<char> dst_sorted(ctx.pool(), ne2 *n_expert_used* ne0*ts_dst_sorted); |
| 2319 | |
| 2320 | std::vector<char> ids_host(ggml_nbytes(ids)); |
| 2321 | CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids->data, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream)); |
| 2322 | CUDA_CHECK(cudaStreamSynchronize(stream)); |
| 2323 | |
| 2324 | for (int64_t i02 = 0; i02 < ne02; ++i02) { // expert matrices |
| 2325 | for (int64_t i12 = 0; i12 < ne12; ++i12) { // tokens |
| 2326 | for (int64_t iex = 0; iex < n_expert_used; ++iex) { |
| 2327 | const int32_t expert_to_use = *(const int32_t *)(ids_host.data() + i12*ids->nb[1] + iex*ids->nb[0]); |
| 2328 | assert(expert_to_use >= 0 && expert_to_use < ne02); |
| 2329 | if (expert_to_use == i02) { |
| 2330 | ids_from_sorted_host[i12*n_expert_used + iex] = ids_to_sorted_host.size(); |
| 2331 | ids_to_sorted_host.push_back(i12*ne11 + iex % ne11); |
| 2332 | tokens_per_expert[i02]++; |
| 2333 | break; |
| 2334 | } |
| 2335 | } |
| 2336 | } |
| 2337 | } |
| 2338 | GGML_ASSERT(ids_to_sorted_host.size() == size_t(ne_get_rows)); |
| 2339 | |
| 2340 | ids_to_sorted_host.insert(position: ids_to_sorted_host.end(), first: ids_from_sorted_host.begin(), last: ids_from_sorted_host.end()); |
| 2341 | |
| 2342 | CUDA_CHECK(cudaMemcpyAsync(ids_buf_dev.ptr, ids_to_sorted_host.data(), 2*ne_get_rows*sizeof(int32_t), cudaMemcpyHostToDevice, stream)); |
| 2343 | CUDA_CHECK(cudaStreamSynchronize(stream)); |
| 2344 | |
| 2345 | const int32_t * ids_to_sorted = ids_buf_dev.ptr + 0*ne_get_rows; |
| 2346 | const int32_t * ids_from_sorted = ids_buf_dev.ptr + 1*ne_get_rows; |
| 2347 | |
| 2348 | get_rows_cuda(src1->data, src1->type, ids_to_sorted, src1_sorted.ptr, type_src1_sorted, |
| 2349 | ne10, nb11, nb12, nb13, |
| 2350 | ne_get_rows, 1, 1, sizeof(int32_t), ne_get_rows*sizeof(int32_t), ne_get_rows*sizeof(int32_t), |
| 2351 | ne10*ts_src1_sorted, ne_get_rows*ne10*ts_src1_sorted, ne_get_rows*ne10*ts_src1_sorted, stream); |
| 2352 | CUDA_CHECK(cudaGetLastError()); |
| 2353 | |
| 2354 | char * src1_data_cur = (char *) src1_sorted.ptr; |
| 2355 | char * dst_data_cur = (char *) dst_sorted.ptr; |
| 2356 | for (int64_t i02 = 0; i02 < ne02; ++i02) { |
| 2357 | if (tokens_per_expert[i02] == 0) { |
| 2358 | continue; |
| 2359 | } |
| 2360 | |
| 2361 | ggml_tensor src0_slice = *src0; |
| 2362 | src0_slice.ne[2] = 1; |
| 2363 | src0_slice.nb[3] = src0_slice.nb[2]; |
| 2364 | src0_slice.op = GGML_OP_VIEW; |
| 2365 | src0_slice.view_src = dst->src[0]; // non-const pointer to src0 |
| 2366 | src0_slice.data = (char *) src0->data + i02*nb02; |
| 2367 | |
| 2368 | ggml_tensor src1_slice; |
| 2369 | memset(&src1_slice, 0, sizeof(src1_slice)); |
| 2370 | src1_slice.buffer = src1->buffer; |
| 2371 | src1_slice.type = type_src1_sorted; |
| 2372 | src1_slice.ne[0] = ne10; |
| 2373 | src1_slice.ne[1] = tokens_per_expert[i02]; |
| 2374 | src1_slice.ne[2] = 1; |
| 2375 | src1_slice.ne[3] = 1; |
| 2376 | src1_slice.nb[0] = ts_src1_sorted; |
| 2377 | src1_slice.nb[1] = src1_slice.ne[0] * src1_slice.nb[0]; |
| 2378 | src1_slice.nb[2] = src1_slice.ne[1] * src1_slice.nb[1]; |
| 2379 | src1_slice.nb[3] = src1_slice.ne[2] * src1_slice.nb[2]; |
| 2380 | src1_slice.data = src1_data_cur; |
| 2381 | |
| 2382 | ggml_tensor dst_slice; |
| 2383 | memset(&dst_slice, 0, sizeof(dst_slice)); |
| 2384 | dst_slice.buffer = dst->buffer; |
| 2385 | dst_slice.type = type_dst_sorted; |
| 2386 | dst_slice.ne[0] = ne0; |
| 2387 | dst_slice.ne[1] = tokens_per_expert[i02]; |
| 2388 | dst_slice.ne[2] = 1; |
| 2389 | dst_slice.ne[3] = 1; |
| 2390 | dst_slice.nb[0] = ts_dst_sorted; |
| 2391 | dst_slice.nb[1] = dst_slice.ne[0] * dst_slice.nb[0]; |
| 2392 | dst_slice.nb[2] = dst_slice.ne[1] * dst_slice.nb[1]; |
| 2393 | dst_slice.nb[3] = dst_slice.ne[2] * dst_slice.nb[2]; |
| 2394 | dst_slice.data = dst_data_cur; |
| 2395 | |
| 2396 | ggml_cuda_mul_mat(ctx, &src0_slice, &src1_slice, &dst_slice); |
| 2397 | CUDA_CHECK(cudaGetLastError()); |
| 2398 | |
| 2399 | src1_data_cur += src1_slice.nb[2]; |
| 2400 | dst_data_cur += dst_slice.nb[2]; |
| 2401 | } |
| 2402 | |
| 2403 | get_rows_cuda(dst_sorted.ptr, type_dst_sorted, ids_from_sorted, dst->data, dst->type, |
| 2404 | ne0, ne0*ts_dst_sorted, ne_get_rows*ne0*ts_dst_sorted, ne_get_rows*ne0*ts_dst_sorted, |
| 2405 | ne_get_rows, 1, 1, sizeof(int32_t), ne_get_rows*sizeof(int32_t), ne_get_rows*sizeof(int32_t), |
| 2406 | nb1, nb2, nb3, stream); |
| 2407 | } |
| 2408 | |
| 2409 | static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst) { |
| 2410 | // why is this here instead of mul_mat? |
| 2411 | if (dst->src[0] != nullptr && ggml_backend_buft_is_cuda_split(dst->src[0]->buffer->buft)) { |
| 2412 | ggml_cuda_set_peer_access(dst->src[1]->ne[1], ctx.device); |
| 2413 | } |
| 2414 | |
| 2415 | switch (dst->op) { |
| 2416 | case GGML_OP_ARGMAX: |
| 2417 | ggml_cuda_argmax(ctx, dst); |
| 2418 | break; |
| 2419 | case GGML_OP_COUNT_EQUAL: |
| 2420 | ggml_cuda_count_equal(ctx, dst); |
| 2421 | break; |
| 2422 | case GGML_OP_REPEAT: |
| 2423 | ggml_cuda_op_repeat(ctx, dst); |
| 2424 | break; |
| 2425 | case GGML_OP_REPEAT_BACK: |
| 2426 | ggml_cuda_op_repeat_back(ctx, dst); |
| 2427 | break; |
| 2428 | case GGML_OP_GET_ROWS: |
| 2429 | ggml_cuda_op_get_rows(ctx, dst); |
| 2430 | break; |
| 2431 | case GGML_OP_GET_ROWS_BACK: |
| 2432 | ggml_cuda_op_get_rows_back(ctx, dst); |
| 2433 | break; |
| 2434 | case GGML_OP_SET_ROWS: |
| 2435 | ggml_cuda_op_set_rows(ctx, dst); |
| 2436 | break; |
| 2437 | case GGML_OP_SET: |
| 2438 | ggml_cuda_op_set(ctx, dst); |
| 2439 | break; |
| 2440 | case GGML_OP_DUP: |
| 2441 | ggml_cuda_dup(ctx, dst); |
| 2442 | break; |
| 2443 | case GGML_OP_CPY: |
| 2444 | ggml_cuda_cpy(ctx, dst->src[0], dst->src[1]); |
| 2445 | break; |
| 2446 | case GGML_OP_CONT: |
| 2447 | ggml_cuda_dup(ctx, dst); |
| 2448 | break; |
| 2449 | case GGML_OP_ADD: |
| 2450 | case GGML_OP_ADD1: // TODO: more efficient implementation |
| 2451 | ggml_cuda_op_add(ctx, dst); |
| 2452 | break; |
| 2453 | case GGML_OP_ADD_ID: |
| 2454 | ggml_cuda_op_add_id(ctx, dst); |
| 2455 | break; |
| 2456 | case GGML_OP_SUB: |
| 2457 | ggml_cuda_op_sub(ctx, dst); |
| 2458 | break; |
| 2459 | case GGML_OP_ACC: |
| 2460 | ggml_cuda_op_acc(ctx, dst); |
| 2461 | break; |
| 2462 | case GGML_OP_MUL: |
| 2463 | ggml_cuda_op_mul(ctx, dst); |
| 2464 | break; |
| 2465 | case GGML_OP_DIV: |
| 2466 | ggml_cuda_op_div(ctx, dst); |
| 2467 | break; |
| 2468 | case GGML_OP_UNARY: |
| 2469 | switch (ggml_get_unary_op(dst)) { |
| 2470 | case GGML_UNARY_OP_ABS: |
| 2471 | ggml_cuda_op_abs(ctx, dst); |
| 2472 | break; |
| 2473 | case GGML_UNARY_OP_SGN: |
| 2474 | ggml_cuda_op_sgn(ctx, dst); |
| 2475 | break; |
| 2476 | case GGML_UNARY_OP_NEG: |
| 2477 | ggml_cuda_op_neg(ctx, dst); |
| 2478 | break; |
| 2479 | case GGML_UNARY_OP_STEP: |
| 2480 | ggml_cuda_op_step(ctx, dst); |
| 2481 | break; |
| 2482 | case GGML_UNARY_OP_GELU: |
| 2483 | ggml_cuda_op_gelu(ctx, dst); |
| 2484 | break; |
| 2485 | case GGML_UNARY_OP_SILU: |
| 2486 | ggml_cuda_op_silu(ctx, dst); |
| 2487 | break; |
| 2488 | case GGML_UNARY_OP_GELU_ERF: |
| 2489 | ggml_cuda_op_gelu_erf(ctx, dst); |
| 2490 | break; |
| 2491 | case GGML_UNARY_OP_GELU_QUICK: |
| 2492 | ggml_cuda_op_gelu_quick(ctx, dst); |
| 2493 | break; |
| 2494 | case GGML_UNARY_OP_TANH: |
| 2495 | ggml_cuda_op_tanh(ctx, dst); |
| 2496 | break; |
| 2497 | case GGML_UNARY_OP_RELU: |
| 2498 | ggml_cuda_op_relu(ctx, dst); |
| 2499 | break; |
| 2500 | case GGML_UNARY_OP_SIGMOID: |
| 2501 | ggml_cuda_op_sigmoid(ctx, dst); |
| 2502 | break; |
| 2503 | case GGML_UNARY_OP_HARDSIGMOID: |
| 2504 | ggml_cuda_op_hardsigmoid(ctx, dst); |
| 2505 | break; |
| 2506 | case GGML_UNARY_OP_HARDSWISH: |
| 2507 | ggml_cuda_op_hardswish(ctx, dst); |
| 2508 | break; |
| 2509 | case GGML_UNARY_OP_EXP: |
| 2510 | ggml_cuda_op_exp(ctx, dst); |
| 2511 | break; |
| 2512 | case GGML_UNARY_OP_ELU: |
| 2513 | ggml_cuda_op_elu(ctx, dst); |
| 2514 | break; |
| 2515 | case GGML_UNARY_OP_XIELU: |
| 2516 | ggml_cuda_op_xielu(ctx, dst); |
| 2517 | break; |
| 2518 | case GGML_UNARY_OP_FLOOR: |
| 2519 | ggml_cuda_op_floor(ctx, dst); |
| 2520 | break; |
| 2521 | case GGML_UNARY_OP_CEIL: |
| 2522 | ggml_cuda_op_ceil(ctx, dst); |
| 2523 | break; |
| 2524 | case GGML_UNARY_OP_ROUND: |
| 2525 | ggml_cuda_op_round(ctx, dst); |
| 2526 | break; |
| 2527 | case GGML_UNARY_OP_TRUNC: |
| 2528 | ggml_cuda_op_trunc(ctx, dst); |
| 2529 | break; |
| 2530 | default: |
| 2531 | return false; |
| 2532 | } |
| 2533 | break; |
| 2534 | case GGML_OP_GLU: |
| 2535 | switch (ggml_get_glu_op(dst)) { |
| 2536 | case GGML_GLU_OP_REGLU: |
| 2537 | ggml_cuda_op_reglu(ctx, dst); |
| 2538 | break; |
| 2539 | case GGML_GLU_OP_GEGLU: |
| 2540 | ggml_cuda_op_geglu(ctx, dst); |
| 2541 | break; |
| 2542 | case GGML_GLU_OP_SWIGLU: |
| 2543 | ggml_cuda_op_swiglu(ctx, dst); |
| 2544 | break; |
| 2545 | case GGML_GLU_OP_SWIGLU_OAI: |
| 2546 | ggml_cuda_op_swiglu_oai(ctx, dst); |
| 2547 | break; |
| 2548 | case GGML_GLU_OP_GEGLU_ERF: |
| 2549 | ggml_cuda_op_geglu_erf(ctx, dst); |
| 2550 | break; |
| 2551 | case GGML_GLU_OP_GEGLU_QUICK: |
| 2552 | ggml_cuda_op_geglu_quick(ctx, dst); |
| 2553 | break; |
| 2554 | default: |
| 2555 | return false; |
| 2556 | } |
| 2557 | break; |
| 2558 | case GGML_OP_NORM: |
| 2559 | ggml_cuda_op_norm(ctx, dst); |
| 2560 | break; |
| 2561 | case GGML_OP_GROUP_NORM: |
| 2562 | ggml_cuda_op_group_norm(ctx, dst); |
| 2563 | break; |
| 2564 | case GGML_OP_L2_NORM: |
| 2565 | ggml_cuda_op_l2_norm(ctx, dst); |
| 2566 | break; |
| 2567 | case GGML_OP_CONCAT: |
| 2568 | ggml_cuda_op_concat(ctx, dst); |
| 2569 | break; |
| 2570 | case GGML_OP_UPSCALE: |
| 2571 | ggml_cuda_op_upscale(ctx, dst); |
| 2572 | break; |
| 2573 | case GGML_OP_PAD: |
| 2574 | ggml_cuda_op_pad(ctx, dst); |
| 2575 | break; |
| 2576 | case GGML_OP_PAD_REFLECT_1D: |
| 2577 | ggml_cuda_op_pad_reflect_1d(ctx, dst); |
| 2578 | break; |
| 2579 | case GGML_OP_ARANGE: |
| 2580 | ggml_cuda_op_arange(ctx, dst); |
| 2581 | break; |
| 2582 | case GGML_OP_TIMESTEP_EMBEDDING: |
| 2583 | ggml_cuda_op_timestep_embedding(ctx, dst); |
| 2584 | break; |
| 2585 | case GGML_OP_LEAKY_RELU: |
| 2586 | ggml_cuda_op_leaky_relu(ctx, dst); |
| 2587 | break; |
| 2588 | case GGML_OP_SILU_BACK: |
| 2589 | ggml_cuda_op_silu_back(ctx, dst); |
| 2590 | break; |
| 2591 | case GGML_OP_RMS_NORM: |
| 2592 | ggml_cuda_op_rms_norm(ctx, dst); |
| 2593 | break; |
| 2594 | case GGML_OP_RMS_NORM_BACK: |
| 2595 | ggml_cuda_op_rms_norm_back(ctx, dst); |
| 2596 | break; |
| 2597 | case GGML_OP_MUL_MAT: |
| 2598 | ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst); |
| 2599 | break; |
| 2600 | case GGML_OP_MUL_MAT_ID: |
| 2601 | ggml_cuda_mul_mat_id(ctx, dst); |
| 2602 | break; |
| 2603 | case GGML_OP_OUT_PROD: |
| 2604 | ggml_cuda_out_prod(ctx, dst); |
| 2605 | break; |
| 2606 | case GGML_OP_SCALE: |
| 2607 | ggml_cuda_op_scale(ctx, dst); |
| 2608 | break; |
| 2609 | case GGML_OP_SQR: |
| 2610 | ggml_cuda_op_sqr(ctx, dst); |
| 2611 | break; |
| 2612 | case GGML_OP_SQRT: |
| 2613 | ggml_cuda_op_sqrt(ctx, dst); |
| 2614 | break; |
| 2615 | case GGML_OP_SIN: |
| 2616 | ggml_cuda_op_sin(ctx, dst); |
| 2617 | break; |
| 2618 | case GGML_OP_COS: |
| 2619 | ggml_cuda_op_cos(ctx, dst); |
| 2620 | break; |
| 2621 | case GGML_OP_CLAMP: |
| 2622 | ggml_cuda_op_clamp(ctx, dst); |
| 2623 | break; |
| 2624 | case GGML_OP_LOG: |
| 2625 | ggml_cuda_op_log(ctx, dst); |
| 2626 | break; |
| 2627 | case GGML_OP_NONE: |
| 2628 | case GGML_OP_RESHAPE: |
| 2629 | case GGML_OP_VIEW: |
| 2630 | case GGML_OP_PERMUTE: |
| 2631 | case GGML_OP_TRANSPOSE: |
| 2632 | break; |
| 2633 | case GGML_OP_DIAG_MASK_INF: |
| 2634 | ggml_cuda_op_diag_mask_inf(ctx, dst); |
| 2635 | break; |
| 2636 | case GGML_OP_SOFT_MAX: |
| 2637 | ggml_cuda_op_soft_max(ctx, dst); |
| 2638 | break; |
| 2639 | case GGML_OP_SOFT_MAX_BACK: |
| 2640 | ggml_cuda_op_soft_max_back(ctx, dst); |
| 2641 | break; |
| 2642 | case GGML_OP_ROPE: |
| 2643 | ggml_cuda_op_rope(ctx, dst); |
| 2644 | break; |
| 2645 | case GGML_OP_ROPE_BACK: |
| 2646 | ggml_cuda_op_rope_back(ctx, dst); |
| 2647 | break; |
| 2648 | case GGML_OP_ROLL: |
| 2649 | ggml_cuda_op_roll(ctx, dst); |
| 2650 | break; |
| 2651 | case GGML_OP_IM2COL: |
| 2652 | ggml_cuda_op_im2col(ctx, dst); |
| 2653 | break; |
| 2654 | case GGML_OP_IM2COL_3D: |
| 2655 | ggml_cuda_op_im2col_3d(ctx, dst); |
| 2656 | break; |
| 2657 | case GGML_OP_CONV_2D: |
| 2658 | ggml_cuda_op_conv2d(ctx, dst); |
| 2659 | break; |
| 2660 | case GGML_OP_CONV_2D_DW: |
| 2661 | ggml_cuda_op_conv2d_dw(ctx, dst); |
| 2662 | break; |
| 2663 | case GGML_OP_CONV_TRANSPOSE_2D: |
| 2664 | ggml_cuda_conv_2d_transpose_p0(ctx, dst); |
| 2665 | break; |
| 2666 | case GGML_OP_CONV_TRANSPOSE_1D: |
| 2667 | ggml_cuda_op_conv_transpose_1d(ctx,dst); |
| 2668 | break; |
| 2669 | case GGML_OP_POOL_2D: |
| 2670 | ggml_cuda_op_pool2d(ctx, dst); |
| 2671 | break; |
| 2672 | case GGML_OP_SUM: |
| 2673 | ggml_cuda_op_sum(ctx, dst); |
| 2674 | break; |
| 2675 | case GGML_OP_SUM_ROWS: |
| 2676 | ggml_cuda_op_sum_rows(ctx, dst); |
| 2677 | break; |
| 2678 | case GGML_OP_MEAN: |
| 2679 | ggml_cuda_op_mean(ctx, dst); |
| 2680 | break; |
| 2681 | case GGML_OP_SSM_CONV: |
| 2682 | ggml_cuda_op_ssm_conv(ctx, dst); |
| 2683 | break; |
| 2684 | case GGML_OP_SSM_SCAN: |
| 2685 | ggml_cuda_op_ssm_scan(ctx, dst); |
| 2686 | break; |
| 2687 | case GGML_OP_ARGSORT: |
| 2688 | ggml_cuda_op_argsort(ctx, dst); |
| 2689 | break; |
| 2690 | case GGML_OP_FLASH_ATTN_EXT: |
| 2691 | ggml_cuda_flash_attn_ext(ctx, dst); |
| 2692 | break; |
| 2693 | case GGML_OP_CROSS_ENTROPY_LOSS: |
| 2694 | ggml_cuda_cross_entropy_loss(ctx, dst); |
| 2695 | break; |
| 2696 | case GGML_OP_RWKV_WKV6: |
| 2697 | ggml_cuda_op_rwkv_wkv6(ctx, dst); |
| 2698 | break; |
| 2699 | case GGML_OP_GATED_LINEAR_ATTN: |
| 2700 | ggml_cuda_op_gated_linear_attn(ctx, dst); |
| 2701 | break; |
| 2702 | case GGML_OP_RWKV_WKV7: |
| 2703 | ggml_cuda_op_rwkv_wkv7(ctx, dst); |
| 2704 | break; |
| 2705 | case GGML_OP_CROSS_ENTROPY_LOSS_BACK: |
| 2706 | ggml_cuda_cross_entropy_loss_back(ctx, dst); |
| 2707 | break; |
| 2708 | case GGML_OP_OPT_STEP_ADAMW: |
| 2709 | ggml_cuda_opt_step_adamw(ctx, dst); |
| 2710 | break; |
| 2711 | case GGML_OP_OPT_STEP_SGD: |
| 2712 | ggml_cuda_opt_step_sgd(ctx, dst); |
| 2713 | break; |
| 2714 | default: |
| 2715 | return false; |
| 2716 | } |
| 2717 | |
| 2718 | cudaError_t err = cudaGetLastError(); |
| 2719 | if (err != cudaSuccess) { |
| 2720 | GGML_LOG_ERROR("%s: %s failed\n" , __func__, ggml_op_desc(dst)); |
| 2721 | CUDA_CHECK(err); |
| 2722 | } |
| 2723 | |
| 2724 | return true; |
| 2725 | } |
| 2726 | |
| 2727 | //////////////////////////////////////////////////////////////////////////////// |
| 2728 | |
| 2729 | // backend |
| 2730 | |
| 2731 | static const char * ggml_backend_cuda_get_name(ggml_backend_t backend) { |
| 2732 | ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; |
| 2733 | |
| 2734 | return cuda_ctx->name.c_str(); |
| 2735 | } |
| 2736 | |
| 2737 | static void ggml_backend_cuda_free(ggml_backend_t backend) { |
| 2738 | ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; |
| 2739 | |
| 2740 | delete cuda_ctx; |
| 2741 | delete backend; |
| 2742 | } |
| 2743 | |
| 2744 | static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { |
| 2745 | ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; |
| 2746 | ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; |
| 2747 | |
| 2748 | GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type" ); |
| 2749 | |
| 2750 | CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream())); |
| 2751 | } |
| 2752 | |
| 2753 | static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { |
| 2754 | ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; |
| 2755 | ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; |
| 2756 | |
| 2757 | GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type" ); |
| 2758 | |
| 2759 | CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream())); |
| 2760 | } |
| 2761 | |
| 2762 | static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) { |
| 2763 | ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer; |
| 2764 | ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer; |
| 2765 | |
| 2766 | if (!ggml_backend_is_cuda(backend_src) || !ggml_backend_is_cuda(backend_dst)) { |
| 2767 | return false; |
| 2768 | } |
| 2769 | |
| 2770 | if (!ggml_backend_buffer_is_cuda(src->buffer) || !ggml_backend_buffer_is_cuda(dst->buffer)) { |
| 2771 | return false; |
| 2772 | } |
| 2773 | |
| 2774 | // device -> device copy |
| 2775 | ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context; |
| 2776 | ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context; |
| 2777 | |
| 2778 | ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context; |
| 2779 | ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context; |
| 2780 | |
| 2781 | if (cuda_ctx_src->device != buf_ctx_src->device || cuda_ctx_dst->device != buf_ctx_dst->device) { |
| 2782 | #ifndef NDEBUG |
| 2783 | GGML_LOG_DEBUG("%s: backend and buffer devices do not match\n" , __func__); |
| 2784 | #endif |
| 2785 | return false; |
| 2786 | } |
| 2787 | |
| 2788 | if (backend_src != backend_dst) { |
| 2789 | // copy on src stream |
| 2790 | if (cuda_ctx_src->device == cuda_ctx_dst->device) { |
| 2791 | CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_src->stream())); |
| 2792 | } else { |
| 2793 | #ifdef GGML_CUDA_NO_PEER_COPY |
| 2794 | return false; |
| 2795 | #else |
| 2796 | CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), cuda_ctx_src->stream())); |
| 2797 | #endif |
| 2798 | } |
| 2799 | |
| 2800 | // record event on src stream after the copy |
| 2801 | if (!cuda_ctx_src->copy_event) { |
| 2802 | ggml_cuda_set_device(cuda_ctx_src->device); |
| 2803 | CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming)); |
| 2804 | } |
| 2805 | |
| 2806 | CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, cuda_ctx_src->stream())); |
| 2807 | |
| 2808 | // wait on dst stream for the copy to complete |
| 2809 | CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0)); |
| 2810 | } else { |
| 2811 | // src and dst are on the same backend |
| 2812 | CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_src->stream())); |
| 2813 | } |
| 2814 | return true; |
| 2815 | } |
| 2816 | |
| 2817 | static void ggml_backend_cuda_synchronize(ggml_backend_t backend) { |
| 2818 | ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; |
| 2819 | |
| 2820 | CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream())); |
| 2821 | |
| 2822 | GGML_UNUSED(backend); |
| 2823 | } |
| 2824 | |
| 2825 | #ifdef USE_CUDA_GRAPH |
| 2826 | static bool check_node_graph_compatibility(ggml_cgraph * cgraph, |
| 2827 | bool use_cuda_graph) { |
| 2828 | |
| 2829 | // Loop over nodes in GGML graph to obtain info needed for CUDA graph |
| 2830 | |
| 2831 | const std::string gemma3n_per_layer_proj_src0_name = "inp_per_layer_selected" ; |
| 2832 | const std::string gemma3n_per_layer_proj_src1_name = "per_layer_proj" ; |
| 2833 | const std::string ffn_moe_gate_bias_prefix = "ffn_moe_gate_biased" ; |
| 2834 | const std::string ffn_moe_up_bias_prefix = "ffn_moe_up_biased" ; |
| 2835 | const std::string ffn_moe_down_bias_prefix = "ffn_moe_down_biased" ; |
| 2836 | const std::string nemotron_h_block_out_prefix = "nemotron_h_block_out" ; |
| 2837 | const std::string mamba2_y_add_d_prefix = "mamba2_y_add_d" ; |
| 2838 | |
| 2839 | for (int i = 0; i < cgraph->n_nodes; i++) { |
| 2840 | ggml_tensor * node = cgraph->nodes[i]; |
| 2841 | |
| 2842 | if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) { |
| 2843 | continue; |
| 2844 | } |
| 2845 | |
| 2846 | if (node->src[0] && node->src[0]->buffer && ggml_backend_buft_is_cuda_split(node->src[0]->buffer->buft)) { |
| 2847 | use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture |
| 2848 | #ifndef NDEBUG |
| 2849 | GGML_LOG_DEBUG("%s: disabling CUDA graphs due to split buffer\n" , __func__); |
| 2850 | #endif |
| 2851 | } |
| 2852 | |
| 2853 | if (node->op == GGML_OP_MUL_MAT_ID && node->ne[2] != 1) { |
| 2854 | use_cuda_graph = false; // This node type is not supported by CUDA graph capture |
| 2855 | #ifndef NDEBUG |
| 2856 | GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported node type\n" , __func__); |
| 2857 | #endif |
| 2858 | } |
| 2859 | |
| 2860 | if (node->op == GGML_OP_ADD && |
| 2861 | node->src[1] && node->src[1]->ne[1] > 1 && |
| 2862 | (node->src[0] ? node->src[0]->name != gemma3n_per_layer_proj_src0_name : true) && |
| 2863 | (node->src[1] ? node->src[1]->name != gemma3n_per_layer_proj_src1_name : true) && |
| 2864 | strncmp(node->name, ffn_moe_gate_bias_prefix.c_str(), ffn_moe_gate_bias_prefix.size()) != 0 && |
| 2865 | strncmp(node->name, ffn_moe_up_bias_prefix.c_str(), ffn_moe_up_bias_prefix.size()) != 0 && |
| 2866 | strncmp(node->name, ffn_moe_down_bias_prefix.c_str(), ffn_moe_down_bias_prefix.size()) != 0 && |
| 2867 | strncmp(node->name, nemotron_h_block_out_prefix.c_str(), nemotron_h_block_out_prefix.size()) != 0 && |
| 2868 | strncmp(node->name, mamba2_y_add_d_prefix.c_str(), mamba2_y_add_d_prefix.size()) != 0) { |
| 2869 | // disable CUDA graphs for batch size > 1 for now while excluding the matrix-matrix addition as part of Gemma3n's `project_per_layer_input` operation |
| 2870 | // by means of matching node names. See |
| 2871 | // https://github.com/ggml-org/llama.cpp/blob/f9a31eea06a859e34cecb88b4d020c7f03d86cc4/src/llama-model.cpp#L10199-L10241 and |
| 2872 | // https://github.com/huggingface/transformers/blob/bda75b4011239d065de84aa3e744b67ebfa7b245/src/transformers/models/gemma3n/modeling_gemma3n.py#L1773, |
| 2873 | // Generally, changes in batch size or context size can cause changes to the grid size of some kernels. |
| 2874 | use_cuda_graph = false; |
| 2875 | #ifndef NDEBUG |
| 2876 | GGML_LOG_DEBUG("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n" , __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]); |
| 2877 | #endif |
| 2878 | } |
| 2879 | |
| 2880 | if (!use_cuda_graph) { |
| 2881 | break; |
| 2882 | } |
| 2883 | } |
| 2884 | |
| 2885 | return use_cuda_graph; |
| 2886 | } |
| 2887 | |
| 2888 | static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) { |
| 2889 | graph_node_properties->node_address = node->data; |
| 2890 | graph_node_properties->node_op = node->op; |
| 2891 | for (int i = 0; i < GGML_MAX_DIMS; i++) { |
| 2892 | graph_node_properties->ne[i] = node->ne[i]; |
| 2893 | graph_node_properties->nb[i] = node->nb[i]; |
| 2894 | } |
| 2895 | for (int i = 0; i < GGML_MAX_SRC; i++) { |
| 2896 | graph_node_properties->src_address[i] = node->src[i] ? node->src[i]->data : nullptr; |
| 2897 | } |
| 2898 | memcpy(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS); |
| 2899 | } |
| 2900 | |
| 2901 | static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) { |
| 2902 | if (node->data != graph_node_properties->node_address && |
| 2903 | node->op != GGML_OP_VIEW) { |
| 2904 | return false; |
| 2905 | } |
| 2906 | |
| 2907 | if (node->op != graph_node_properties->node_op) { |
| 2908 | return false; |
| 2909 | } |
| 2910 | |
| 2911 | for (int i = 0; i < GGML_MAX_DIMS; i++) { |
| 2912 | if (node->ne[i] != graph_node_properties->ne[i]) { |
| 2913 | return false; |
| 2914 | } |
| 2915 | if (node->nb[i] != graph_node_properties->nb[i]) { |
| 2916 | return false; |
| 2917 | } |
| 2918 | } |
| 2919 | |
| 2920 | for (int i = 0; i < GGML_MAX_SRC; i++) { |
| 2921 | if (node->src[i] && |
| 2922 | node->src[i]->data != graph_node_properties->src_address[i] && |
| 2923 | node->op != GGML_OP_VIEW |
| 2924 | ) { |
| 2925 | return false; |
| 2926 | } |
| 2927 | } |
| 2928 | |
| 2929 | if ((node->op == GGML_OP_SCALE || node->op == GGML_OP_GLU) && |
| 2930 | memcmp(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) { |
| 2931 | return false; |
| 2932 | } |
| 2933 | |
| 2934 | return true; |
| 2935 | } |
| 2936 | |
| 2937 | static bool is_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph) { |
| 2938 | |
| 2939 | bool cuda_graph_update_required = false; |
| 2940 | |
| 2941 | if (cuda_ctx->cuda_graph->instance == nullptr) { |
| 2942 | cuda_graph_update_required = true; |
| 2943 | } |
| 2944 | |
| 2945 | // Check if the graph size has changed |
| 2946 | if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) { |
| 2947 | cuda_graph_update_required = true; |
| 2948 | cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes); |
| 2949 | } |
| 2950 | |
| 2951 | // Loop over nodes in GGML graph to determine if CUDA graph update is required |
| 2952 | // and store properties to allow this comparison for the next token |
| 2953 | for (int i = 0; i < cgraph->n_nodes; i++) { |
| 2954 | bool has_matching_properties = true; |
| 2955 | if (!cuda_graph_update_required) { |
| 2956 | has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]); |
| 2957 | } |
| 2958 | if (!has_matching_properties) { |
| 2959 | cuda_graph_update_required = true; |
| 2960 | } |
| 2961 | set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]); |
| 2962 | } |
| 2963 | |
| 2964 | return cuda_graph_update_required; |
| 2965 | } |
| 2966 | |
| 2967 | static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) { |
| 2968 | |
| 2969 | #if CUDART_VERSION >= 12000 |
| 2970 | cudaGraphExecUpdateResultInfo result_info; |
| 2971 | cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info); |
| 2972 | #else |
| 2973 | cudaGraphNode_t errorNode; |
| 2974 | cudaGraphExecUpdateResult result_info; |
| 2975 | cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &errorNode, &result_info); |
| 2976 | #endif // CUDART_VERSION >= 12000 |
| 2977 | |
| 2978 | if (stat == cudaErrorGraphExecUpdateFailure) { |
| 2979 | #ifndef NDEBUG |
| 2980 | GGML_LOG_DEBUG("%s: CUDA graph update failed\n" , __func__); |
| 2981 | #endif |
| 2982 | |
| 2983 | // The pre-existing graph exec cannot be updated due to violated constraints |
| 2984 | // so instead clear error and re-instantiate |
| 2985 | (void)cudaGetLastError(); |
| 2986 | CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance)); |
| 2987 | cuda_ctx->cuda_graph->instance = nullptr; |
| 2988 | CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0)); |
| 2989 | } else { |
| 2990 | GGML_ASSERT(stat == cudaSuccess); |
| 2991 | } |
| 2992 | } |
| 2993 | #endif |
| 2994 | |
| 2995 | static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops, std::initializer_list<enum ggml_unary_op> unary_ops) { |
| 2996 | #ifndef NDEBUG |
| 2997 | const size_t num_unary = std::count(ops.begin(), ops.end(), GGML_OP_UNARY); |
| 2998 | GGML_ASSERT(unary_ops.size() == num_unary); |
| 2999 | #endif |
| 3000 | |
| 3001 | //TODO: remove special case once ggml_can_fuse can handle empty nodes |
| 3002 | std::initializer_list<enum ggml_op> topk_moe_ops = |
| 3003 | ggml_cuda_topk_moe_ops(/*with_norm*/ false, /*delayed_softmax=*/false); |
| 3004 | std::initializer_list<enum ggml_op> topk_moe_ops_with_norm = |
| 3005 | ggml_cuda_topk_moe_ops(/*with_norm=*/true, /*delayed_softmax=*/false); |
| 3006 | std::initializer_list<enum ggml_op> topk_moe_ops_delayed_softmax = |
| 3007 | ggml_cuda_topk_moe_ops(/*with_norm=*/false, /*delayed_softmax=*/true); |
| 3008 | |
| 3009 | if (ops.size() == topk_moe_ops_with_norm.size() && |
| 3010 | ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 3, node_idx + 9 })) { |
| 3011 | ggml_tensor * softmax = cgraph->nodes[node_idx]; |
| 3012 | ggml_tensor * weights = cgraph->nodes[node_idx + 9]; |
| 3013 | |
| 3014 | if (ggml_cuda_should_use_topk_moe(softmax, weights)) { |
| 3015 | return true; |
| 3016 | } |
| 3017 | } |
| 3018 | |
| 3019 | if (ops.size() == topk_moe_ops.size() && |
| 3020 | ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 3, node_idx + 4 })) { |
| 3021 | ggml_tensor * softmax = cgraph->nodes[node_idx]; |
| 3022 | ggml_tensor * weights = cgraph->nodes[node_idx + 4]; |
| 3023 | if (ggml_cuda_should_use_topk_moe(softmax, weights)) { |
| 3024 | return true; |
| 3025 | } |
| 3026 | } |
| 3027 | |
| 3028 | if (ops.size() == topk_moe_ops_delayed_softmax.size() && |
| 3029 | ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 1, node_idx + 5 })) { |
| 3030 | ggml_tensor * softmax = cgraph->nodes[node_idx + 4]; |
| 3031 | ggml_tensor * weights = cgraph->nodes[node_idx + 5]; |
| 3032 | |
| 3033 | if (ggml_cuda_should_use_topk_moe(softmax, weights)) { |
| 3034 | return true; |
| 3035 | } |
| 3036 | } |
| 3037 | |
| 3038 | std::initializer_list<enum ggml_op> mul_mat_bias_glu_ops = { GGML_OP_MUL_MAT, GGML_OP_ADD, GGML_OP_MUL_MAT, GGML_OP_ADD, GGML_OP_GLU }; |
| 3039 | std::initializer_list<enum ggml_op> mul_mat_id_bias_glu_ops = { GGML_OP_MUL_MAT_ID, GGML_OP_ADD_ID, GGML_OP_MUL_MAT_ID, GGML_OP_ADD_ID, GGML_OP_GLU }; |
| 3040 | |
| 3041 | std::initializer_list<enum ggml_op> mul_mat_id_glu_ops = { GGML_OP_MUL_MAT_ID, GGML_OP_MUL_MAT_ID, GGML_OP_GLU }; |
| 3042 | std::initializer_list<enum ggml_op> mul_mat_glu_ops = { GGML_OP_MUL_MAT, GGML_OP_MUL_MAT, GGML_OP_GLU }; |
| 3043 | |
| 3044 | if (ops.size() == 5 && (ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 4}) || |
| 3045 | ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 4}))) { |
| 3046 | |
| 3047 | const ggml_tensor * ffn_gate = cgraph->nodes[node_idx]; |
| 3048 | const ggml_tensor * ffn_gate_bias = cgraph->nodes[node_idx + 1]; |
| 3049 | const ggml_tensor * ffn_up = cgraph->nodes[node_idx + 2]; |
| 3050 | const ggml_tensor * ffn_up_bias = cgraph->nodes[node_idx + 3]; |
| 3051 | const ggml_tensor * glu = cgraph->nodes[node_idx + 4]; |
| 3052 | |
| 3053 | if (ggml_cuda_should_fuse_mul_mat(ffn_up, ffn_gate, glu, ffn_up_bias, ffn_gate_bias)) { |
| 3054 | return true; |
| 3055 | } |
| 3056 | } |
| 3057 | |
| 3058 | if (ops.size() == 3 && (ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 2}) || |
| 3059 | ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 2}))) { |
| 3060 | |
| 3061 | const ggml_tensor * ffn_gate = cgraph->nodes[node_idx]; |
| 3062 | const ggml_tensor * ffn_up = cgraph->nodes[node_idx + 1]; |
| 3063 | const ggml_tensor * glu = cgraph->nodes[node_idx + 2]; |
| 3064 | |
| 3065 | if (ggml_cuda_should_fuse_mul_mat(ffn_up, ffn_gate, glu)) { |
| 3066 | return true; |
| 3067 | } |
| 3068 | } |
| 3069 | |
| 3070 | if (!ggml_can_fuse(cgraph, node_idx, ops)) { |
| 3071 | return false; |
| 3072 | } |
| 3073 | |
| 3074 | if ((ops.size() == 2 || ops.size() == 3) && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) { |
| 3075 | const ggml_tensor *rms_norm = cgraph->nodes[node_idx]; |
| 3076 | const ggml_tensor *mul = cgraph->nodes[node_idx+1]; |
| 3077 | const ggml_tensor *add = nullptr; |
| 3078 | |
| 3079 | if (ops.size() == 3 && ops.begin()[2] == GGML_OP_ADD) { |
| 3080 | add = cgraph->nodes[node_idx+2]; |
| 3081 | } |
| 3082 | |
| 3083 | GGML_ASSERT(rms_norm->src[0]->type == GGML_TYPE_F32); |
| 3084 | GGML_ASSERT(rms_norm->type == GGML_TYPE_F32); |
| 3085 | |
| 3086 | //rms norm only supports F32 |
| 3087 | if (mul->src[0]->type != GGML_TYPE_F32 || |
| 3088 | mul->src[1]->type != GGML_TYPE_F32 || |
| 3089 | mul->type != GGML_TYPE_F32) { |
| 3090 | return false; |
| 3091 | } |
| 3092 | |
| 3093 | if (add && (add->src[0]->type != GGML_TYPE_F32 || |
| 3094 | add->src[1]->type != GGML_TYPE_F32 || |
| 3095 | add->type != GGML_TYPE_F32) ) { |
| 3096 | return false; |
| 3097 | } |
| 3098 | |
| 3099 | //if rms norm is the B operand, then we don't handle broadcast |
| 3100 | if (rms_norm == mul->src[1] && !ggml_are_same_shape(mul->src[0], rms_norm)) { |
| 3101 | return false; |
| 3102 | } |
| 3103 | |
| 3104 | //rms_norm kernel assumes contigous rows |
| 3105 | if (!ggml_is_contiguous_rows(mul->src[0]) || !ggml_is_contiguous_rows(mul->src[1])) { |
| 3106 | return false; |
| 3107 | } |
| 3108 | |
| 3109 | if (add && (!ggml_is_contiguous(add->src[0]) || !ggml_is_contiguous_rows(add->src[1]))) { |
| 3110 | return false; |
| 3111 | } |
| 3112 | |
| 3113 | return true; |
| 3114 | } |
| 3115 | |
| 3116 | if (ops.size() == 3 && ops.begin()[0] == GGML_OP_SCALE && ops.begin()[1] == GGML_OP_UNARY && ops.begin()[2] == GGML_OP_SCALE |
| 3117 | && unary_ops.size() == 1 && unary_ops.begin()[0] == GGML_UNARY_OP_TANH) { |
| 3118 | const ggml_tensor *scale = cgraph->nodes[node_idx]; |
| 3119 | const ggml_tensor *tanh = cgraph->nodes[node_idx+1]; |
| 3120 | const ggml_tensor *scale2 = cgraph->nodes[node_idx+2]; |
| 3121 | |
| 3122 | GGML_ASSERT(scale->src[0]->type == GGML_TYPE_F32); |
| 3123 | GGML_ASSERT(scale->type == GGML_TYPE_F32); |
| 3124 | |
| 3125 | if (ggml_get_unary_op(tanh) != GGML_UNARY_OP_TANH) { |
| 3126 | return false; |
| 3127 | } |
| 3128 | |
| 3129 | // Check for bias |
| 3130 | if (ggml_get_op_params_f32(scale, 1) != 0.0f || ggml_get_op_params_f32(scale2, 1) != 0.0f) { |
| 3131 | return false; |
| 3132 | } |
| 3133 | |
| 3134 | return true; |
| 3135 | } |
| 3136 | |
| 3137 | return false; |
| 3138 | } |
| 3139 | |
| 3140 | static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph, |
| 3141 | bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) { |
| 3142 | // flag used to determine whether it is an integrated_gpu |
| 3143 | const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated; |
| 3144 | |
| 3145 | while (!graph_evaluated_or_captured) { |
| 3146 | // Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph. |
| 3147 | // With the use of CUDA graphs, the execution will be performed by the graph launch. |
| 3148 | if (!use_cuda_graph || cuda_graph_update_required) { |
| 3149 | |
| 3150 | [[maybe_unused]] int prev_i = 0; |
| 3151 | |
| 3152 | for (int i = 0; i < cgraph->n_nodes; i++) { |
| 3153 | ggml_tensor * node = cgraph->nodes[i]; |
| 3154 | #ifdef GGML_CUDA_DEBUG |
| 3155 | const int nodes_fused = i - prev_i - 1; |
| 3156 | prev_i = i; |
| 3157 | if (nodes_fused > 0) { |
| 3158 | GGML_LOG_INFO("nodes_fused: %d\n" , nodes_fused); |
| 3159 | } |
| 3160 | #endif |
| 3161 | |
| 3162 | if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) { |
| 3163 | continue; |
| 3164 | } |
| 3165 | |
| 3166 | static bool disable_fusion = (getenv(name: "GGML_CUDA_DISABLE_FUSION" ) != nullptr); |
| 3167 | if (!disable_fusion) { |
| 3168 | |
| 3169 | if (ggml_cuda_can_fuse(cgraph, i, ggml_cuda_topk_moe_ops(/*with norm*/ true), {})) { |
| 3170 | ggml_tensor * weights = cgraph->nodes[i + 9]; |
| 3171 | ggml_tensor * selected_experts = cgraph->nodes[i + 3]; |
| 3172 | ggml_tensor * clamp = cgraph->nodes[i + 7]; |
| 3173 | ggml_cuda_op_topk_moe(*cuda_ctx, node->src[0], weights, selected_experts, /*with norm*/ true, |
| 3174 | /*delayed softmax*/ false, clamp); |
| 3175 | i += 9; |
| 3176 | continue; |
| 3177 | } |
| 3178 | |
| 3179 | if (ggml_cuda_can_fuse(cgraph, i, ggml_cuda_topk_moe_ops(/*with norm*/ false), {})) { |
| 3180 | ggml_tensor * weights = cgraph->nodes[i + 4]; |
| 3181 | ggml_tensor * selected_experts = cgraph->nodes[i + 3]; |
| 3182 | ggml_cuda_op_topk_moe(*cuda_ctx, node->src[0], weights, selected_experts, /*with norm*/ false, |
| 3183 | /*delayed softmax*/ false); |
| 3184 | i += 4; |
| 3185 | continue; |
| 3186 | } |
| 3187 | |
| 3188 | if (ggml_cuda_can_fuse(cgraph, i, |
| 3189 | ggml_cuda_topk_moe_ops(/*with norm*/ false, /*delayed softmax*/ true), {})) { |
| 3190 | ggml_tensor * weights = cgraph->nodes[i + 5]; |
| 3191 | ggml_tensor * ids = cgraph->nodes[i + 1]; |
| 3192 | |
| 3193 | ggml_cuda_op_topk_moe(*cuda_ctx, node->src[0], weights, ids, /*with norm*/ false, |
| 3194 | /*delayed_softmax*/ true); |
| 3195 | i += 5; |
| 3196 | continue; |
| 3197 | } |
| 3198 | |
| 3199 | if (node->op == GGML_OP_ADD) { |
| 3200 | int n_fuse = 0; |
| 3201 | ggml_op ops[8]; |
| 3202 | std::fill(ops, ops + 8, GGML_OP_ADD); |
| 3203 | |
| 3204 | for (; n_fuse <= 6; ++n_fuse){ |
| 3205 | if (!ggml_can_fuse(cgraph, i + n_fuse, ops + n_fuse, 2)) { |
| 3206 | break; |
| 3207 | } |
| 3208 | if (cgraph->nodes[i + n_fuse] != cgraph->nodes[i + n_fuse + 1]->src[0]) { |
| 3209 | break; |
| 3210 | } |
| 3211 | if (!ggml_are_same_layout(cgraph->nodes[i + n_fuse]->src[1], cgraph->nodes[i + n_fuse + 1]->src[1])) { |
| 3212 | break; |
| 3213 | } |
| 3214 | } |
| 3215 | |
| 3216 | n_fuse++; |
| 3217 | |
| 3218 | if (n_fuse > 1) { |
| 3219 | for (int j = 0; j < n_fuse - 1; ++j) { |
| 3220 | node->src[j + 2] = cgraph->nodes[i + j + 1]->src[1]; |
| 3221 | } |
| 3222 | cgraph->nodes[i + n_fuse - 1]->data = node->data; |
| 3223 | ggml_cuda_op_fused_add(*cuda_ctx, node, n_fuse); |
| 3224 | i += n_fuse - 1; |
| 3225 | |
| 3226 | continue; |
| 3227 | } |
| 3228 | } |
| 3229 | |
| 3230 | bool fused_mul_mat_vec = false; |
| 3231 | int fused_node_count = 0; |
| 3232 | |
| 3233 | for (ggml_op op : { GGML_OP_MUL_MAT, GGML_OP_MUL_MAT_ID }) { |
| 3234 | const ggml_op bias_op = op == GGML_OP_MUL_MAT ? GGML_OP_ADD : GGML_OP_ADD_ID; |
| 3235 | |
| 3236 | if (ggml_cuda_can_fuse(cgraph, i, { op, bias_op, op, bias_op, GGML_OP_GLU }, {})) { |
| 3237 | ggml_tensor * glu = cgraph->nodes[i + 4]; |
| 3238 | ggml_tensor * gate_bias_n = glu->src[0]; |
| 3239 | ggml_tensor * up_bias_n = glu->src[1]; |
| 3240 | |
| 3241 | //we don't assume the order for {gate, up}. Instead infer it from the bias tensor |
| 3242 | ggml_tensor * gate_n = nullptr; |
| 3243 | ggml_tensor * up_n = nullptr; |
| 3244 | |
| 3245 | if (gate_bias_n->src[0] == cgraph->nodes[i] || gate_bias_n->src[1] == cgraph->nodes[i]) { |
| 3246 | gate_n = cgraph->nodes[i]; |
| 3247 | up_n = cgraph->nodes[i + 2]; |
| 3248 | } else if (gate_bias_n->src[0] == cgraph->nodes[i + 2] || gate_bias_n->src[1] == cgraph->nodes[i + 2]) { |
| 3249 | gate_n = cgraph->nodes[i + 2]; |
| 3250 | up_n = cgraph->nodes[i]; |
| 3251 | } else { |
| 3252 | continue; |
| 3253 | } |
| 3254 | |
| 3255 | auto get_bias_tensor = [](const ggml_tensor * bias_node, const ggml_tensor * mul_node, ggml_op op_bias) { |
| 3256 | if (op_bias == GGML_OP_ADD) { |
| 3257 | if (bias_node->src[0] == mul_node) { |
| 3258 | return bias_node->src[1]; |
| 3259 | } |
| 3260 | if (bias_node->src[1] == mul_node) { |
| 3261 | return bias_node->src[0]; |
| 3262 | } |
| 3263 | return (ggml_tensor *) nullptr; |
| 3264 | } |
| 3265 | GGML_ASSERT(op_bias == GGML_OP_ADD_ID); |
| 3266 | GGML_ASSERT(bias_node->src[0] == mul_node); |
| 3267 | return bias_node->src[1]; |
| 3268 | }; |
| 3269 | |
| 3270 | ggml_tensor * up_bias_tensor = get_bias_tensor(up_bias_n, up_n, bias_op); |
| 3271 | ggml_tensor * gate_bias_tensor = get_bias_tensor(gate_bias_n, gate_n, bias_op); |
| 3272 | |
| 3273 | if (!up_bias_tensor || !gate_bias_tensor) { |
| 3274 | continue; |
| 3275 | } |
| 3276 | |
| 3277 | // we don't support repeating adds |
| 3278 | if (bias_op == GGML_OP_ADD && |
| 3279 | (!ggml_are_same_shape(gate_bias_n->src[0], gate_bias_n->src[1]) || |
| 3280 | !ggml_are_same_shape(up_bias_n->src[0], up_bias_n->src[1]))) { |
| 3281 | continue; |
| 3282 | } |
| 3283 | |
| 3284 | const ggml_tensor * src0 = up_n->src[0]; |
| 3285 | const ggml_tensor * src1 = up_n->src[1]; |
| 3286 | const ggml_tensor * ids = up_n->src[2]; |
| 3287 | |
| 3288 | if (ggml_cuda_should_fuse_mul_mat_vec_f(up_n)) { |
| 3289 | ggml_cuda_mm_fusion_args_host fusion_data{}; |
| 3290 | fusion_data.gate = gate_n->src[0]; |
| 3291 | fusion_data.x_bias = up_bias_tensor; |
| 3292 | fusion_data.gate_bias = gate_bias_tensor; |
| 3293 | fusion_data.glu_op = ggml_get_glu_op(glu); |
| 3294 | |
| 3295 | ggml_cuda_mul_mat_vec_f(*cuda_ctx, src0, src1, ids, glu, &fusion_data); |
| 3296 | fused_mul_mat_vec = true; |
| 3297 | fused_node_count = 5; |
| 3298 | break; |
| 3299 | } |
| 3300 | |
| 3301 | if (ggml_cuda_should_fuse_mul_mat_vec_q(up_n)) { |
| 3302 | ggml_cuda_mm_fusion_args_host fusion_data{}; |
| 3303 | fusion_data.gate = gate_n->src[0]; |
| 3304 | fusion_data.x_bias = up_bias_tensor; |
| 3305 | fusion_data.gate_bias = gate_bias_tensor; |
| 3306 | fusion_data.glu_op = ggml_get_glu_op(glu); |
| 3307 | |
| 3308 | ggml_cuda_mul_mat_vec_q(*cuda_ctx, src0, src1, ids, glu, &fusion_data); |
| 3309 | fused_mul_mat_vec = true; |
| 3310 | fused_node_count = 5; |
| 3311 | break; |
| 3312 | } |
| 3313 | } else if (ggml_cuda_can_fuse(cgraph, i, { op, op, GGML_OP_GLU }, {})) { |
| 3314 | ggml_tensor * glu = cgraph->nodes[i + 2]; |
| 3315 | ggml_tensor * gate = glu->src[0]; |
| 3316 | ggml_tensor * up = glu->src[1]; |
| 3317 | |
| 3318 | bool ok = (gate == cgraph->nodes[i] && up == cgraph->nodes[i + 1]) |
| 3319 | || (gate == cgraph->nodes[i + 1] && up == cgraph->nodes[i]); |
| 3320 | |
| 3321 | if (!ok) continue; |
| 3322 | |
| 3323 | const ggml_tensor * src0 = up->src[0]; |
| 3324 | const ggml_tensor * src1 = up->src[1]; |
| 3325 | const ggml_tensor * ids = up->src[2]; |
| 3326 | |
| 3327 | if (ggml_cuda_should_fuse_mul_mat_vec_f(up)) { |
| 3328 | ggml_cuda_mm_fusion_args_host fusion_data{}; |
| 3329 | fusion_data.gate = gate->src[0]; |
| 3330 | fusion_data.glu_op = ggml_get_glu_op(glu); |
| 3331 | |
| 3332 | ggml_cuda_mul_mat_vec_f(*cuda_ctx, src0, src1, ids, glu, &fusion_data); |
| 3333 | fused_mul_mat_vec = true; |
| 3334 | fused_node_count = 3; |
| 3335 | break; |
| 3336 | } |
| 3337 | |
| 3338 | if (ggml_cuda_should_fuse_mul_mat_vec_q(up)) { |
| 3339 | ggml_cuda_mm_fusion_args_host fusion_data{}; |
| 3340 | fusion_data.gate = gate->src[0]; |
| 3341 | fusion_data.glu_op = ggml_get_glu_op(glu); |
| 3342 | |
| 3343 | ggml_cuda_mul_mat_vec_q(*cuda_ctx, src0, src1, ids, glu, &fusion_data); |
| 3344 | fused_mul_mat_vec = true; |
| 3345 | fused_node_count = 3; |
| 3346 | break; |
| 3347 | } |
| 3348 | } |
| 3349 | } |
| 3350 | |
| 3351 | if (fused_mul_mat_vec) { |
| 3352 | i += fused_node_count - 1; |
| 3353 | continue; |
| 3354 | } |
| 3355 | |
| 3356 | fused_mul_mat_vec = false; |
| 3357 | fused_node_count = 0; |
| 3358 | |
| 3359 | for (ggml_op op : { GGML_OP_MUL_MAT, GGML_OP_MUL_MAT_ID }) { |
| 3360 | const ggml_op bias_op = op == GGML_OP_MUL_MAT ? GGML_OP_ADD : GGML_OP_ADD_ID; |
| 3361 | |
| 3362 | if (!ggml_can_fuse(cgraph, i, { op, bias_op })) { |
| 3363 | continue; |
| 3364 | } |
| 3365 | |
| 3366 | ggml_tensor * mm_node = cgraph->nodes[i]; |
| 3367 | ggml_tensor * bias_node = cgraph->nodes[i + 1]; |
| 3368 | |
| 3369 | ggml_tensor * bias_tensor = nullptr; |
| 3370 | if (bias_op == GGML_OP_ADD) { |
| 3371 | if (bias_node->src[0] == mm_node) { |
| 3372 | bias_tensor = bias_node->src[1]; |
| 3373 | } else if (bias_node->src[1] == mm_node) { |
| 3374 | bias_tensor = bias_node->src[0]; |
| 3375 | } else { |
| 3376 | continue; |
| 3377 | } |
| 3378 | } else { |
| 3379 | if (bias_node->src[0] != mm_node) { |
| 3380 | continue; |
| 3381 | } |
| 3382 | bias_tensor = bias_node->src[1]; |
| 3383 | } |
| 3384 | |
| 3385 | const ggml_tensor * src0 = mm_node->src[0]; |
| 3386 | const ggml_tensor * src1 = mm_node->src[1]; |
| 3387 | const ggml_tensor * ids = mm_node->src[2]; |
| 3388 | |
| 3389 | if (bias_op == GGML_OP_ADD_ID && bias_node->src[2] != ids) { |
| 3390 | continue; |
| 3391 | } |
| 3392 | |
| 3393 | if (bias_op == GGML_OP_ADD && !ggml_are_same_shape(bias_node->src[0], bias_node->src[1])) { |
| 3394 | continue; |
| 3395 | } |
| 3396 | |
| 3397 | ggml_cuda_mm_fusion_args_host fusion_data{}; |
| 3398 | fusion_data.x_bias = bias_tensor; |
| 3399 | |
| 3400 | if (ggml_cuda_should_fuse_mul_mat_vec_f(mm_node)) { |
| 3401 | ggml_cuda_mul_mat_vec_f(*cuda_ctx, src0, src1, ids, bias_node, &fusion_data); |
| 3402 | fused_mul_mat_vec = true; |
| 3403 | fused_node_count = 2; |
| 3404 | break; |
| 3405 | } |
| 3406 | |
| 3407 | if (ggml_cuda_should_fuse_mul_mat_vec_q(mm_node)) { |
| 3408 | ggml_cuda_mul_mat_vec_q(*cuda_ctx, src0, src1, ids, bias_node, &fusion_data); |
| 3409 | fused_mul_mat_vec = true; |
| 3410 | fused_node_count = 2; |
| 3411 | break; |
| 3412 | } |
| 3413 | } |
| 3414 | |
| 3415 | if (fused_mul_mat_vec) { |
| 3416 | i += fused_node_count - 1; |
| 3417 | continue; |
| 3418 | } |
| 3419 | |
| 3420 | if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL, GGML_OP_ADD}, {})) { |
| 3421 | ggml_cuda_op_rms_norm_fused_add(*cuda_ctx, node, cgraph->nodes[i+1], cgraph->nodes[i+2]); |
| 3422 | i += 2; |
| 3423 | continue; |
| 3424 | } |
| 3425 | |
| 3426 | if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL}, {})) { |
| 3427 | ggml_cuda_op_rms_norm_fused(*cuda_ctx, node, cgraph->nodes[i+1]); |
| 3428 | i++; |
| 3429 | continue; |
| 3430 | } |
| 3431 | |
| 3432 | if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_SCALE, GGML_OP_UNARY, GGML_OP_SCALE }, { GGML_UNARY_OP_TANH })) { |
| 3433 | i += 2; |
| 3434 | ggml_cuda_op_softcap(*cuda_ctx, cgraph->nodes[i], node); |
| 3435 | continue; |
| 3436 | } |
| 3437 | } |
| 3438 | #ifndef NDEBUG |
| 3439 | assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device)); |
| 3440 | for (int j = 0; j < GGML_MAX_SRC; j++) { |
| 3441 | if (node->src[j] != nullptr) { |
| 3442 | assert(node->src[j]->buffer); |
| 3443 | assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || |
| 3444 | ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft) || (integrated && ggml_backend_buft_is_cuda_host(node->src[j]->buffer->buft))); |
| 3445 | } |
| 3446 | } |
| 3447 | #else |
| 3448 | GGML_UNUSED(integrated); |
| 3449 | #endif // NDEBUG |
| 3450 | |
| 3451 | bool ok = ggml_cuda_compute_forward(*cuda_ctx, node); |
| 3452 | if (!ok) { |
| 3453 | GGML_LOG_ERROR("%s: op not supported %s (%s)\n" , __func__, node->name, ggml_op_name(node->op)); |
| 3454 | } |
| 3455 | GGML_ASSERT(ok); |
| 3456 | } |
| 3457 | } |
| 3458 | |
| 3459 | #ifdef USE_CUDA_GRAPH |
| 3460 | if (use_cuda_graph && cuda_graph_update_required) { // End CUDA graph capture |
| 3461 | if (cuda_ctx->cuda_graph->graph != nullptr) { |
| 3462 | CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph)); |
| 3463 | cuda_ctx->cuda_graph->graph = nullptr; |
| 3464 | } |
| 3465 | |
| 3466 | CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph)); |
| 3467 | graph_evaluated_or_captured = true; // CUDA graph has been captured |
| 3468 | |
| 3469 | std::lock_guard<std::mutex> lock(ggml_cuda_lock); |
| 3470 | if (ggml_cuda_lock_counter.fetch_sub(1, std::memory_order_relaxed) == 1) { |
| 3471 | ggml_cuda_lock_cv.notify_all(); |
| 3472 | } |
| 3473 | } else { |
| 3474 | graph_evaluated_or_captured = true; // ggml graph has been directly evaluated |
| 3475 | } |
| 3476 | } |
| 3477 | |
| 3478 | if (use_cuda_graph) { |
| 3479 | if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph. |
| 3480 | CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0)); |
| 3481 | } |
| 3482 | if (cuda_graph_update_required) { // Update graph executable |
| 3483 | update_cuda_graph_executable(cuda_ctx); |
| 3484 | } |
| 3485 | // Launch graph |
| 3486 | CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream())); |
| 3487 | #else |
| 3488 | graph_evaluated_or_captured = true; |
| 3489 | #endif // USE_CUDA_GRAPH |
| 3490 | } |
| 3491 | } |
| 3492 | |
| 3493 | static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { |
| 3494 | ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; |
| 3495 | |
| 3496 | ggml_cuda_set_device(cuda_ctx->device); |
| 3497 | |
| 3498 | #ifdef USE_CUDA_GRAPH |
| 3499 | static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS" ) != nullptr); |
| 3500 | |
| 3501 | // Objects required for CUDA Graph |
| 3502 | if (cuda_ctx->cuda_graph == nullptr) { |
| 3503 | cuda_ctx->cuda_graph.reset(new ggml_cuda_graph()); |
| 3504 | } |
| 3505 | |
| 3506 | bool use_cuda_graph = true; |
| 3507 | bool cuda_graph_update_required = false; |
| 3508 | |
| 3509 | if (cuda_ctx->cuda_graph->graph == nullptr) { |
| 3510 | if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) { |
| 3511 | cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true; |
| 3512 | #ifndef NDEBUG |
| 3513 | GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n" , __func__); |
| 3514 | #endif |
| 3515 | } |
| 3516 | } |
| 3517 | |
| 3518 | // Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly, |
| 3519 | // or previous graph capture failure. |
| 3520 | // Also disable for multi-gpu for now. TO DO investigate |
| 3521 | if (disable_cuda_graphs_due_to_env |
| 3522 | || cuda_ctx->cuda_graph->disable_due_to_gpu_arch |
| 3523 | || cuda_ctx->cuda_graph->disable_due_to_too_many_updates |
| 3524 | || cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) { |
| 3525 | use_cuda_graph = false; |
| 3526 | } |
| 3527 | |
| 3528 | if (use_cuda_graph) { |
| 3529 | cuda_graph_update_required = is_cuda_graph_update_required(cuda_ctx, cgraph); |
| 3530 | |
| 3531 | use_cuda_graph = check_node_graph_compatibility(cgraph, use_cuda_graph); |
| 3532 | |
| 3533 | // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates. |
| 3534 | if (use_cuda_graph && cuda_graph_update_required) { |
| 3535 | cuda_ctx->cuda_graph->number_consecutive_updates++; |
| 3536 | } else { |
| 3537 | cuda_ctx->cuda_graph->number_consecutive_updates = 0; |
| 3538 | } |
| 3539 | |
| 3540 | if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) { |
| 3541 | cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true; |
| 3542 | #ifndef NDEBUG |
| 3543 | GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n" , __func__); |
| 3544 | #endif |
| 3545 | } |
| 3546 | } |
| 3547 | |
| 3548 | if (use_cuda_graph && cuda_graph_update_required) { |
| 3549 | // Start CUDA graph capture |
| 3550 | { |
| 3551 | std::lock_guard<std::mutex> lock(ggml_cuda_lock); |
| 3552 | ggml_cuda_lock_counter.fetch_add(1, std::memory_order_relaxed); |
| 3553 | } |
| 3554 | |
| 3555 | CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed)); |
| 3556 | } |
| 3557 | |
| 3558 | #else |
| 3559 | bool use_cuda_graph = false; |
| 3560 | bool cuda_graph_update_required = false; |
| 3561 | #endif // USE_CUDA_GRAPH |
| 3562 | |
| 3563 | bool graph_evaluated_or_captured = false; |
| 3564 | |
| 3565 | evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required); |
| 3566 | |
| 3567 | return GGML_STATUS_SUCCESS; |
| 3568 | } |
| 3569 | |
| 3570 | static void ggml_backend_cuda_event_record(ggml_backend_t backend, ggml_backend_event_t event) { |
| 3571 | ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; |
| 3572 | |
| 3573 | CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream())); |
| 3574 | } |
| 3575 | |
| 3576 | static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) { |
| 3577 | ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; |
| 3578 | |
| 3579 | if (ggml_backend_is_cuda(backend)) { |
| 3580 | CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0)); |
| 3581 | } else { |
| 3582 | #if 0 |
| 3583 | // untested |
| 3584 | auto wait_fn = [](void * user_data) { |
| 3585 | ggml_backend_event_t event = (ggml_backend_event_t)user_data; |
| 3586 | ggml_backend_event_synchronize(event); |
| 3587 | }; |
| 3588 | |
| 3589 | CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event)); |
| 3590 | #endif |
| 3591 | GGML_ABORT("fatal error" ); |
| 3592 | } |
| 3593 | } |
| 3594 | |
| 3595 | static const ggml_backend_i ggml_backend_cuda_interface = { |
| 3596 | /* .get_name = */ ggml_backend_cuda_get_name, |
| 3597 | /* .free = */ ggml_backend_cuda_free, |
| 3598 | /* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async, |
| 3599 | /* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async, |
| 3600 | /* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async, |
| 3601 | /* .synchronize = */ ggml_backend_cuda_synchronize, |
| 3602 | /* .graph_plan_create = */ NULL, |
| 3603 | /* .graph_plan_free = */ NULL, |
| 3604 | /* .graph_plan_update = */ NULL, |
| 3605 | /* .graph_plan_compute = */ NULL, |
| 3606 | /* .graph_compute = */ ggml_backend_cuda_graph_compute, |
| 3607 | /* .event_record = */ ggml_backend_cuda_event_record, |
| 3608 | /* .event_wait = */ ggml_backend_cuda_event_wait, |
| 3609 | /* .graph_optimize = */ NULL, |
| 3610 | }; |
| 3611 | |
| 3612 | static ggml_guid_t ggml_backend_cuda_guid() { |
| 3613 | static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 }; |
| 3614 | return &guid; |
| 3615 | } |
| 3616 | |
| 3617 | bool ggml_backend_is_cuda(ggml_backend_t backend) { |
| 3618 | return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid()); |
| 3619 | } |
| 3620 | |
| 3621 | int ggml_backend_cuda_get_device_count() { |
| 3622 | return ggml_cuda_info().device_count; |
| 3623 | } |
| 3624 | |
| 3625 | void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) { |
| 3626 | cudaDeviceProp prop; |
| 3627 | CUDA_CHECK(cudaGetDeviceProperties(prop: &prop, device)); |
| 3628 | snprintf(s: description, maxlen: description_size, format: "%s" , prop.name); |
| 3629 | } |
| 3630 | |
| 3631 | void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) { |
| 3632 | ggml_cuda_set_device(device); |
| 3633 | |
| 3634 | CUDA_CHECK(cudaMemGetInfo(free, total)); |
| 3635 | } |
| 3636 | |
| 3637 | bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) { |
| 3638 | if (getenv(name: "GGML_CUDA_REGISTER_HOST" ) == nullptr) { |
| 3639 | return false; |
| 3640 | } |
| 3641 | |
| 3642 | #if CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA) || defined(GGML_USE_HIP) |
| 3643 | cudaError_t err = cudaHostRegister(ptr: buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly); |
| 3644 | if (err != cudaSuccess) { |
| 3645 | // clear the error |
| 3646 | (void)cudaGetLastError(); |
| 3647 | |
| 3648 | GGML_LOG_DEBUG("%s: failed to register %.2f MiB of pinned memory: %s\n" , __func__, |
| 3649 | size / 1024.0 / 1024.0, cudaGetErrorString(error: err)); |
| 3650 | return false; |
| 3651 | } |
| 3652 | return true; |
| 3653 | #else |
| 3654 | GGML_UNUSED(buffer); |
| 3655 | GGML_UNUSED(size); |
| 3656 | return false; |
| 3657 | #endif // CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA) |
| 3658 | } |
| 3659 | |
| 3660 | void ggml_backend_cuda_unregister_host_buffer(void * buffer) { |
| 3661 | if (getenv(name: "GGML_CUDA_REGISTER_HOST" ) == nullptr) { |
| 3662 | return; |
| 3663 | } |
| 3664 | |
| 3665 | cudaError_t err = cudaHostUnregister(ptr: buffer); |
| 3666 | if (err != cudaSuccess) { |
| 3667 | // clear the error |
| 3668 | (void)cudaGetLastError(); |
| 3669 | } |
| 3670 | } |
| 3671 | |
| 3672 | |
| 3673 | // backend device |
| 3674 | |
| 3675 | struct ggml_backend_cuda_device_context { |
| 3676 | int device; |
| 3677 | std::string name; |
| 3678 | std::string description; |
| 3679 | std::string pci_bus_id; |
| 3680 | }; |
| 3681 | |
| 3682 | static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) { |
| 3683 | ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context; |
| 3684 | return ctx->name.c_str(); |
| 3685 | } |
| 3686 | |
| 3687 | static const char * ggml_backend_cuda_device_get_description(ggml_backend_dev_t dev) { |
| 3688 | ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context; |
| 3689 | return ctx->description.c_str(); |
| 3690 | } |
| 3691 | |
| 3692 | static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) { |
| 3693 | ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context; |
| 3694 | ggml_cuda_set_device(device: ctx->device); |
| 3695 | CUDA_CHECK(cudaMemGetInfo(free, total)); |
| 3696 | } |
| 3697 | |
| 3698 | static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend_dev_t dev) { |
| 3699 | GGML_UNUSED(dev); |
| 3700 | return GGML_BACKEND_DEVICE_TYPE_GPU; |
| 3701 | } |
| 3702 | |
| 3703 | static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) { |
| 3704 | ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context; |
| 3705 | |
| 3706 | props->name = ggml_backend_cuda_device_get_name(dev); |
| 3707 | props->description = ggml_backend_cuda_device_get_description(dev); |
| 3708 | props->type = ggml_backend_cuda_device_get_type(dev); |
| 3709 | props->device_id = ctx->pci_bus_id.empty() ? nullptr : ctx->pci_bus_id.c_str(); |
| 3710 | ggml_backend_cuda_device_get_memory(dev, &props->memory_free, &props->memory_total); |
| 3711 | |
| 3712 | bool host_buffer = getenv(name: "GGML_CUDA_NO_PINNED" ) == nullptr; |
| 3713 | #ifdef GGML_CUDA_NO_PEER_COPY |
| 3714 | bool events = false; |
| 3715 | #else |
| 3716 | bool events = true; |
| 3717 | #endif |
| 3718 | |
| 3719 | props->caps = { |
| 3720 | /* .async = */ true, |
| 3721 | /* .host_buffer = */ host_buffer, |
| 3722 | /* .buffer_from_host_ptr = */ false, |
| 3723 | /* .events = */ events, |
| 3724 | }; |
| 3725 | } |
| 3726 | |
| 3727 | static ggml_backend_t ggml_backend_cuda_device_init_backend(ggml_backend_dev_t dev, const char * params) { |
| 3728 | GGML_UNUSED(params); |
| 3729 | ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context; |
| 3730 | return ggml_backend_cuda_init(ctx->device); |
| 3731 | } |
| 3732 | |
| 3733 | static ggml_backend_buffer_type_t ggml_backend_cuda_device_get_buffer_type(ggml_backend_dev_t dev) { |
| 3734 | ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context; |
| 3735 | return ggml_backend_cuda_buffer_type(ctx->device); |
| 3736 | } |
| 3737 | |
| 3738 | static ggml_backend_buffer_type_t ggml_backend_cuda_device_get_host_buffer_type(ggml_backend_dev_t dev) { |
| 3739 | GGML_UNUSED(dev); |
| 3740 | return ggml_backend_cuda_host_buffer_type(); |
| 3741 | } |
| 3742 | |
| 3743 | // TODO: move these functions here |
| 3744 | static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) { |
| 3745 | ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *) dev->context; |
| 3746 | |
| 3747 | // split buffers can only be used with GGML_OP_MUL_MAT |
| 3748 | if (op->op != GGML_OP_MUL_MAT) { |
| 3749 | for (int i = 0; i < GGML_MAX_SRC; i++) { |
| 3750 | if (op->src[i] && op->src[i]->buffer && ggml_backend_buft_is_cuda_split(op->src[i]->buffer->buft)) { |
| 3751 | return false; |
| 3752 | } |
| 3753 | } |
| 3754 | } |
| 3755 | |
| 3756 | // check if all the sources are allocated on this device |
| 3757 | for (int i = 0; i < GGML_MAX_SRC; i++) { |
| 3758 | if (op->src[i] && op->src[i]->buffer && ggml_backend_buft_is_cuda(op->src[i]->buffer->buft)) { |
| 3759 | ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)op->src[i]->buffer->buft->context; |
| 3760 | if (buft_ctx->device != dev_ctx->device) { |
| 3761 | return false; |
| 3762 | } |
| 3763 | } |
| 3764 | } |
| 3765 | |
| 3766 | switch (op->op) { |
| 3767 | case GGML_OP_UNARY: |
| 3768 | switch (ggml_get_unary_op(op)) { |
| 3769 | case GGML_UNARY_OP_ABS: |
| 3770 | case GGML_UNARY_OP_SGN: |
| 3771 | case GGML_UNARY_OP_NEG: |
| 3772 | case GGML_UNARY_OP_STEP: |
| 3773 | case GGML_UNARY_OP_GELU: |
| 3774 | case GGML_UNARY_OP_SILU: |
| 3775 | case GGML_UNARY_OP_RELU: |
| 3776 | case GGML_UNARY_OP_SIGMOID: |
| 3777 | case GGML_UNARY_OP_HARDSIGMOID: |
| 3778 | case GGML_UNARY_OP_HARDSWISH: |
| 3779 | case GGML_UNARY_OP_GELU_ERF: |
| 3780 | case GGML_UNARY_OP_GELU_QUICK: |
| 3781 | case GGML_UNARY_OP_TANH: |
| 3782 | case GGML_UNARY_OP_EXP: |
| 3783 | case GGML_UNARY_OP_ELU: |
| 3784 | case GGML_UNARY_OP_FLOOR: |
| 3785 | case GGML_UNARY_OP_CEIL: |
| 3786 | case GGML_UNARY_OP_ROUND: |
| 3787 | case GGML_UNARY_OP_TRUNC: |
| 3788 | return ggml_is_contiguous(op->src[0]); |
| 3789 | default: |
| 3790 | return false; |
| 3791 | } |
| 3792 | break; |
| 3793 | case GGML_OP_GLU: |
| 3794 | switch (ggml_get_glu_op(op)) { |
| 3795 | case GGML_GLU_OP_REGLU: |
| 3796 | case GGML_GLU_OP_GEGLU: |
| 3797 | case GGML_GLU_OP_SWIGLU: |
| 3798 | case GGML_GLU_OP_SWIGLU_OAI: |
| 3799 | case GGML_GLU_OP_GEGLU_ERF: |
| 3800 | case GGML_GLU_OP_GEGLU_QUICK: |
| 3801 | return ggml_is_contiguous_1(op->src[0]); |
| 3802 | default: |
| 3803 | return false; |
| 3804 | } |
| 3805 | break; |
| 3806 | case GGML_OP_MUL_MAT: |
| 3807 | case GGML_OP_MUL_MAT_ID: |
| 3808 | { |
| 3809 | struct ggml_tensor * a = op->src[0]; |
| 3810 | struct ggml_tensor * b = op->src[1]; |
| 3811 | if (a->buffer && ggml_backend_buft_is_cuda_split(a->buffer->buft)) { |
| 3812 | if (a->ne[2] > 1 || a->ne[3] > 1) { |
| 3813 | return false; |
| 3814 | } |
| 3815 | // for small weight matrices the active device can end up without any rows, don't use row split in those cases |
| 3816 | // this avoids some edge cases (and the performance would not be good anyways) |
| 3817 | ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) a->buffer->buft->context; |
| 3818 | int64_t row_low; |
| 3819 | int64_t row_high; |
| 3820 | get_row_split(&row_low, &row_high, a, buft_ctx->tensor_split, dev_ctx->device); |
| 3821 | if (row_low == row_high) { |
| 3822 | return false; |
| 3823 | } |
| 3824 | } |
| 3825 | if (b->type == GGML_TYPE_F16 && a->type != GGML_TYPE_F16) { |
| 3826 | return false; |
| 3827 | } |
| 3828 | #ifdef GGML_USE_MUSA |
| 3829 | const int cc = ggml_cuda_info().devices[dev_ctx->device].cc; |
| 3830 | if (b->ne[2]*b->ne[3] > 1 && !ggml_is_transposed(a) && !ggml_is_transposed(b)) { |
| 3831 | if (GGML_CUDA_CC_IS_QY1(cc) && op->op == GGML_OP_MUL_MAT && |
| 3832 | a->type == GGML_TYPE_F16 && b->type == GGML_TYPE_F16) { |
| 3833 | return false; |
| 3834 | } |
| 3835 | if (GGML_CUDA_CC_IS_QY2(cc) && op->op == GGML_OP_MUL_MAT_ID && |
| 3836 | a->type == GGML_TYPE_Q2_K && b->type == GGML_TYPE_F32) { |
| 3837 | return false; |
| 3838 | } |
| 3839 | } |
| 3840 | #endif // GGML_USE_MUSA |
| 3841 | switch (a->type) { |
| 3842 | case GGML_TYPE_F32: |
| 3843 | case GGML_TYPE_F16: |
| 3844 | case GGML_TYPE_Q4_0: |
| 3845 | case GGML_TYPE_Q4_1: |
| 3846 | case GGML_TYPE_Q5_0: |
| 3847 | case GGML_TYPE_Q5_1: |
| 3848 | case GGML_TYPE_Q8_0: |
| 3849 | case GGML_TYPE_MXFP4: |
| 3850 | case GGML_TYPE_Q2_K: |
| 3851 | case GGML_TYPE_Q3_K: |
| 3852 | case GGML_TYPE_Q4_K: |
| 3853 | case GGML_TYPE_Q5_K: |
| 3854 | case GGML_TYPE_Q6_K: |
| 3855 | case GGML_TYPE_Q8_K: |
| 3856 | case GGML_TYPE_IQ1_M: |
| 3857 | case GGML_TYPE_IQ1_S: |
| 3858 | case GGML_TYPE_IQ2_S: |
| 3859 | case GGML_TYPE_IQ2_XS: |
| 3860 | case GGML_TYPE_IQ2_XXS: |
| 3861 | case GGML_TYPE_IQ3_S: |
| 3862 | case GGML_TYPE_IQ3_XXS: |
| 3863 | case GGML_TYPE_IQ4_NL: |
| 3864 | case GGML_TYPE_IQ4_XS: |
| 3865 | case GGML_TYPE_BF16: |
| 3866 | return true; |
| 3867 | default: |
| 3868 | return false; |
| 3869 | } |
| 3870 | } break; |
| 3871 | case GGML_OP_OUT_PROD: |
| 3872 | return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32; |
| 3873 | case GGML_OP_GET_ROWS: |
| 3874 | { |
| 3875 | switch (op->src[0]->type) { |
| 3876 | case GGML_TYPE_F16: |
| 3877 | case GGML_TYPE_F32: |
| 3878 | case GGML_TYPE_BF16: |
| 3879 | case GGML_TYPE_I32: |
| 3880 | case GGML_TYPE_Q4_0: |
| 3881 | case GGML_TYPE_Q4_1: |
| 3882 | case GGML_TYPE_Q5_0: |
| 3883 | case GGML_TYPE_Q5_1: |
| 3884 | case GGML_TYPE_Q8_0: |
| 3885 | return true; |
| 3886 | default: |
| 3887 | return false; |
| 3888 | } |
| 3889 | } break; |
| 3890 | case GGML_OP_GET_ROWS_BACK: |
| 3891 | { |
| 3892 | return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32 && op->ne[2] == 1 && op->ne[3] == 1; |
| 3893 | } break; |
| 3894 | case GGML_OP_SET_ROWS: |
| 3895 | { |
| 3896 | return (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16 || op->type == GGML_TYPE_BF16 || |
| 3897 | op->type == GGML_TYPE_Q4_0 || op->type == GGML_TYPE_Q4_1 || op->type == GGML_TYPE_Q5_0 || |
| 3898 | op->type == GGML_TYPE_Q5_1 || op->type == GGML_TYPE_Q8_0 || op->type == GGML_TYPE_IQ4_NL) && |
| 3899 | op->src[0]->type == GGML_TYPE_F32 && |
| 3900 | (op->src[1]->type == GGML_TYPE_I64 || op->src[1]->type == GGML_TYPE_I32); |
| 3901 | } break; |
| 3902 | case GGML_OP_SET: |
| 3903 | { |
| 3904 | const ggml_type t = op->type; |
| 3905 | return (t == GGML_TYPE_F32 || t == GGML_TYPE_I32) && |
| 3906 | t == op->src[0]->type && |
| 3907 | t == op->src[1]->type; |
| 3908 | } break; |
| 3909 | case GGML_OP_CPY: |
| 3910 | { |
| 3911 | ggml_type src0_type = op->src[0]->type; |
| 3912 | ggml_type src1_type = op->src[1]->type; |
| 3913 | if ((src0_type == GGML_TYPE_F32 || src0_type == GGML_TYPE_BF16 || src0_type == GGML_TYPE_F16) && |
| 3914 | (src1_type == GGML_TYPE_F32 || src1_type == GGML_TYPE_BF16 || src1_type == GGML_TYPE_F16) |
| 3915 | ) { |
| 3916 | return true; |
| 3917 | } |
| 3918 | if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) { |
| 3919 | return true; |
| 3920 | } |
| 3921 | if (src0_type == GGML_TYPE_Q8_0 && src1_type == GGML_TYPE_F32) { |
| 3922 | return true; |
| 3923 | } |
| 3924 | if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) { |
| 3925 | return true; |
| 3926 | } |
| 3927 | if (src0_type == GGML_TYPE_Q4_0 && src1_type == GGML_TYPE_F32) { |
| 3928 | return true; |
| 3929 | } |
| 3930 | if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) { |
| 3931 | return true; |
| 3932 | } |
| 3933 | if (src0_type == GGML_TYPE_Q4_1 && src1_type == GGML_TYPE_F32) { |
| 3934 | return true; |
| 3935 | } |
| 3936 | if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_0) { |
| 3937 | return true; |
| 3938 | } |
| 3939 | if (src0_type == GGML_TYPE_Q5_0 && src1_type == GGML_TYPE_F32) { |
| 3940 | return true; |
| 3941 | } |
| 3942 | if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_1) { |
| 3943 | return true; |
| 3944 | } |
| 3945 | if (src0_type == GGML_TYPE_Q5_1 && src1_type == GGML_TYPE_F32) { |
| 3946 | return true; |
| 3947 | } |
| 3948 | if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) { |
| 3949 | return true; |
| 3950 | } |
| 3951 | if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_I32) { |
| 3952 | return true; |
| 3953 | } |
| 3954 | if (src0_type == GGML_TYPE_I32 && src1_type == GGML_TYPE_F32) { |
| 3955 | return true; |
| 3956 | } |
| 3957 | if (src0_type == src1_type && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1])) { |
| 3958 | return true; |
| 3959 | } |
| 3960 | return false; |
| 3961 | } break; |
| 3962 | case GGML_OP_DUP: |
| 3963 | { |
| 3964 | ggml_type src0_type = op->src[0]->type; |
| 3965 | return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16; |
| 3966 | } break; |
| 3967 | case GGML_OP_ARGMAX: |
| 3968 | case GGML_OP_COUNT_EQUAL: |
| 3969 | { |
| 3970 | return true; |
| 3971 | } break; |
| 3972 | case GGML_OP_REPEAT: |
| 3973 | { |
| 3974 | ggml_type src0_type = op->src[0]->type; |
| 3975 | return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16; |
| 3976 | } break; |
| 3977 | case GGML_OP_REPEAT_BACK: |
| 3978 | return op->type == GGML_TYPE_F32 && (op->src[0]->ne[2]*op->src[0]->ne[3]) <= (1 << 15); |
| 3979 | case GGML_OP_CONCAT: |
| 3980 | { |
| 3981 | ggml_type src0_type = op->src[0]->type; |
| 3982 | return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16; |
| 3983 | } break; |
| 3984 | case GGML_OP_CONV_TRANSPOSE_1D: |
| 3985 | { |
| 3986 | ggml_type src0_type = op->src[0]->type; |
| 3987 | ggml_type src1_type = op->src[1]->type; |
| 3988 | if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) { |
| 3989 | return true; |
| 3990 | } |
| 3991 | return false; |
| 3992 | } break; |
| 3993 | case GGML_OP_SILU_BACK: |
| 3994 | return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32; |
| 3995 | break; |
| 3996 | case GGML_OP_NORM: |
| 3997 | case GGML_OP_RMS_NORM: |
| 3998 | case GGML_OP_L2_NORM: |
| 3999 | return true; |
| 4000 | case GGML_OP_RMS_NORM_BACK: |
| 4001 | return ggml_is_contiguous(op->src[0]) && op->ne[0] % WARP_SIZE == 0; |
| 4002 | break; |
| 4003 | case GGML_OP_NONE: |
| 4004 | case GGML_OP_RESHAPE: |
| 4005 | case GGML_OP_VIEW: |
| 4006 | case GGML_OP_PERMUTE: |
| 4007 | case GGML_OP_TRANSPOSE: |
| 4008 | case GGML_OP_ADD: |
| 4009 | case GGML_OP_ADD_ID: |
| 4010 | case GGML_OP_ADD1: |
| 4011 | case GGML_OP_SUB: |
| 4012 | case GGML_OP_MUL: |
| 4013 | case GGML_OP_DIV: |
| 4014 | case GGML_OP_SCALE: |
| 4015 | case GGML_OP_SQR: |
| 4016 | case GGML_OP_SQRT: |
| 4017 | case GGML_OP_SIN: |
| 4018 | case GGML_OP_COS: |
| 4019 | case GGML_OP_CLAMP: |
| 4020 | case GGML_OP_LOG: |
| 4021 | return true; |
| 4022 | case GGML_OP_SSM_SCAN: { |
| 4023 | if (op->src[3]->ne[0] == 1) { |
| 4024 | // Mamba2 |
| 4025 | // (kernel only supports (d_state == 128 || d_state == 256) && d_head % 16 == 0) |
| 4026 | return (op->src[0]->ne[0] == 128 || op->src[0]->ne[0] == 256) && op->src[0]->ne[1] % 16 == 0; |
| 4027 | } else { |
| 4028 | // Mamba |
| 4029 | // (kernel only supports d_state == 16, d_head == 1, n_head % 128 == 0, n_group == 1) |
| 4030 | return op->src[0]->ne[0] == 16 && op->src[0]->ne[1] == 1 && op->src[0]->ne[2] % 128 == 0 && op->src[4]->ne[1] == 1; |
| 4031 | } |
| 4032 | } |
| 4033 | case GGML_OP_SSM_CONV: { |
| 4034 | // assumes d_inner % threads == 0 |
| 4035 | return op->src[0]->ne[1] % 128 == 0; |
| 4036 | } |
| 4037 | case GGML_OP_CONT: |
| 4038 | return true; |
| 4039 | case GGML_OP_DIAG_MASK_INF: |
| 4040 | return true; |
| 4041 | case GGML_OP_SOFT_MAX: |
| 4042 | return true; |
| 4043 | case GGML_OP_SOFT_MAX_BACK: { |
| 4044 | float max_bias = 0.0f; |
| 4045 | memcpy(dest: &max_bias, src: (const float *) op->op_params + 1, n: sizeof(float)); |
| 4046 | return max_bias == 0.0f; |
| 4047 | } |
| 4048 | case GGML_OP_ROLL: |
| 4049 | if(op->src[0]->type == GGML_TYPE_F32) { |
| 4050 | return true; |
| 4051 | } |
| 4052 | return false; |
| 4053 | case GGML_OP_ROPE: |
| 4054 | case GGML_OP_ROPE_BACK: { |
| 4055 | return op->src[0]->nb[0] == ggml_type_size(op->src[0]->type) && ggml_is_contiguous_2(op->src[0]); |
| 4056 | } |
| 4057 | case GGML_OP_IM2COL: |
| 4058 | case GGML_OP_IM2COL_3D: |
| 4059 | case GGML_OP_CONV_2D: |
| 4060 | case GGML_OP_CONV_2D_DW: |
| 4061 | case GGML_OP_CONV_TRANSPOSE_2D: |
| 4062 | case GGML_OP_POOL_2D: |
| 4063 | case GGML_OP_ACC: |
| 4064 | return true; |
| 4065 | case GGML_OP_SUM: |
| 4066 | return ggml_is_contiguous_rows(op->src[0]); |
| 4067 | case GGML_OP_ARGSORT: |
| 4068 | #ifndef GGML_CUDA_USE_CUB |
| 4069 | return op->src[0]->ne[0] <= 1024; |
| 4070 | #else |
| 4071 | return true; |
| 4072 | #endif |
| 4073 | case GGML_OP_SUM_ROWS: |
| 4074 | case GGML_OP_MEAN: |
| 4075 | case GGML_OP_GROUP_NORM: |
| 4076 | case GGML_OP_PAD: |
| 4077 | return ggml_is_contiguous(op->src[0]); |
| 4078 | case GGML_OP_UPSCALE: |
| 4079 | case GGML_OP_PAD_REFLECT_1D: |
| 4080 | case GGML_OP_ARANGE: |
| 4081 | case GGML_OP_TIMESTEP_EMBEDDING: |
| 4082 | case GGML_OP_LEAKY_RELU: |
| 4083 | case GGML_OP_RWKV_WKV6: |
| 4084 | case GGML_OP_GATED_LINEAR_ATTN: |
| 4085 | case GGML_OP_RWKV_WKV7: |
| 4086 | return true; |
| 4087 | case GGML_OP_FLASH_ATTN_EXT: |
| 4088 | return ggml_cuda_flash_attn_ext_supported(dev_ctx->device, op); |
| 4089 | case GGML_OP_CROSS_ENTROPY_LOSS: |
| 4090 | case GGML_OP_CROSS_ENTROPY_LOSS_BACK: |
| 4091 | case GGML_OP_OPT_STEP_ADAMW: |
| 4092 | case GGML_OP_OPT_STEP_SGD: |
| 4093 | return true; |
| 4094 | default: |
| 4095 | return false; |
| 4096 | } |
| 4097 | } |
| 4098 | |
| 4099 | static bool ggml_backend_cuda_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) { |
| 4100 | ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *) dev->context; |
| 4101 | const bool integrated = ggml_cuda_info().devices[dev_ctx->device].integrated; |
| 4102 | return (((ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft)) && buft->device == dev) || (integrated && ggml_backend_buft_is_cuda_host(buft))); |
| 4103 | } |
| 4104 | |
| 4105 | static int64_t get_op_batch_size(const ggml_tensor * op) { |
| 4106 | switch (op->op) { |
| 4107 | case GGML_OP_GET_ROWS: |
| 4108 | return 0; |
| 4109 | case GGML_OP_MUL_MAT: |
| 4110 | return op->ne[1]; |
| 4111 | case GGML_OP_MUL_MAT_ID: |
| 4112 | case GGML_OP_ROPE: |
| 4113 | case GGML_OP_ROPE_BACK: |
| 4114 | return op->ne[2]; |
| 4115 | default: |
| 4116 | return ggml_nrows(op); |
| 4117 | } |
| 4118 | } |
| 4119 | |
| 4120 | static bool ggml_backend_cuda_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) { |
| 4121 | const int min_batch_size = 32; |
| 4122 | |
| 4123 | return get_op_batch_size(op) >= min_batch_size; |
| 4124 | |
| 4125 | GGML_UNUSED(dev); |
| 4126 | } |
| 4127 | |
| 4128 | static ggml_backend_event_t ggml_backend_cuda_device_event_new(ggml_backend_dev_t dev) { |
| 4129 | #ifdef GGML_CUDA_NO_PEER_COPY |
| 4130 | return nullptr; |
| 4131 | #else |
| 4132 | ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *)dev->context; |
| 4133 | |
| 4134 | ggml_cuda_set_device(device: dev_ctx->device); |
| 4135 | |
| 4136 | cudaEvent_t event; |
| 4137 | CUDA_CHECK(cudaEventCreateWithFlags(event: &event, cudaEventDisableTiming)); |
| 4138 | |
| 4139 | return new ggml_backend_event { |
| 4140 | /* .device = */ dev, |
| 4141 | /* .context = */ event, |
| 4142 | }; |
| 4143 | #endif |
| 4144 | } |
| 4145 | |
| 4146 | static void ggml_backend_cuda_device_event_free(ggml_backend_dev_t dev, ggml_backend_event_t event) { |
| 4147 | GGML_UNUSED(dev); |
| 4148 | |
| 4149 | CUDA_CHECK(cudaEventDestroy(event: (cudaEvent_t)event->context)); |
| 4150 | delete event; |
| 4151 | } |
| 4152 | |
| 4153 | static void ggml_backend_cuda_device_event_synchronize(ggml_backend_dev_t dev, ggml_backend_event_t event) { |
| 4154 | GGML_UNUSED(dev); |
| 4155 | CUDA_CHECK(cudaEventSynchronize(event: (cudaEvent_t)event->context)); |
| 4156 | } |
| 4157 | |
| 4158 | static const ggml_backend_device_i ggml_backend_cuda_device_interface = { |
| 4159 | /* .get_name = */ ggml_backend_cuda_device_get_name, |
| 4160 | /* .get_description = */ ggml_backend_cuda_device_get_description, |
| 4161 | /* .get_memory = */ ggml_backend_cuda_device_get_memory, |
| 4162 | /* .get_type = */ ggml_backend_cuda_device_get_type, |
| 4163 | /* .get_props = */ ggml_backend_cuda_device_get_props, |
| 4164 | /* .init_backend = */ ggml_backend_cuda_device_init_backend, |
| 4165 | /* .get_buffer_type = */ ggml_backend_cuda_device_get_buffer_type, |
| 4166 | /* .get_host_buffer_type = */ ggml_backend_cuda_device_get_host_buffer_type, |
| 4167 | /* .buffer_from_host_ptr = */ NULL, |
| 4168 | /* .supports_op = */ ggml_backend_cuda_device_supports_op, |
| 4169 | /* .supports_buft = */ ggml_backend_cuda_device_supports_buft, |
| 4170 | /* .offload_op = */ ggml_backend_cuda_device_offload_op, |
| 4171 | /* .event_new = */ ggml_backend_cuda_device_event_new, |
| 4172 | /* .event_free = */ ggml_backend_cuda_device_event_free, |
| 4173 | /* .event_synchronize = */ ggml_backend_cuda_device_event_synchronize, |
| 4174 | }; |
| 4175 | |
| 4176 | // backend reg |
| 4177 | |
| 4178 | struct ggml_backend_cuda_reg_context { |
| 4179 | std::vector<ggml_backend_dev_t> devices; |
| 4180 | }; |
| 4181 | |
| 4182 | static const char * ggml_backend_cuda_reg_get_name(ggml_backend_reg_t reg) { |
| 4183 | GGML_UNUSED(reg); |
| 4184 | return GGML_CUDA_NAME; |
| 4185 | } |
| 4186 | |
| 4187 | static size_t ggml_backend_cuda_reg_get_device_count(ggml_backend_reg_t reg) { |
| 4188 | ggml_backend_cuda_reg_context * ctx = (ggml_backend_cuda_reg_context *)reg->context; |
| 4189 | return ctx->devices.size(); |
| 4190 | } |
| 4191 | |
| 4192 | static ggml_backend_dev_t ggml_backend_cuda_reg_get_device(ggml_backend_reg_t reg, size_t index) { |
| 4193 | ggml_backend_cuda_reg_context * ctx = (ggml_backend_cuda_reg_context *)reg->context; |
| 4194 | GGML_ASSERT(index < ctx->devices.size()); |
| 4195 | return ctx->devices[index]; |
| 4196 | } |
| 4197 | |
| 4198 | static ggml_backend_feature * ggml_backend_cuda_get_features(ggml_backend_reg_t reg) { |
| 4199 | static std::vector<ggml_backend_feature> features = []() { |
| 4200 | std::vector<ggml_backend_feature> features; |
| 4201 | #define _STRINGIFY(...) #__VA_ARGS__ |
| 4202 | #define STRINGIFY(...) _STRINGIFY(__VA_ARGS__) |
| 4203 | |
| 4204 | #ifdef __CUDA_ARCH_LIST__ |
| 4205 | features.push_back({ "ARCHS" , STRINGIFY(__CUDA_ARCH_LIST__) }); |
| 4206 | #endif |
| 4207 | |
| 4208 | #ifdef GGML_CUDA_FORCE_MMQ |
| 4209 | features.push_back({ "FORCE_MMQ" , "1" }); |
| 4210 | #endif |
| 4211 | |
| 4212 | #ifdef GGML_CUDA_FORCE_CUBLAS |
| 4213 | features.push_back({ "FORCE_CUBLAS" , "1" }); |
| 4214 | #endif |
| 4215 | |
| 4216 | #ifndef GGML_USE_VMM |
| 4217 | features.push_back({ "NO_VMM" , "1" }); |
| 4218 | #endif |
| 4219 | |
| 4220 | #ifdef GGML_CUDA_NO_PEER_COPY |
| 4221 | features.push_back({ "NO_PEER_COPY" , "1" }); |
| 4222 | #endif |
| 4223 | |
| 4224 | #ifdef GGML_CUDA_USE_GRAPHS |
| 4225 | features.push_back({ "USE_GRAPHS" , "1" }); |
| 4226 | #endif |
| 4227 | |
| 4228 | #ifdef GGML_CUDA_PEER_MAX_BATCH_SIZE |
| 4229 | features.push_back({ "PEER_MAX_BATCH_SIZE" , STRINGIFY(GGML_CUDA_PEER_MAX_BATCH_SIZE) }); |
| 4230 | #endif |
| 4231 | |
| 4232 | #ifdef GGML_CUDA_FA_ALL_QUANTS |
| 4233 | features.push_back({ "FA_ALL_QUANTS" , "1" }); |
| 4234 | #endif |
| 4235 | |
| 4236 | #undef _STRINGIFY |
| 4237 | #undef STRINGIFY |
| 4238 | |
| 4239 | features.push_back({ nullptr, nullptr }); |
| 4240 | |
| 4241 | return features; |
| 4242 | }(); |
| 4243 | |
| 4244 | return features.data(); |
| 4245 | |
| 4246 | GGML_UNUSED(reg); |
| 4247 | } |
| 4248 | |
| 4249 | static void * ggml_backend_cuda_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) { |
| 4250 | GGML_UNUSED(reg); |
| 4251 | if (strcmp(s1: name, s2: "ggml_backend_split_buffer_type" ) == 0) { |
| 4252 | return (void *)ggml_backend_cuda_split_buffer_type; |
| 4253 | } |
| 4254 | if (strcmp(s1: name, s2: "ggml_backend_register_host_buffer" ) == 0) { |
| 4255 | return (void *)ggml_backend_cuda_register_host_buffer; |
| 4256 | } |
| 4257 | if (strcmp(s1: name, s2: "ggml_backend_unregister_host_buffer" ) == 0) { |
| 4258 | return (void *)ggml_backend_cuda_unregister_host_buffer; |
| 4259 | } |
| 4260 | if (strcmp(s1: name, s2: "ggml_backend_get_features" ) == 0) { |
| 4261 | return (void *)ggml_backend_cuda_get_features; |
| 4262 | } |
| 4263 | return nullptr; |
| 4264 | } |
| 4265 | |
| 4266 | static const ggml_backend_reg_i ggml_backend_cuda_reg_interface = { |
| 4267 | /* .get_name = */ ggml_backend_cuda_reg_get_name, |
| 4268 | /* .get_device_count = */ ggml_backend_cuda_reg_get_device_count, |
| 4269 | /* .get_device = */ ggml_backend_cuda_reg_get_device, |
| 4270 | /* .get_proc_address = */ ggml_backend_cuda_reg_get_proc_address, |
| 4271 | }; |
| 4272 | |
| 4273 | // backend registry |
| 4274 | ggml_backend_reg_t ggml_backend_cuda_reg() { |
| 4275 | static ggml_backend_reg reg; |
| 4276 | static bool initialized = false; |
| 4277 | |
| 4278 | { |
| 4279 | static std::mutex mutex; |
| 4280 | std::lock_guard<std::mutex> lock(mutex); |
| 4281 | if (!initialized) { |
| 4282 | ggml_backend_cuda_reg_context * ctx = new ggml_backend_cuda_reg_context; |
| 4283 | |
| 4284 | for (int i = 0; i < ggml_cuda_info().device_count; i++) { |
| 4285 | ggml_backend_cuda_device_context * dev_ctx = new ggml_backend_cuda_device_context; |
| 4286 | dev_ctx->device = i; |
| 4287 | dev_ctx->name = GGML_CUDA_NAME + std::to_string(i); |
| 4288 | |
| 4289 | cudaDeviceProp prop; |
| 4290 | CUDA_CHECK(cudaGetDeviceProperties(prop: &prop, device: i)); |
| 4291 | dev_ctx->description = prop.name; |
| 4292 | |
| 4293 | char pci_bus_id[16] = {}; |
| 4294 | snprintf(s: pci_bus_id, maxlen: sizeof(pci_bus_id), format: "%04x:%02x:%02x.0" , prop.pciDomainID, prop.pciBusID, prop.pciDeviceID); |
| 4295 | dev_ctx->pci_bus_id = pci_bus_id; |
| 4296 | |
| 4297 | ggml_backend_dev_t dev = new ggml_backend_device { |
| 4298 | /* .iface = */ ggml_backend_cuda_device_interface, |
| 4299 | /* .reg = */ ®, |
| 4300 | /* .context = */ dev_ctx |
| 4301 | }; |
| 4302 | ctx->devices.push_back(dev); |
| 4303 | } |
| 4304 | |
| 4305 | reg = ggml_backend_reg { |
| 4306 | /* .api_version = */ GGML_BACKEND_API_VERSION, |
| 4307 | /* .iface = */ ggml_backend_cuda_reg_interface, |
| 4308 | /* .context = */ ctx |
| 4309 | }; |
| 4310 | } |
| 4311 | |
| 4312 | initialized = true; |
| 4313 | } |
| 4314 | |
| 4315 | return ® |
| 4316 | } |
| 4317 | |
| 4318 | ggml_backend_t ggml_backend_cuda_init(int device) { |
| 4319 | if (device < 0 || device >= ggml_backend_cuda_get_device_count()) { |
| 4320 | GGML_LOG_ERROR("%s: invalid device %d\n" , __func__, device); |
| 4321 | return nullptr; |
| 4322 | } |
| 4323 | |
| 4324 | ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device); |
| 4325 | if (ctx == nullptr) { |
| 4326 | GGML_LOG_ERROR("%s: failed to allocate context\n" , __func__); |
| 4327 | return nullptr; |
| 4328 | } |
| 4329 | |
| 4330 | ggml_backend_t cuda_backend = new ggml_backend { |
| 4331 | /* .guid = */ ggml_backend_cuda_guid(), |
| 4332 | /* .iface = */ ggml_backend_cuda_interface, |
| 4333 | /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), device), |
| 4334 | /* .context = */ ctx, |
| 4335 | }; |
| 4336 | |
| 4337 | return cuda_backend; |
| 4338 | } |
| 4339 | |
| 4340 | GGML_BACKEND_DL_IMPL(ggml_backend_cuda_reg) |
| 4341 | |