| 1 | #include "ggml.h" |
| 2 | #include "ggml-backend.h" |
| 3 | #include "ggml-impl.h" |
| 4 | #include "gguf.h" |
| 5 | |
| 6 | #include <cinttypes> |
| 7 | #include <cstddef> |
| 8 | #include <cstdint> |
| 9 | #include <cstdio> |
| 10 | #include <cstdlib> |
| 11 | #include <cstring> |
| 12 | #include <map> |
| 13 | #include <new> |
| 14 | #include <stdexcept> |
| 15 | #include <string> |
| 16 | #include <vector> |
| 17 | |
| 18 | template <typename T> |
| 19 | struct type_to_gguf_type; |
| 20 | |
| 21 | template <> |
| 22 | struct type_to_gguf_type<uint8_t> { |
| 23 | static constexpr enum gguf_type value = GGUF_TYPE_UINT8; |
| 24 | }; |
| 25 | |
| 26 | template <> |
| 27 | struct type_to_gguf_type<int8_t> { |
| 28 | static constexpr enum gguf_type value = GGUF_TYPE_INT8; |
| 29 | }; |
| 30 | |
| 31 | template <> |
| 32 | struct type_to_gguf_type<uint16_t> { |
| 33 | static constexpr enum gguf_type value = GGUF_TYPE_UINT16; |
| 34 | }; |
| 35 | |
| 36 | template <> |
| 37 | struct type_to_gguf_type<int16_t> { |
| 38 | static constexpr enum gguf_type value = GGUF_TYPE_INT16; |
| 39 | }; |
| 40 | |
| 41 | template <> |
| 42 | struct type_to_gguf_type<uint32_t> { |
| 43 | static constexpr enum gguf_type value = GGUF_TYPE_UINT32; |
| 44 | }; |
| 45 | |
| 46 | template <> |
| 47 | struct type_to_gguf_type<int32_t> { |
| 48 | static constexpr enum gguf_type value = GGUF_TYPE_INT32; |
| 49 | }; |
| 50 | |
| 51 | template <> |
| 52 | struct type_to_gguf_type<float> { |
| 53 | static constexpr enum gguf_type value = GGUF_TYPE_FLOAT32; |
| 54 | }; |
| 55 | |
| 56 | template <> |
| 57 | struct type_to_gguf_type<bool> { |
| 58 | static constexpr enum gguf_type value = GGUF_TYPE_BOOL; |
| 59 | }; |
| 60 | |
| 61 | template <> |
| 62 | struct type_to_gguf_type<std::string> { |
| 63 | static constexpr enum gguf_type value = GGUF_TYPE_STRING; |
| 64 | }; |
| 65 | |
| 66 | template <> |
| 67 | struct type_to_gguf_type<uint64_t> { |
| 68 | static constexpr enum gguf_type value = GGUF_TYPE_UINT64; |
| 69 | }; |
| 70 | |
| 71 | template <> |
| 72 | struct type_to_gguf_type<int64_t> { |
| 73 | static constexpr enum gguf_type value = GGUF_TYPE_INT64; |
| 74 | }; |
| 75 | |
| 76 | template <> |
| 77 | struct type_to_gguf_type<double> { |
| 78 | static constexpr enum gguf_type value = GGUF_TYPE_FLOAT64; |
| 79 | }; |
| 80 | |
| 81 | static const std::map<gguf_type, size_t> GGUF_TYPE_SIZE = { |
| 82 | {GGUF_TYPE_UINT8, sizeof(uint8_t)}, |
| 83 | {GGUF_TYPE_INT8, sizeof(int8_t)}, |
| 84 | {GGUF_TYPE_UINT16, sizeof(uint16_t)}, |
| 85 | {GGUF_TYPE_INT16, sizeof(int16_t)}, |
| 86 | {GGUF_TYPE_UINT32, sizeof(uint32_t)}, |
| 87 | {GGUF_TYPE_INT32, sizeof(int32_t)}, |
| 88 | {GGUF_TYPE_FLOAT32, sizeof(float)}, |
| 89 | {GGUF_TYPE_BOOL, sizeof(int8_t)}, |
| 90 | {GGUF_TYPE_STRING, 0}, // undefined |
| 91 | {GGUF_TYPE_ARRAY, 0}, // undefined |
| 92 | {GGUF_TYPE_UINT64, sizeof(uint64_t)}, |
| 93 | {GGUF_TYPE_INT64, sizeof(int64_t)}, |
| 94 | {GGUF_TYPE_FLOAT64, sizeof(double)}, |
| 95 | }; |
| 96 | static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13" ); |
| 97 | |
| 98 | static const std::map<gguf_type, const char *> GGUF_TYPE_NAME = { |
| 99 | {GGUF_TYPE_UINT8, "u8" }, |
| 100 | {GGUF_TYPE_INT8, "i8" }, |
| 101 | {GGUF_TYPE_UINT16, "u16" }, |
| 102 | {GGUF_TYPE_INT16, "i16" }, |
| 103 | {GGUF_TYPE_UINT32, "u32" }, |
| 104 | {GGUF_TYPE_INT32, "i32" }, |
| 105 | {GGUF_TYPE_FLOAT32, "f32" }, |
| 106 | {GGUF_TYPE_BOOL, "bool" }, |
| 107 | {GGUF_TYPE_STRING, "str" }, |
| 108 | {GGUF_TYPE_ARRAY, "arr" }, |
| 109 | {GGUF_TYPE_UINT64, "u64" }, |
| 110 | {GGUF_TYPE_INT64, "i64" }, |
| 111 | {GGUF_TYPE_FLOAT64, "f64" }, |
| 112 | }; |
| 113 | static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13" ); |
| 114 | |
| 115 | size_t gguf_type_size(enum gguf_type type) { |
| 116 | auto it = GGUF_TYPE_SIZE.find(x: type); |
| 117 | return it == GGUF_TYPE_SIZE.end() ? 0 : it->second; |
| 118 | } |
| 119 | |
| 120 | struct gguf_kv { |
| 121 | std::string key; |
| 122 | |
| 123 | bool is_array; |
| 124 | enum gguf_type type; |
| 125 | |
| 126 | std::vector<int8_t> data; |
| 127 | std::vector<std::string> data_string; |
| 128 | |
| 129 | template <typename T> |
| 130 | gguf_kv(const std::string & key, const T value) |
| 131 | : key(key), is_array(false), type(type_to_gguf_type<T>::value) { |
| 132 | GGML_ASSERT(!key.empty()); |
| 133 | data.resize(new_size: sizeof(T)); |
| 134 | memcpy(data.data(), &value, sizeof(T)); |
| 135 | } |
| 136 | |
| 137 | template <typename T> |
| 138 | gguf_kv(const std::string & key, const std::vector<T> & value) |
| 139 | : key(key), is_array(true), type(type_to_gguf_type<T>::value) { |
| 140 | GGML_ASSERT(!key.empty()); |
| 141 | data.resize(value.size()*sizeof(T)); |
| 142 | for (size_t i = 0; i < value.size(); ++i) { |
| 143 | const T tmp = value[i]; |
| 144 | memcpy(data.data() + i*sizeof(T), &tmp, sizeof(T)); |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | gguf_kv(const std::string & key, const std::string & value) |
| 149 | : key(key), is_array(false), type(GGUF_TYPE_STRING) { |
| 150 | GGML_ASSERT(!key.empty()); |
| 151 | data_string.push_back(x: value); |
| 152 | } |
| 153 | |
| 154 | gguf_kv(const std::string & key, const std::vector<std::string> & value) |
| 155 | : key(key), is_array(true), type(GGUF_TYPE_STRING) { |
| 156 | GGML_ASSERT(!key.empty()); |
| 157 | data_string = value; |
| 158 | } |
| 159 | |
| 160 | const std::string & get_key() const { |
| 161 | return key; |
| 162 | } |
| 163 | |
| 164 | const enum gguf_type & get_type() const { |
| 165 | return type; |
| 166 | } |
| 167 | |
| 168 | size_t get_ne() const { |
| 169 | if (type == GGUF_TYPE_STRING) { |
| 170 | const size_t ne = data_string.size(); |
| 171 | GGML_ASSERT(is_array || ne == 1); |
| 172 | return ne; |
| 173 | } |
| 174 | const size_t type_size = gguf_type_size(type); |
| 175 | GGML_ASSERT(data.size() % type_size == 0); |
| 176 | const size_t ne = data.size() / type_size; |
| 177 | GGML_ASSERT(is_array || ne == 1); |
| 178 | return ne; |
| 179 | } |
| 180 | |
| 181 | template <typename T> |
| 182 | const T & get_val(const size_t i = 0) const { |
| 183 | GGML_ASSERT(type_to_gguf_type<T>::value == type); |
| 184 | if constexpr (std::is_same<T, std::string>::value) { |
| 185 | GGML_ASSERT(data_string.size() >= i+1); |
| 186 | return data_string[i]; |
| 187 | } |
| 188 | const size_t type_size = gguf_type_size(type); |
| 189 | GGML_ASSERT(data.size() % type_size == 0); |
| 190 | GGML_ASSERT(data.size() >= (i+1)*type_size); |
| 191 | return reinterpret_cast<const T *>(data.data())[i]; |
| 192 | } |
| 193 | |
| 194 | void cast(const enum gguf_type new_type) { |
| 195 | const size_t new_type_size = gguf_type_size(type: new_type); |
| 196 | GGML_ASSERT(data.size() % new_type_size == 0); |
| 197 | type = new_type; |
| 198 | } |
| 199 | }; |
| 200 | |
| 201 | struct gguf_tensor_info { |
| 202 | struct ggml_tensor t; // for holding the equivalent info |
| 203 | uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT` |
| 204 | }; |
| 205 | |
| 206 | struct gguf_context { |
| 207 | uint32_t version = GGUF_VERSION; |
| 208 | |
| 209 | std::vector<struct gguf_kv> kv; |
| 210 | std::vector<struct gguf_tensor_info> info; |
| 211 | |
| 212 | size_t alignment = GGUF_DEFAULT_ALIGNMENT; |
| 213 | size_t offset = 0; // offset of `data` from beginning of file |
| 214 | size_t size = 0; // size of `data` in bytes |
| 215 | |
| 216 | void * data = nullptr; |
| 217 | }; |
| 218 | |
| 219 | struct gguf_reader { |
| 220 | FILE * file; |
| 221 | |
| 222 | gguf_reader(FILE * file) : file(file) {} |
| 223 | |
| 224 | template <typename T> |
| 225 | bool read(T & dst) const { |
| 226 | return fread(&dst, 1, sizeof(dst), file) == sizeof(dst); |
| 227 | } |
| 228 | |
| 229 | template <typename T> |
| 230 | bool read(std::vector<T> & dst, const size_t n) const { |
| 231 | dst.resize(n); |
| 232 | for (size_t i = 0; i < dst.size(); ++i) { |
| 233 | if constexpr (std::is_same<T, bool>::value) { |
| 234 | bool tmp; |
| 235 | if (!read(dst&: tmp)) { |
| 236 | return false; |
| 237 | } |
| 238 | dst[i] = tmp; |
| 239 | } else { |
| 240 | if (!read(dst[i])) { |
| 241 | return false; |
| 242 | } |
| 243 | } |
| 244 | } |
| 245 | return true; |
| 246 | } |
| 247 | |
| 248 | bool read(bool & dst) const { |
| 249 | int8_t tmp = -1; |
| 250 | if (!read(dst&: tmp)) { |
| 251 | return false; |
| 252 | } |
| 253 | dst = tmp != 0; |
| 254 | return true; |
| 255 | } |
| 256 | |
| 257 | bool read(enum ggml_type & dst) const { |
| 258 | int32_t tmp = -1; |
| 259 | if (!read(dst&: tmp)) { |
| 260 | return false; |
| 261 | } |
| 262 | dst = ggml_type(tmp); |
| 263 | return true; |
| 264 | } |
| 265 | |
| 266 | bool read(enum gguf_type & dst) const { |
| 267 | int32_t tmp = -1; |
| 268 | if (!read(dst&: tmp)) { |
| 269 | return false; |
| 270 | } |
| 271 | dst = gguf_type(tmp); |
| 272 | return true; |
| 273 | } |
| 274 | |
| 275 | bool read(std::string & dst) const { |
| 276 | uint64_t size = 0; |
| 277 | if (!read(dst&: size)) { |
| 278 | return false; |
| 279 | } |
| 280 | dst.resize(n: size); |
| 281 | return fread(ptr: dst.data(), size: 1, n: dst.length(), stream: file) == dst.length(); |
| 282 | } |
| 283 | |
| 284 | bool read(void * dst, const size_t size) const { |
| 285 | return fread(ptr: dst, size: 1, n: size, stream: file) == size; |
| 286 | } |
| 287 | }; |
| 288 | |
| 289 | struct gguf_context * gguf_init_empty(void) { |
| 290 | return new gguf_context; |
| 291 | } |
| 292 | |
| 293 | template<typename T> |
| 294 | bool gguf_read_emplace_helper(const struct gguf_reader & gr, std::vector<struct gguf_kv> & kv, const std::string & key, const bool is_array, const size_t n) { |
| 295 | if (is_array) { |
| 296 | std::vector<T> value; |
| 297 | try { |
| 298 | if (!gr.read(value, n)) { |
| 299 | return false; |
| 300 | } |
| 301 | } catch (std::length_error &) { |
| 302 | GGML_LOG_ERROR("%s: encountered length_error while reading value for key '%s'\n" , __func__, key.c_str()); |
| 303 | return false; |
| 304 | } catch (std::bad_alloc &) { |
| 305 | GGML_LOG_ERROR("%s: encountered bad_alloc error while reading value for key '%s'\n" , __func__, key.c_str()); |
| 306 | return false; |
| 307 | } |
| 308 | kv.emplace_back(key, value); |
| 309 | } else { |
| 310 | T value; |
| 311 | if (!gr.read(value)) { |
| 312 | return false; |
| 313 | } |
| 314 | kv.emplace_back(key, value); |
| 315 | } |
| 316 | return true; |
| 317 | } |
| 318 | |
| 319 | struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params) { |
| 320 | const struct gguf_reader gr(file); |
| 321 | struct gguf_context * ctx = new gguf_context; |
| 322 | |
| 323 | bool ok = true; |
| 324 | |
| 325 | // file magic |
| 326 | { |
| 327 | std::vector<char> magic; |
| 328 | ok = ok && gr.read(dst&: magic, n: 4); |
| 329 | |
| 330 | if (!ok) { |
| 331 | GGML_LOG_ERROR("%s: failed to read magic\n" , __func__); |
| 332 | gguf_free(ctx); |
| 333 | return nullptr; |
| 334 | } |
| 335 | |
| 336 | for (uint32_t i = 0; i < magic.size(); i++) { |
| 337 | if (magic[i] != GGUF_MAGIC[i]) { |
| 338 | char c0 = isprint(magic[0]) ? magic[0] : '?'; |
| 339 | char c1 = isprint(magic[1]) ? magic[1] : '?'; |
| 340 | char c2 = isprint(magic[2]) ? magic[2] : '?'; |
| 341 | char c3 = isprint(magic[3]) ? magic[3] : '?'; |
| 342 | GGML_LOG_ERROR("%s: invalid magic characters: '%c%c%c%c', expected 'GGUF'\n" , __func__, c0, c1, c2, c3); |
| 343 | gguf_free(ctx); |
| 344 | return nullptr; |
| 345 | } |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | // header |
| 350 | int64_t n_kv = 0; |
| 351 | int64_t n_tensors = 0; |
| 352 | |
| 353 | if (ok && gr.read(dst&: ctx->version)) { |
| 354 | if (ok && ctx->version == 0) { |
| 355 | GGML_LOG_ERROR("%s: bad GGUF version: %" PRIu32 "\n" , __func__, ctx->version); |
| 356 | ok = false; |
| 357 | } |
| 358 | |
| 359 | /* |
| 360 | * bit layout is different when reading non-native endian models. |
| 361 | * assuming that the GGUF version is 3, the non-native endian model |
| 362 | * would read it as 0x30000000. we can use the AND operation against |
| 363 | * the last 4 hexadecimal digits to check if the model is the same |
| 364 | * endianness as the host system. |
| 365 | */ |
| 366 | if (ok && (ctx->version & 0x0000FFFF) == 0x00000000) { |
| 367 | GGML_LOG_ERROR("%s: failed to load model: this GGUF file version %" PRIu32 " is extremely large, is there a mismatch between the host and model endianness?\n" , __func__, ctx->version); |
| 368 | ok = false; |
| 369 | } |
| 370 | |
| 371 | if (ok && ctx->version == 1) { |
| 372 | GGML_LOG_ERROR("%s: GGUFv1 is no longer supported, please use a more up-to-date version\n" , __func__); |
| 373 | ok = false; |
| 374 | } |
| 375 | if (ok && ctx->version > GGUF_VERSION) { |
| 376 | GGML_LOG_ERROR("%s: this GGUF file is version %" PRIu32 " but this software only supports up to version %d\n" , |
| 377 | __func__, ctx->version, GGUF_VERSION); |
| 378 | ok = false; |
| 379 | } |
| 380 | } else { |
| 381 | ok = false; |
| 382 | } |
| 383 | |
| 384 | if (ok && gr.read(dst&: n_tensors)) { |
| 385 | static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing" ); |
| 386 | if (n_tensors < 0 || n_tensors > int64_t(SIZE_MAX/sizeof(gguf_tensor_info))) { |
| 387 | GGML_LOG_ERROR("%s: number of tensors is %" PRIi64 " but must be in [0, %zu]\n" , |
| 388 | __func__, n_tensors, SIZE_MAX/sizeof(gguf_tensor_info)); |
| 389 | ok = false; |
| 390 | } |
| 391 | } else { |
| 392 | ok = false; |
| 393 | } |
| 394 | |
| 395 | if (ok && gr.read(dst&: n_kv)) { |
| 396 | static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing" ); |
| 397 | if (n_kv < 0 || n_kv > int64_t(SIZE_MAX/sizeof(gguf_kv))) { |
| 398 | GGML_LOG_ERROR("%s: number of key value pairs is %" PRIi64 " but must be in [0, %zu]\n" , |
| 399 | __func__, n_kv, SIZE_MAX/sizeof(gguf_kv)); |
| 400 | ok = false; |
| 401 | } |
| 402 | } else { |
| 403 | ok = false; |
| 404 | } |
| 405 | |
| 406 | if (!ok) { |
| 407 | GGML_LOG_ERROR("%s: failed to read header\n" , __func__); |
| 408 | gguf_free(ctx); |
| 409 | return nullptr; |
| 410 | } |
| 411 | |
| 412 | // KV pairs |
| 413 | { |
| 414 | for (int64_t i = 0; ok && i < n_kv; ++i) { |
| 415 | std::string key; |
| 416 | gguf_type type = gguf_type(-1); |
| 417 | bool is_array = false; |
| 418 | uint64_t n = 1; |
| 419 | |
| 420 | try { |
| 421 | ok = ok && gr.read(dst&: key); |
| 422 | } catch (std::length_error &) { |
| 423 | GGML_LOG_ERROR("%s: encountered length_error while reading key %" PRIi64 "\n" , __func__, i); |
| 424 | ok = false; |
| 425 | } catch (std::bad_alloc &) { |
| 426 | GGML_LOG_ERROR("%s: encountered bad_alloc error while reading key %" PRIi64 "\n" , __func__, i); |
| 427 | ok = false; |
| 428 | } |
| 429 | for (size_t j = 0; ok && j < ctx->kv.size(); ++j) { |
| 430 | if (key == ctx->kv[j].key) { |
| 431 | GGML_LOG_ERROR("%s: duplicate key '%s' for tensors %zu and %" PRIi64 " \n" , __func__, key.c_str(), j, i); |
| 432 | ok = false; |
| 433 | } |
| 434 | } |
| 435 | if (!ok) { |
| 436 | break; |
| 437 | } |
| 438 | |
| 439 | ok = ok && gr.read(dst&: type); |
| 440 | if (type == GGUF_TYPE_ARRAY) { |
| 441 | is_array = true; |
| 442 | ok = ok && gr.read(dst&: type); |
| 443 | ok = ok && gr.read(dst&: n); |
| 444 | } |
| 445 | if (!ok) { |
| 446 | break; |
| 447 | } |
| 448 | |
| 449 | switch (type) { |
| 450 | case GGUF_TYPE_UINT8: ok = ok && gguf_read_emplace_helper<uint8_t> (gr, kv&: ctx->kv, key, is_array, n); break; |
| 451 | case GGUF_TYPE_INT8: ok = ok && gguf_read_emplace_helper<int8_t> (gr, kv&: ctx->kv, key, is_array, n); break; |
| 452 | case GGUF_TYPE_UINT16: ok = ok && gguf_read_emplace_helper<uint16_t> (gr, kv&: ctx->kv, key, is_array, n); break; |
| 453 | case GGUF_TYPE_INT16: ok = ok && gguf_read_emplace_helper<int16_t> (gr, kv&: ctx->kv, key, is_array, n); break; |
| 454 | case GGUF_TYPE_UINT32: ok = ok && gguf_read_emplace_helper<uint32_t> (gr, kv&: ctx->kv, key, is_array, n); break; |
| 455 | case GGUF_TYPE_INT32: ok = ok && gguf_read_emplace_helper<int32_t> (gr, kv&: ctx->kv, key, is_array, n); break; |
| 456 | case GGUF_TYPE_FLOAT32: ok = ok && gguf_read_emplace_helper<float> (gr, kv&: ctx->kv, key, is_array, n); break; |
| 457 | case GGUF_TYPE_BOOL: ok = ok && gguf_read_emplace_helper<bool> (gr, kv&: ctx->kv, key, is_array, n); break; |
| 458 | case GGUF_TYPE_STRING: ok = ok && gguf_read_emplace_helper<std::string>(gr, kv&: ctx->kv, key, is_array, n); break; |
| 459 | case GGUF_TYPE_UINT64: ok = ok && gguf_read_emplace_helper<uint64_t> (gr, kv&: ctx->kv, key, is_array, n); break; |
| 460 | case GGUF_TYPE_INT64: ok = ok && gguf_read_emplace_helper<int64_t> (gr, kv&: ctx->kv, key, is_array, n); break; |
| 461 | case GGUF_TYPE_FLOAT64: ok = ok && gguf_read_emplace_helper<double> (gr, kv&: ctx->kv, key, is_array, n); break; |
| 462 | case GGUF_TYPE_ARRAY: |
| 463 | default: |
| 464 | { |
| 465 | GGML_LOG_ERROR("%s: key '%s' has invalid GGUF type %d\n" , __func__, key.c_str(), type); |
| 466 | ok = false; |
| 467 | } break; |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | if (!ok) { |
| 472 | GGML_LOG_ERROR("%s: failed to read key-value pairs\n" , __func__); |
| 473 | gguf_free(ctx); |
| 474 | return nullptr; |
| 475 | } |
| 476 | GGML_ASSERT(int64_t(ctx->kv.size()) == n_kv); |
| 477 | |
| 478 | const int alignment_idx = gguf_find_key(ctx, GGUF_KEY_GENERAL_ALIGNMENT); |
| 479 | ctx->alignment = alignment_idx == -1 ? GGUF_DEFAULT_ALIGNMENT : gguf_get_val_u32(ctx, key_id: alignment_idx); |
| 480 | |
| 481 | if (ctx->alignment == 0 || (ctx->alignment & (ctx->alignment - 1)) != 0) { |
| 482 | GGML_LOG_ERROR("%s: alignment %zu is not a power of 2\n" , __func__, ctx->alignment); |
| 483 | gguf_free(ctx); |
| 484 | return nullptr; |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | // read the tensor info |
| 489 | for (int64_t i = 0; ok && i < n_tensors; ++i) { |
| 490 | struct gguf_tensor_info info; |
| 491 | |
| 492 | // tensor name |
| 493 | { |
| 494 | std::string name; |
| 495 | try { |
| 496 | ok = ok && gr.read(dst&: name); |
| 497 | } catch (std::length_error &) { |
| 498 | GGML_LOG_ERROR("%s: encountered length_error while reading tensor name %" PRIi64 "\n" , __func__, i); |
| 499 | ok = false; |
| 500 | } catch (std::bad_alloc &) { |
| 501 | GGML_LOG_ERROR("%s: encountered bad_alloc error while reading tensor name %" PRIi64 "\n" , __func__, i); |
| 502 | ok = false; |
| 503 | } |
| 504 | if (name.length() >= GGML_MAX_NAME) { |
| 505 | GGML_LOG_ERROR("%s: tensor name %" PRIi64 " is too long: %zu >= %d\n" , __func__, i, name.length(), GGML_MAX_NAME); |
| 506 | ok = false; |
| 507 | break; |
| 508 | } |
| 509 | ggml_set_name(tensor: &info.t, name: name.c_str()); |
| 510 | |
| 511 | // make sure there are no duplicate tensor names |
| 512 | for (int64_t j = 0; ok && j < i; ++j) { |
| 513 | if (strcmp(s1: info.t.name, s2: ctx->info[j].t.name) == 0) { |
| 514 | GGML_LOG_ERROR("%s: duplicate tensor name '%s' for tensors %" PRIi64 " and %" PRIi64 "\n" , __func__, info.t.name, j, i); |
| 515 | ok = false; |
| 516 | break; |
| 517 | } |
| 518 | } |
| 519 | } |
| 520 | if (!ok) { |
| 521 | break; |
| 522 | } |
| 523 | |
| 524 | // tensor shape |
| 525 | { |
| 526 | uint32_t n_dims = 0; |
| 527 | ok = ok && gr.read(dst&: n_dims); |
| 528 | if (n_dims > GGML_MAX_DIMS) { |
| 529 | GGML_LOG_ERROR("%s: tensor '%s' has invalid number of dimensions: %" PRIu32 " > %" PRIu32 "\n" , |
| 530 | __func__, info.t.name, n_dims, GGML_MAX_DIMS); |
| 531 | ok = false; |
| 532 | break; |
| 533 | } |
| 534 | for (uint32_t j = 0; ok && j < GGML_MAX_DIMS; ++j) { |
| 535 | info.t.ne[j] = 1; |
| 536 | if (j < n_dims) { |
| 537 | ok = ok && gr.read(dst&: info.t.ne[j]); |
| 538 | } |
| 539 | |
| 540 | // check that all ne are non-negative |
| 541 | if (info.t.ne[j] < 0) { |
| 542 | GGML_LOG_ERROR("%s: tensor '%s' dimension %" PRIu32 " has invalid number of elements: %" PRIi64 " < 0\n" , |
| 543 | __func__, info.t.name, j, info.t.ne[j]); |
| 544 | ok = false; |
| 545 | break; |
| 546 | } |
| 547 | } |
| 548 | |
| 549 | // check that the total number of elements is representable |
| 550 | if (ok && ((INT64_MAX/info.t.ne[1] <= info.t.ne[0]) || |
| 551 | (INT64_MAX/info.t.ne[2] <= info.t.ne[0]*info.t.ne[1]) || |
| 552 | (INT64_MAX/info.t.ne[3] <= info.t.ne[0]*info.t.ne[1]*info.t.ne[2]))) { |
| 553 | |
| 554 | GGML_LOG_ERROR("%s: total number of elements in tensor '%s' with shape " |
| 555 | "(%" PRIi64 ", %" PRIi64 ", %" PRIi64 ", %" PRIi64 ") is >= %" PRIi64 "\n" , |
| 556 | __func__, info.t.name, info.t.ne[0], info.t.ne[1], info.t.ne[2], info.t.ne[3], INT64_MAX); |
| 557 | ok = false; |
| 558 | break; |
| 559 | } |
| 560 | } |
| 561 | if (!ok) { |
| 562 | break; |
| 563 | } |
| 564 | |
| 565 | // tensor type |
| 566 | { |
| 567 | ok = ok && gr.read(dst&: info.t.type); |
| 568 | |
| 569 | // check that tensor type is within defined range |
| 570 | if (info.t.type < 0 || info.t.type >= GGML_TYPE_COUNT) { |
| 571 | GGML_LOG_ERROR("%s: tensor '%s' has invalid ggml type %d (%s)\n" , |
| 572 | __func__, info.t.name, info.t.type, ggml_type_name(info.t.type)); |
| 573 | ok = false; |
| 574 | break; |
| 575 | } |
| 576 | const size_t type_size = ggml_type_size(type: info.t.type); |
| 577 | const int64_t blck_size = ggml_blck_size(type: info.t.type); |
| 578 | |
| 579 | // check that row size is divisible by block size |
| 580 | if (blck_size == 0 || info.t.ne[0] % blck_size != 0) { |
| 581 | GGML_LOG_ERROR("%s: tensor '%s' of type %d (%s) has %" PRId64 " elements per row, " |
| 582 | "not a multiple of block size (%" PRId64 ")\n" , |
| 583 | __func__, info.t.name, (int) info.t.type, ggml_type_name(info.t.type), info.t.ne[0], blck_size); |
| 584 | ok = false; |
| 585 | break; |
| 586 | } |
| 587 | |
| 588 | // calculate byte offsets given the tensor shape and type |
| 589 | info.t.nb[0] = type_size; |
| 590 | info.t.nb[1] = info.t.nb[0]*(info.t.ne[0]/blck_size); |
| 591 | for (int j = 2; j < GGML_MAX_DIMS; ++j) { |
| 592 | info.t.nb[j] = info.t.nb[j - 1]*info.t.ne[j - 1]; |
| 593 | } |
| 594 | } |
| 595 | if (!ok) { |
| 596 | break; |
| 597 | } |
| 598 | |
| 599 | // tensor data offset within buffer |
| 600 | ok = ok && gr.read(dst&: info.offset); |
| 601 | |
| 602 | ctx->info.push_back(x: info); |
| 603 | } |
| 604 | |
| 605 | if (!ok) { |
| 606 | GGML_LOG_ERROR("%s: failed to read tensor info\n" , __func__); |
| 607 | gguf_free(ctx); |
| 608 | return nullptr; |
| 609 | } |
| 610 | GGML_ASSERT(int64_t(ctx->info.size()) == n_tensors); |
| 611 | |
| 612 | // we require the data section to be aligned, so take into account any padding |
| 613 | if (fseek(stream: file, GGML_PAD(ftell(file), ctx->alignment), SEEK_SET) != 0) { |
| 614 | GGML_LOG_ERROR("%s: failed to seek to beginning of data section\n" , __func__); |
| 615 | gguf_free(ctx); |
| 616 | return nullptr; |
| 617 | } |
| 618 | |
| 619 | // store the current file offset - this is where the data section starts |
| 620 | ctx->offset = ftell(stream: file); |
| 621 | |
| 622 | // compute the total size of the data section, taking into account the alignment |
| 623 | { |
| 624 | ctx->size = 0; |
| 625 | for (size_t i = 0; i < ctx->info.size(); ++i) { |
| 626 | const gguf_tensor_info & ti = ctx->info[i]; |
| 627 | if (ti.offset != ctx->size) { |
| 628 | GGML_LOG_ERROR("%s: tensor '%s' has offset %" PRIu64 ", expected %zu\n" , |
| 629 | __func__, ti.t.name, ti.offset, ctx->size); |
| 630 | GGML_LOG_ERROR("%s: failed to read tensor data\n" , __func__); |
| 631 | gguf_free(ctx); |
| 632 | return nullptr; |
| 633 | } |
| 634 | size_t padded_size = GGML_PAD(ggml_nbytes(&ti.t), ctx->alignment); |
| 635 | if (SIZE_MAX - ctx->size < padded_size) { |
| 636 | GGML_LOG_ERROR("%s: tensor '%s' size overflow, cannot accumulate size %zu + %zu\n" , |
| 637 | __func__, ti.t.name, ctx->size, padded_size); |
| 638 | gguf_free(ctx); |
| 639 | return nullptr; |
| 640 | } |
| 641 | ctx->size += padded_size; |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | // load the tensor data only if requested |
| 646 | if (params.ctx != nullptr) { |
| 647 | // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob |
| 648 | // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of |
| 649 | // the ggml_tensor structs to the appropriate locations in the binary blob |
| 650 | |
| 651 | // compute the exact size needed for the new ggml_context |
| 652 | const size_t mem_size = |
| 653 | params.no_alloc ? |
| 654 | (n_tensors )*ggml_tensor_overhead() : |
| 655 | (n_tensors + 1)*ggml_tensor_overhead() + ctx->size; |
| 656 | |
| 657 | struct ggml_init_params pdata = { |
| 658 | /*mem_size =*/ mem_size, |
| 659 | /*mem_buffer =*/ nullptr, |
| 660 | /*no_alloc =*/ params.no_alloc, |
| 661 | }; |
| 662 | |
| 663 | *params.ctx = ggml_init(params: pdata); |
| 664 | if (*params.ctx == nullptr) { |
| 665 | GGML_LOG_ERROR("%s: failed to initialize ggml context for storing tensors\n" , __func__); |
| 666 | gguf_free(ctx); |
| 667 | return nullptr; |
| 668 | } |
| 669 | |
| 670 | struct ggml_context * ctx_data = *params.ctx; |
| 671 | |
| 672 | struct ggml_tensor * data = nullptr; |
| 673 | |
| 674 | if (!params.no_alloc) { |
| 675 | data = ggml_new_tensor_1d(ctx: ctx_data, type: GGML_TYPE_I8, ne0: ctx->size); |
| 676 | |
| 677 | ok = ok && data != nullptr; |
| 678 | |
| 679 | if (ok) { |
| 680 | ggml_set_name(tensor: data, name: "GGUF tensor data binary blob" ); |
| 681 | } |
| 682 | |
| 683 | // read the binary blob with the tensor data |
| 684 | ok = ok && gr.read(dst: data->data, size: ctx->size); |
| 685 | |
| 686 | if (!ok) { |
| 687 | GGML_LOG_ERROR("%s: failed to read tensor data binary blob\n" , __func__); |
| 688 | ggml_free(ctx: ctx_data); |
| 689 | *params.ctx = nullptr; |
| 690 | gguf_free(ctx); |
| 691 | return nullptr; |
| 692 | } |
| 693 | |
| 694 | ctx->data = data->data; |
| 695 | } |
| 696 | |
| 697 | ggml_set_no_alloc(ctx: ctx_data, no_alloc: true); |
| 698 | |
| 699 | // create the tensors |
| 700 | for (size_t i = 0; i < ctx->info.size(); ++i) { |
| 701 | const struct gguf_tensor_info & info = ctx->info[i]; |
| 702 | |
| 703 | struct ggml_tensor * cur = ggml_new_tensor(ctx: ctx_data, type: info.t.type, GGML_MAX_DIMS, ne: info.t.ne); |
| 704 | |
| 705 | ok = ok && cur != nullptr; |
| 706 | |
| 707 | if (!ok) { |
| 708 | break; |
| 709 | } |
| 710 | |
| 711 | ggml_set_name(tensor: cur, name: info.t.name); |
| 712 | |
| 713 | // point the data member to the appropriate location in the binary blob using the tensor info |
| 714 | if (!params.no_alloc) { |
| 715 | cur->data = (char *) data->data + info.offset; |
| 716 | } |
| 717 | } |
| 718 | |
| 719 | if (!ok) { |
| 720 | GGML_LOG_ERROR("%s: failed to create tensors\n" , __func__); |
| 721 | ggml_free(ctx: ctx_data); |
| 722 | *params.ctx = nullptr; |
| 723 | gguf_free(ctx); |
| 724 | return nullptr; |
| 725 | } |
| 726 | |
| 727 | ggml_set_no_alloc(ctx: ctx_data, no_alloc: params.no_alloc); |
| 728 | } |
| 729 | |
| 730 | return ctx; |
| 731 | } |
| 732 | |
| 733 | struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) { |
| 734 | FILE * file = ggml_fopen(fname, mode: "rb" ); |
| 735 | |
| 736 | if (!file) { |
| 737 | GGML_LOG_ERROR("%s: failed to open GGUF file '%s'\n" , __func__, fname); |
| 738 | return nullptr; |
| 739 | } |
| 740 | |
| 741 | struct gguf_context * result = gguf_init_from_file_impl(file, params); |
| 742 | fclose(stream: file); |
| 743 | return result; |
| 744 | } |
| 745 | |
| 746 | void gguf_free(struct gguf_context * ctx) { |
| 747 | if (ctx == nullptr) { |
| 748 | return; |
| 749 | } |
| 750 | delete ctx; |
| 751 | } |
| 752 | |
| 753 | const char * gguf_type_name(enum gguf_type type) { |
| 754 | auto it = GGUF_TYPE_NAME.find(x: type); |
| 755 | return it == GGUF_TYPE_NAME.end() ? nullptr : it->second; |
| 756 | } |
| 757 | |
| 758 | uint32_t gguf_get_version(const struct gguf_context * ctx) { |
| 759 | return ctx->version; |
| 760 | } |
| 761 | |
| 762 | size_t gguf_get_alignment(const struct gguf_context * ctx) { |
| 763 | return ctx->alignment; |
| 764 | } |
| 765 | |
| 766 | size_t gguf_get_data_offset(const struct gguf_context * ctx) { |
| 767 | return ctx->offset; |
| 768 | } |
| 769 | |
| 770 | int64_t gguf_get_n_kv(const struct gguf_context * ctx) { |
| 771 | return ctx->kv.size(); |
| 772 | } |
| 773 | |
| 774 | int64_t gguf_find_key(const struct gguf_context * ctx, const char * key) { |
| 775 | // return -1 if key not found |
| 776 | int64_t keyfound = -1; |
| 777 | |
| 778 | const int64_t n_kv = gguf_get_n_kv(ctx); |
| 779 | |
| 780 | for (int64_t i = 0; i < n_kv; ++i) { |
| 781 | if (strcmp(s1: key, s2: gguf_get_key(ctx, key_id: i)) == 0) { |
| 782 | keyfound = i; |
| 783 | break; |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | return keyfound; |
| 788 | } |
| 789 | |
| 790 | const char * gguf_get_key(const struct gguf_context * ctx, int64_t key_id) { |
| 791 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
| 792 | return ctx->kv[key_id].get_key().c_str(); |
| 793 | } |
| 794 | |
| 795 | enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int64_t key_id) { |
| 796 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
| 797 | return ctx->kv[key_id].is_array ? GGUF_TYPE_ARRAY : ctx->kv[key_id].get_type(); |
| 798 | } |
| 799 | |
| 800 | enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id) { |
| 801 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
| 802 | GGML_ASSERT(ctx->kv[key_id].is_array); |
| 803 | return ctx->kv[key_id].get_type(); |
| 804 | } |
| 805 | |
| 806 | const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) { |
| 807 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
| 808 | GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING); |
| 809 | return ctx->kv[key_id].data.data(); |
| 810 | } |
| 811 | |
| 812 | const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) { |
| 813 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
| 814 | GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING); |
| 815 | return ctx->kv[key_id].data_string[i].c_str(); |
| 816 | } |
| 817 | |
| 818 | size_t gguf_get_arr_n(const struct gguf_context * ctx, int64_t key_id) { |
| 819 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
| 820 | |
| 821 | if (ctx->kv[key_id].type == GGUF_TYPE_STRING) { |
| 822 | return ctx->kv[key_id].data_string.size(); |
| 823 | } |
| 824 | |
| 825 | const size_t type_size = gguf_type_size(type: ctx->kv[key_id].type); |
| 826 | GGML_ASSERT(ctx->kv[key_id].data.size() % type_size == 0); |
| 827 | return ctx->kv[key_id].data.size() / type_size; |
| 828 | } |
| 829 | |
| 830 | uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int64_t key_id) { |
| 831 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
| 832 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
| 833 | return ctx->kv[key_id].get_val<uint8_t>(); |
| 834 | } |
| 835 | |
| 836 | int8_t gguf_get_val_i8(const struct gguf_context * ctx, int64_t key_id) { |
| 837 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
| 838 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
| 839 | return ctx->kv[key_id].get_val<int8_t>(); |
| 840 | } |
| 841 | |
| 842 | uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int64_t key_id) { |
| 843 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
| 844 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
| 845 | return ctx->kv[key_id].get_val<uint16_t>(); |
| 846 | } |
| 847 | |
| 848 | int16_t gguf_get_val_i16(const struct gguf_context * ctx, int64_t key_id) { |
| 849 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
| 850 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
| 851 | return ctx->kv[key_id].get_val<int16_t>(); |
| 852 | } |
| 853 | |
| 854 | uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int64_t key_id) { |
| 855 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
| 856 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
| 857 | return ctx->kv[key_id].get_val<uint32_t>(); |
| 858 | } |
| 859 | |
| 860 | int32_t gguf_get_val_i32(const struct gguf_context * ctx, int64_t key_id) { |
| 861 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
| 862 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
| 863 | return ctx->kv[key_id].get_val<int32_t>(); |
| 864 | } |
| 865 | |
| 866 | float gguf_get_val_f32(const struct gguf_context * ctx, int64_t key_id) { |
| 867 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
| 868 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
| 869 | return ctx->kv[key_id].get_val<float>(); |
| 870 | } |
| 871 | |
| 872 | uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int64_t key_id) { |
| 873 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
| 874 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
| 875 | return ctx->kv[key_id].get_val<uint64_t>(); |
| 876 | } |
| 877 | |
| 878 | int64_t gguf_get_val_i64(const struct gguf_context * ctx, int64_t key_id) { |
| 879 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
| 880 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
| 881 | return ctx->kv[key_id].get_val<int64_t>(); |
| 882 | } |
| 883 | |
| 884 | double gguf_get_val_f64(const struct gguf_context * ctx, int64_t key_id) { |
| 885 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
| 886 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
| 887 | return ctx->kv[key_id].get_val<double>(); |
| 888 | } |
| 889 | |
| 890 | bool gguf_get_val_bool(const struct gguf_context * ctx, int64_t key_id) { |
| 891 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
| 892 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
| 893 | return ctx->kv[key_id].get_val<bool>(); |
| 894 | } |
| 895 | |
| 896 | const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) { |
| 897 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
| 898 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
| 899 | return ctx->kv[key_id].get_val<std::string>().c_str(); |
| 900 | } |
| 901 | |
| 902 | const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) { |
| 903 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
| 904 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
| 905 | GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING); |
| 906 | return ctx->kv[key_id].data.data(); |
| 907 | } |
| 908 | |
| 909 | int64_t gguf_get_n_tensors(const struct gguf_context * ctx) { |
| 910 | return ctx->info.size(); |
| 911 | } |
| 912 | |
| 913 | int64_t gguf_find_tensor(const struct gguf_context * ctx, const char * name) { |
| 914 | // return -1 if tensor not found |
| 915 | int64_t tensor_id = -1; |
| 916 | |
| 917 | const int64_t n_tensors = gguf_get_n_tensors(ctx); |
| 918 | |
| 919 | for (int64_t i = 0; i < n_tensors; ++i) { |
| 920 | if (strcmp(s1: name, s2: gguf_get_tensor_name(ctx, tensor_id: i)) == 0) { |
| 921 | tensor_id = i; |
| 922 | break; |
| 923 | } |
| 924 | } |
| 925 | |
| 926 | return tensor_id; |
| 927 | } |
| 928 | |
| 929 | size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int64_t tensor_id) { |
| 930 | GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); |
| 931 | return ctx->info[tensor_id].offset; |
| 932 | } |
| 933 | |
| 934 | const char * gguf_get_tensor_name(const struct gguf_context * ctx, int64_t tensor_id) { |
| 935 | GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); |
| 936 | return ctx->info[tensor_id].t.name; |
| 937 | } |
| 938 | |
| 939 | enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int64_t tensor_id) { |
| 940 | GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); |
| 941 | return ctx->info[tensor_id].t.type; |
| 942 | } |
| 943 | |
| 944 | size_t gguf_get_tensor_size(const struct gguf_context * ctx, int64_t tensor_id) { |
| 945 | GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); |
| 946 | return ggml_nbytes(tensor: &ctx->info[tensor_id].t); |
| 947 | } |
| 948 | |
| 949 | int64_t gguf_remove_key(struct gguf_context * ctx, const char * key) { |
| 950 | const int64_t key_id = gguf_find_key(ctx, key); |
| 951 | if (key_id >= 0) { |
| 952 | ctx->kv.erase(position: ctx->kv.begin() + key_id); |
| 953 | } |
| 954 | return key_id; |
| 955 | } |
| 956 | |
| 957 | template<typename T> |
| 958 | static void gguf_check_reserved_keys(const std::string & key, const T val) { |
| 959 | if (key == GGUF_KEY_GENERAL_ALIGNMENT) { |
| 960 | if constexpr (std::is_same<T, uint32_t>::value) { |
| 961 | GGML_ASSERT(val > 0 && (val & (val - 1)) == 0 && GGUF_KEY_GENERAL_ALIGNMENT " must be power of 2" ); |
| 962 | } else { |
| 963 | GGML_UNUSED(val); |
| 964 | GGML_ABORT(GGUF_KEY_GENERAL_ALIGNMENT " must be type u32" ); |
| 965 | } |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) { |
| 970 | gguf_check_reserved_keys(key, val); |
| 971 | gguf_remove_key(ctx, key); |
| 972 | ctx->kv.emplace_back(args&: key, args&: val); |
| 973 | } |
| 974 | |
| 975 | void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) { |
| 976 | gguf_check_reserved_keys(key, val); |
| 977 | gguf_remove_key(ctx, key); |
| 978 | ctx->kv.emplace_back(args&: key, args&: val); |
| 979 | } |
| 980 | |
| 981 | void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) { |
| 982 | gguf_check_reserved_keys(key, val); |
| 983 | gguf_remove_key(ctx, key); |
| 984 | ctx->kv.emplace_back(args&: key, args&: val); |
| 985 | } |
| 986 | |
| 987 | void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) { |
| 988 | gguf_check_reserved_keys(key, val); |
| 989 | gguf_remove_key(ctx, key); |
| 990 | ctx->kv.emplace_back(args&: key, args&: val); |
| 991 | } |
| 992 | |
| 993 | void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) { |
| 994 | gguf_check_reserved_keys(key, val); |
| 995 | gguf_remove_key(ctx, key); |
| 996 | ctx->kv.emplace_back(args&: key, args&: val); |
| 997 | } |
| 998 | |
| 999 | void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) { |
| 1000 | gguf_check_reserved_keys(key, val); |
| 1001 | gguf_remove_key(ctx, key); |
| 1002 | ctx->kv.emplace_back(args&: key, args&: val); |
| 1003 | } |
| 1004 | |
| 1005 | void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) { |
| 1006 | gguf_check_reserved_keys(key, val); |
| 1007 | gguf_remove_key(ctx, key); |
| 1008 | ctx->kv.emplace_back(args&: key, args&: val); |
| 1009 | } |
| 1010 | |
| 1011 | void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) { |
| 1012 | gguf_check_reserved_keys(key, val); |
| 1013 | gguf_remove_key(ctx, key); |
| 1014 | ctx->kv.emplace_back(args&: key, args&: val); |
| 1015 | } |
| 1016 | |
| 1017 | void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) { |
| 1018 | gguf_check_reserved_keys(key, val); |
| 1019 | gguf_remove_key(ctx, key); |
| 1020 | ctx->kv.emplace_back(args&: key, args&: val); |
| 1021 | } |
| 1022 | |
| 1023 | void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) { |
| 1024 | gguf_check_reserved_keys(key, val); |
| 1025 | gguf_remove_key(ctx, key); |
| 1026 | ctx->kv.emplace_back(args&: key, args&: val); |
| 1027 | } |
| 1028 | |
| 1029 | void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) { |
| 1030 | gguf_check_reserved_keys(key, val); |
| 1031 | gguf_remove_key(ctx, key); |
| 1032 | ctx->kv.emplace_back(args&: key, args&: val); |
| 1033 | } |
| 1034 | |
| 1035 | void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) { |
| 1036 | gguf_check_reserved_keys(key, val); |
| 1037 | gguf_remove_key(ctx, key); |
| 1038 | ctx->kv.emplace_back(args&: key, args: std::string(val)); |
| 1039 | } |
| 1040 | |
| 1041 | void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, size_t n) { |
| 1042 | gguf_check_reserved_keys(key, val: data); |
| 1043 | gguf_remove_key(ctx, key); |
| 1044 | |
| 1045 | const size_t nbytes = n*gguf_type_size(type); |
| 1046 | std::vector<int8_t> tmp(nbytes); |
| 1047 | if (!tmp.empty()) { |
| 1048 | memcpy(dest: tmp.data(), src: data, n: nbytes); |
| 1049 | } |
| 1050 | ctx->kv.emplace_back(args&: key, args&: tmp); |
| 1051 | ctx->kv.back().cast(new_type: type); |
| 1052 | } |
| 1053 | |
| 1054 | void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, size_t n) { |
| 1055 | gguf_check_reserved_keys(key, val: data); |
| 1056 | gguf_remove_key(ctx, key); |
| 1057 | |
| 1058 | std::vector<std::string> tmp(n); |
| 1059 | for (size_t i = 0; i < n; ++i) { |
| 1060 | tmp[i] = data[i]; |
| 1061 | } |
| 1062 | ctx->kv.emplace_back(args&: key, args&: tmp); |
| 1063 | } |
| 1064 | |
| 1065 | // set or add KV pairs from another context |
| 1066 | void gguf_set_kv(struct gguf_context * ctx, const struct gguf_context * src) { |
| 1067 | const int64_t n_kv = gguf_get_n_kv(ctx: src); |
| 1068 | for (int64_t i = 0; i < n_kv; ++i) { |
| 1069 | const struct gguf_kv & kv = src->kv[i]; |
| 1070 | |
| 1071 | if (!kv.is_array) { |
| 1072 | switch (kv.get_type()) { |
| 1073 | case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, key: kv.get_key().c_str(), val: kv.get_val<uint8_t>()); break; |
| 1074 | case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, key: kv.get_key().c_str(), val: kv.get_val<int8_t>()); break; |
| 1075 | case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, key: kv.get_key().c_str(), val: kv.get_val<uint16_t>()); break; |
| 1076 | case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, key: kv.get_key().c_str(), val: kv.get_val<int16_t>()); break; |
| 1077 | case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, key: kv.get_key().c_str(), val: kv.get_val<uint32_t>()); break; |
| 1078 | case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, key: kv.get_key().c_str(), val: kv.get_val<int32_t>()); break; |
| 1079 | case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, key: kv.get_key().c_str(), val: kv.get_val<float>()); break; |
| 1080 | case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, key: kv.get_key().c_str(), val: kv.get_val<uint64_t>()); break; |
| 1081 | case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, key: kv.get_key().c_str(), val: kv.get_val<int64_t>()); break; |
| 1082 | case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, key: kv.get_key().c_str(), val: kv.get_val<double>()); break; |
| 1083 | case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, key: kv.get_key().c_str(), val: kv.get_val<bool>()); break; |
| 1084 | case GGUF_TYPE_STRING: gguf_set_val_str (ctx, key: kv.get_key().c_str(), val: kv.get_val<std::string>().c_str()); break; |
| 1085 | case GGUF_TYPE_ARRAY: |
| 1086 | default: GGML_ABORT("invalid type" ); |
| 1087 | } |
| 1088 | continue; |
| 1089 | } |
| 1090 | |
| 1091 | const size_t ne = kv.get_ne(); |
| 1092 | |
| 1093 | switch (kv.get_type()) { |
| 1094 | case GGUF_TYPE_UINT8: |
| 1095 | case GGUF_TYPE_INT8: |
| 1096 | case GGUF_TYPE_UINT16: |
| 1097 | case GGUF_TYPE_INT16: |
| 1098 | case GGUF_TYPE_UINT32: |
| 1099 | case GGUF_TYPE_INT32: |
| 1100 | case GGUF_TYPE_FLOAT32: |
| 1101 | case GGUF_TYPE_UINT64: |
| 1102 | case GGUF_TYPE_INT64: |
| 1103 | case GGUF_TYPE_FLOAT64: |
| 1104 | case GGUF_TYPE_BOOL: { |
| 1105 | gguf_set_arr_data(ctx, key: kv.get_key().c_str(), type: kv.get_type(), data: kv.data.data(), n: ne); |
| 1106 | } break; |
| 1107 | case GGUF_TYPE_STRING: { |
| 1108 | std::vector<const char *> tmp(ne); |
| 1109 | for (size_t j = 0; j < ne; ++j) { |
| 1110 | tmp[j] = kv.data_string[j].c_str(); |
| 1111 | } |
| 1112 | gguf_set_arr_str(ctx, key: kv.get_key().c_str(), data: tmp.data(), n: ne); |
| 1113 | } break; |
| 1114 | case GGUF_TYPE_ARRAY: |
| 1115 | default: GGML_ABORT("invalid type" ); |
| 1116 | } |
| 1117 | } |
| 1118 | } |
| 1119 | |
| 1120 | void gguf_add_tensor( |
| 1121 | struct gguf_context * ctx, |
| 1122 | const struct ggml_tensor * tensor) { |
| 1123 | GGML_ASSERT(tensor); |
| 1124 | if (gguf_find_tensor(ctx, name: tensor->name) != -1) { |
| 1125 | GGML_ABORT("duplicate tensor name: %s" , tensor->name); |
| 1126 | } |
| 1127 | |
| 1128 | struct gguf_tensor_info ti; |
| 1129 | ti.t = *tensor; |
| 1130 | ti.offset = ctx->info.empty() ? 0 : |
| 1131 | ctx->info.back().offset + GGML_PAD(ggml_nbytes(&ctx->info.back().t), ctx->alignment); |
| 1132 | ctx->info.push_back(x: ti); |
| 1133 | } |
| 1134 | |
| 1135 | void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) { |
| 1136 | const int64_t tensor_id = gguf_find_tensor(ctx, name); |
| 1137 | if (tensor_id < 0) { |
| 1138 | GGML_ABORT("tensor not found: %s" , name); |
| 1139 | } |
| 1140 | struct ggml_tensor * tensor = &ctx->info[tensor_id].t; |
| 1141 | const size_t type_size = ggml_type_size(type); |
| 1142 | const int64_t blck_size = ggml_blck_size(type); |
| 1143 | |
| 1144 | tensor->type = type; |
| 1145 | GGML_ASSERT(tensor->ne[0] % blck_size == 0 && "tensor row size not divisible by block size of new type" ); |
| 1146 | |
| 1147 | tensor->nb[0] = type_size; |
| 1148 | tensor->nb[1] = tensor->nb[0]*(tensor->ne[0]/blck_size); |
| 1149 | for (int i = 2; i < GGML_MAX_DIMS; i++) { |
| 1150 | tensor->nb[i] = tensor->nb[i - 1]*tensor->ne[i - 1]; |
| 1151 | } |
| 1152 | |
| 1153 | // update offsets |
| 1154 | const int64_t n_tensors = gguf_get_n_tensors(ctx); |
| 1155 | for (int64_t i = tensor_id + 1; i < n_tensors; ++i) { |
| 1156 | ctx->info[i].offset = ctx->info[i - 1].offset + GGML_PAD(ggml_nbytes(&ctx->info[i - 1].t), ctx->alignment); |
| 1157 | } |
| 1158 | } |
| 1159 | |
| 1160 | void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data) { |
| 1161 | const int64_t tensor_id = gguf_find_tensor(ctx, name); |
| 1162 | if (tensor_id < 0) { |
| 1163 | GGML_ABORT("tensor not found: %s" , name); |
| 1164 | } |
| 1165 | |
| 1166 | ctx->info[tensor_id].t.data = (void *)(uintptr_t)data; // double cast suppresses warning about casting away const |
| 1167 | } |
| 1168 | |
| 1169 | struct gguf_writer_base { |
| 1170 | size_t written_bytes {0u}; |
| 1171 | |
| 1172 | ~gguf_writer_base(void) {} |
| 1173 | |
| 1174 | // we bet on devirtualization |
| 1175 | virtual void write(int8_t val) = 0; |
| 1176 | virtual void write(const std::vector<int8_t> & val) = 0; |
| 1177 | virtual void write_tensor_data(const struct gguf_tensor_info & info, size_t offset_data, size_t alignment) = 0; |
| 1178 | |
| 1179 | template <typename T> |
| 1180 | void write(const T & val) { |
| 1181 | for (size_t i = 0; i < sizeof(val); ++i) { |
| 1182 | write(val: reinterpret_cast<const int8_t *>(&val)[i]); |
| 1183 | } |
| 1184 | } |
| 1185 | |
| 1186 | void write(const bool & val) { |
| 1187 | const int8_t val8 = val ? 1 : 0; |
| 1188 | write(val: val8); |
| 1189 | } |
| 1190 | |
| 1191 | void write(const std::string & val) { |
| 1192 | { |
| 1193 | const uint64_t n = val.length(); |
| 1194 | write(val: n); |
| 1195 | } |
| 1196 | for (size_t i = 0; i < val.length(); ++i) { |
| 1197 | write(val: (val.data())[i]); |
| 1198 | } |
| 1199 | } |
| 1200 | |
| 1201 | void write(const char * val) { |
| 1202 | write(val: std::string(val)); |
| 1203 | } |
| 1204 | |
| 1205 | void write(const enum ggml_type & val) { |
| 1206 | write(val: int32_t(val)); |
| 1207 | } |
| 1208 | |
| 1209 | void write(const enum gguf_type & val) { |
| 1210 | write(val: int32_t(val)); |
| 1211 | } |
| 1212 | |
| 1213 | void write(const struct gguf_kv & kv) { |
| 1214 | const uint64_t ne = kv.get_ne(); |
| 1215 | |
| 1216 | write(val: kv.get_key()); |
| 1217 | |
| 1218 | if (kv.is_array) { |
| 1219 | write(val: GGUF_TYPE_ARRAY); |
| 1220 | write(val: kv.get_type()); |
| 1221 | write(val: ne); |
| 1222 | } else { |
| 1223 | write(val: kv.get_type()); |
| 1224 | } |
| 1225 | |
| 1226 | switch (kv.get_type()) { |
| 1227 | case GGUF_TYPE_UINT8: |
| 1228 | case GGUF_TYPE_INT8: |
| 1229 | case GGUF_TYPE_UINT16: |
| 1230 | case GGUF_TYPE_INT16: |
| 1231 | case GGUF_TYPE_UINT32: |
| 1232 | case GGUF_TYPE_INT32: |
| 1233 | case GGUF_TYPE_FLOAT32: |
| 1234 | case GGUF_TYPE_UINT64: |
| 1235 | case GGUF_TYPE_INT64: |
| 1236 | case GGUF_TYPE_FLOAT64: { |
| 1237 | write(val: kv.data); |
| 1238 | } break; |
| 1239 | case GGUF_TYPE_BOOL: { |
| 1240 | for (size_t i = 0; i < ne; ++i) { |
| 1241 | write(val: kv.get_val<bool>(i)); |
| 1242 | } |
| 1243 | } break; |
| 1244 | case GGUF_TYPE_STRING: { |
| 1245 | for (size_t i = 0; i < ne; ++i) { |
| 1246 | write(val: kv.get_val<std::string>(i)); |
| 1247 | } |
| 1248 | } break; |
| 1249 | case GGUF_TYPE_ARRAY: |
| 1250 | default: GGML_ABORT("invalid type" ); |
| 1251 | } |
| 1252 | } |
| 1253 | |
| 1254 | void write_tensor_meta(const struct gguf_tensor_info & info) { |
| 1255 | write(val: info.t.name); |
| 1256 | |
| 1257 | const uint32_t n_dims = ggml_n_dims(tensor: &info.t); |
| 1258 | write(val: n_dims); |
| 1259 | |
| 1260 | for (uint32_t j = 0; j < n_dims; ++j) { |
| 1261 | write(val: info.t.ne[j]); |
| 1262 | } |
| 1263 | write(val: info.t.type); |
| 1264 | write(val: info.offset); |
| 1265 | } |
| 1266 | |
| 1267 | void pad(const size_t alignment) { |
| 1268 | while (written_bytes % alignment != 0) { |
| 1269 | const int8_t zero = 0; |
| 1270 | write(val: zero); |
| 1271 | } |
| 1272 | } |
| 1273 | }; |
| 1274 | |
| 1275 | // vector buffer based writer |
| 1276 | struct gguf_writer_buf final : public gguf_writer_base { |
| 1277 | std::vector<int8_t> & buf; |
| 1278 | |
| 1279 | gguf_writer_buf(std::vector<int8_t> & buf) : buf(buf) {} |
| 1280 | |
| 1281 | using gguf_writer_base::write; |
| 1282 | |
| 1283 | void write(const int8_t val) override { |
| 1284 | buf.push_back(x: val); |
| 1285 | written_bytes++; |
| 1286 | } |
| 1287 | |
| 1288 | void write(const std::vector<int8_t> & val) override { |
| 1289 | buf.insert(position: buf.end(), first: val.begin(), last: val.end()); |
| 1290 | written_bytes += val.size(); |
| 1291 | } |
| 1292 | |
| 1293 | void write_tensor_data(const struct gguf_tensor_info & info, const size_t offset_data, const size_t alignment) override { |
| 1294 | GGML_ASSERT(buf.size() - offset_data == info.offset); |
| 1295 | |
| 1296 | GGML_ASSERT(ggml_is_contiguous(&info.t)); |
| 1297 | const size_t offset = buf.size(); |
| 1298 | const size_t nbytes = ggml_nbytes(tensor: &info.t); |
| 1299 | |
| 1300 | buf.resize(new_size: offset + nbytes); |
| 1301 | if (info.t.buffer) { |
| 1302 | ggml_backend_tensor_get(tensor: &info.t, data: buf.data() + offset, offset: 0, size: nbytes); |
| 1303 | } else { |
| 1304 | GGML_ASSERT(info.t.data); |
| 1305 | memcpy(dest: buf.data() + offset, src: info.t.data, n: nbytes); |
| 1306 | } |
| 1307 | written_bytes += nbytes; |
| 1308 | |
| 1309 | pad(alignment); |
| 1310 | } |
| 1311 | }; |
| 1312 | |
| 1313 | // file based writer |
| 1314 | struct gguf_writer_file final : public gguf_writer_base { |
| 1315 | FILE * file; |
| 1316 | |
| 1317 | gguf_writer_file(FILE* file) : file(file) {} |
| 1318 | |
| 1319 | using gguf_writer_base::write; |
| 1320 | |
| 1321 | void write(const int8_t val) override { |
| 1322 | const auto real_val = static_cast<uint8_t>(val); |
| 1323 | const auto ret = fputc(c: real_val, stream: file); |
| 1324 | written_bytes++; |
| 1325 | if (ret != real_val) { |
| 1326 | throw std::runtime_error("unexpected fputc result '" + std::to_string(val: ret) + "' instead of '" + std::to_string(val: (int)real_val) + "'" ); |
| 1327 | } |
| 1328 | } |
| 1329 | |
| 1330 | void write(const std::vector<int8_t> & val) override { |
| 1331 | const auto ret = fwrite(ptr: val.data(), size: 1, n: val.size(), s: file); |
| 1332 | written_bytes += val.size(); |
| 1333 | if (ret != val.size()) { |
| 1334 | throw std::runtime_error("unexpected fwrite number of bytes written, '" + std::to_string(val: ret) + "' instead of '" + std::to_string(val: val.size()) + "'" ); |
| 1335 | } |
| 1336 | } |
| 1337 | |
| 1338 | void write_tensor_data(const struct gguf_tensor_info & info, const size_t offset_data, const size_t alignment) override { |
| 1339 | GGML_ASSERT(written_bytes - offset_data == info.offset); |
| 1340 | |
| 1341 | GGML_ASSERT(ggml_is_contiguous(&info.t)); |
| 1342 | const size_t nbytes = ggml_nbytes(tensor: &info.t); |
| 1343 | |
| 1344 | std::vector<int8_t> buf(nbytes); |
| 1345 | if (info.t.buffer) { |
| 1346 | ggml_backend_tensor_get(tensor: &info.t, data: buf.data(), offset: 0, size: nbytes); |
| 1347 | } else { |
| 1348 | GGML_ASSERT(info.t.data); |
| 1349 | memcpy(dest: buf.data(), src: info.t.data, n: nbytes); |
| 1350 | } |
| 1351 | write(val: buf); |
| 1352 | |
| 1353 | pad(alignment); |
| 1354 | } |
| 1355 | }; |
| 1356 | |
| 1357 | template <typename writer_t> |
| 1358 | static void gguf_write_out(const struct gguf_context * ctx, writer_t & gw, bool only_meta) { |
| 1359 | const int64_t n_kv = gguf_get_n_kv(ctx); |
| 1360 | const int64_t n_tensors = gguf_get_n_tensors(ctx); |
| 1361 | |
| 1362 | // write header |
| 1363 | gw.write(GGUF_MAGIC[0]); |
| 1364 | gw.write(GGUF_MAGIC[1]); |
| 1365 | gw.write(GGUF_MAGIC[2]); |
| 1366 | gw.write(GGUF_MAGIC[3]); |
| 1367 | gw.write(ctx->version); |
| 1368 | gw.write(n_tensors); |
| 1369 | gw.write(n_kv); |
| 1370 | |
| 1371 | // write key-value pairs |
| 1372 | for (int64_t i = 0; i < n_kv; ++i) { |
| 1373 | gw.write(ctx->kv[i]); |
| 1374 | } |
| 1375 | |
| 1376 | // write tensor info |
| 1377 | for (int64_t i = 0; i < n_tensors; ++i) { |
| 1378 | gw.write_tensor_meta(ctx->info[i]); |
| 1379 | } |
| 1380 | |
| 1381 | // we require the data section to be aligned |
| 1382 | gw.pad(ctx->alignment); |
| 1383 | |
| 1384 | if (only_meta) { |
| 1385 | return; |
| 1386 | } |
| 1387 | |
| 1388 | const size_t offset_data = gw.written_bytes; |
| 1389 | |
| 1390 | // write tensor data |
| 1391 | for (int64_t i = 0; i < n_tensors; ++i) { |
| 1392 | gw.write_tensor_data(ctx->info[i], offset_data, ctx->alignment); |
| 1393 | } |
| 1394 | } |
| 1395 | |
| 1396 | void gguf_write_to_buf(const struct gguf_context * ctx, std::vector<int8_t> & buf, bool only_meta) { |
| 1397 | gguf_writer_buf gw(buf); |
| 1398 | gguf_write_out(ctx, gw, only_meta); |
| 1399 | } |
| 1400 | |
| 1401 | bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) { |
| 1402 | FILE * file = ggml_fopen(fname, mode: "wb" ); |
| 1403 | |
| 1404 | if (!file) { |
| 1405 | GGML_LOG_ERROR("%s: failed to open file '%s' for writing GGUF data\n" , __func__, fname); |
| 1406 | return false; |
| 1407 | } |
| 1408 | |
| 1409 | try { |
| 1410 | gguf_writer_file gw(file); |
| 1411 | gguf_write_out(ctx, gw, only_meta); |
| 1412 | } catch (const std::runtime_error& ex) { |
| 1413 | GGML_LOG_ERROR("%s: failed to write GGUF data into '%s': %s\n" , __func__, fname, ex.what()); |
| 1414 | fclose(stream: file); |
| 1415 | return false; |
| 1416 | } |
| 1417 | |
| 1418 | fclose(stream: file); |
| 1419 | return true; |
| 1420 | } |
| 1421 | |
| 1422 | size_t gguf_get_meta_size(const struct gguf_context * ctx) { |
| 1423 | // only return size |
| 1424 | std::vector<int8_t> buf; |
| 1425 | gguf_write_to_buf(ctx, buf, /*only_meta =*/ true); |
| 1426 | return buf.size(); |
| 1427 | } |
| 1428 | |
| 1429 | void gguf_get_meta_data(const struct gguf_context * ctx, void * data) { |
| 1430 | std::vector<int8_t> buf; |
| 1431 | gguf_write_to_buf(ctx, buf, /*only_meta =*/ true); |
| 1432 | memcpy(dest: data, src: buf.data(), n: buf.size()); |
| 1433 | } |
| 1434 | |