| 1 | #include <cstdio> |
| 2 | #include <vector> |
| 3 | #include <random> |
| 4 | #include <chrono> |
| 5 | #include <cstdlib> |
| 6 | #include <cmath> |
| 7 | #include <cassert> |
| 8 | #include <cstring> |
| 9 | #include <array> |
| 10 | |
| 11 | #include <ggml.h> |
| 12 | #include <ggml-cpu.h> |
| 13 | |
| 14 | #if defined(_MSC_VER) |
| 15 | #pragma warning(disable: 4244 4267) // possible loss of data |
| 16 | #endif |
| 17 | |
| 18 | constexpr int kVecSize = 1 << 18; |
| 19 | |
| 20 | static float drawFromGaussianPdf(std::mt19937& rndm) { |
| 21 | constexpr double kScale = 1./(1. + std::mt19937::max()); |
| 22 | constexpr double kTwoPiTimesScale = 6.28318530717958647692*kScale; |
| 23 | static float lastX; |
| 24 | static bool haveX = false; |
| 25 | if (haveX) { haveX = false; return lastX; } |
| 26 | auto r = sqrt(x: -2*log(x: 1 - kScale*rndm())); |
| 27 | auto phi = kTwoPiTimesScale * rndm(); |
| 28 | lastX = r*sin(x: phi); |
| 29 | haveX = true; |
| 30 | return r*cos(x: phi); |
| 31 | } |
| 32 | |
| 33 | static void fillRandomGaussianFloats(std::vector<float>& values, std::mt19937& rndm, float mean = 0) { |
| 34 | for (auto& v : values) v = mean + drawFromGaussianPdf(rndm); |
| 35 | } |
| 36 | |
| 37 | // Copy-pasted from ggml.c |
| 38 | #define QK4_0 32 |
| 39 | typedef struct { |
| 40 | float d; // delta |
| 41 | uint8_t qs[QK4_0 / 2]; // nibbles / quants |
| 42 | } block_q4_0; |
| 43 | static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding" ); |
| 44 | |
| 45 | #define QK4_1 32 |
| 46 | typedef struct { |
| 47 | float d; // delta |
| 48 | float m; // min |
| 49 | uint8_t qs[QK4_1 / 2]; // nibbles / quants |
| 50 | } block_q4_1; |
| 51 | static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding" ); |
| 52 | |
| 53 | // Copy-pasted from ggml.c |
| 54 | #define QK8_0 32 |
| 55 | typedef struct { |
| 56 | float d; // delta |
| 57 | int8_t qs[QK8_0]; // quants |
| 58 | } block_q8_0; |
| 59 | static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding" ); |
| 60 | |
| 61 | // "Scalar" dot product between the quantized vector x and float vector y |
| 62 | inline double dot(int n, const block_q4_0* x, const float* y) { |
| 63 | const static float kValues[16] = {-8.f, -7.f, -6.f, -5.f, -4.f, -3.f, -2.f, -1.f, 0.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f}; |
| 64 | constexpr uint32_t kMask1 = 0x0f0f0f0f; |
| 65 | uint32_t u1, u2; |
| 66 | auto q1 = (const uint8_t*)&u1; |
| 67 | auto q2 = (const uint8_t*)&u2; |
| 68 | double sum = 0; |
| 69 | for (int i=0; i<n; ++i) { |
| 70 | float d = x->d; |
| 71 | auto u = (const uint32_t*)x->qs; |
| 72 | float s = 0; |
| 73 | for (int k=0; k<4; ++k) { |
| 74 | u1 = u[k] & kMask1; |
| 75 | u2 = (u[k] >> 4) & kMask1; |
| 76 | s += y[0]*kValues[q1[0]] + y[1]*kValues[q2[0]] + |
| 77 | y[2]*kValues[q1[1]] + y[3]*kValues[q2[1]] + |
| 78 | y[4]*kValues[q1[2]] + y[5]*kValues[q2[2]] + |
| 79 | y[6]*kValues[q1[3]] + y[7]*kValues[q2[3]]; |
| 80 | y += 8; |
| 81 | } |
| 82 | sum += s*d; |
| 83 | ++x; |
| 84 | } |
| 85 | return sum; |
| 86 | } |
| 87 | // Alternative version of the above. Faster on my Mac (~45 us vs ~55 us per dot product), |
| 88 | // but about the same on X86_64 (Ryzen 7950X CPU). |
| 89 | inline double dot3(int n, const block_q4_0* x, const float* y) { |
| 90 | const static std::pair<float,float> kValues[256] = { |
| 91 | {-8.f, -8.f}, {-7.f, -8.f}, {-6.f, -8.f}, {-5.f, -8.f}, {-4.f, -8.f}, {-3.f, -8.f}, {-2.f, -8.f}, {-1.f, -8.f}, |
| 92 | { 0.f, -8.f}, { 1.f, -8.f}, { 2.f, -8.f}, { 3.f, -8.f}, { 4.f, -8.f}, { 5.f, -8.f}, { 6.f, -8.f}, { 7.f, -8.f}, |
| 93 | {-8.f, -7.f}, {-7.f, -7.f}, {-6.f, -7.f}, {-5.f, -7.f}, {-4.f, -7.f}, {-3.f, -7.f}, {-2.f, -7.f}, {-1.f, -7.f}, |
| 94 | { 0.f, -7.f}, { 1.f, -7.f}, { 2.f, -7.f}, { 3.f, -7.f}, { 4.f, -7.f}, { 5.f, -7.f}, { 6.f, -7.f}, { 7.f, -7.f}, |
| 95 | {-8.f, -6.f}, {-7.f, -6.f}, {-6.f, -6.f}, {-5.f, -6.f}, {-4.f, -6.f}, {-3.f, -6.f}, {-2.f, -6.f}, {-1.f, -6.f}, |
| 96 | { 0.f, -6.f}, { 1.f, -6.f}, { 2.f, -6.f}, { 3.f, -6.f}, { 4.f, -6.f}, { 5.f, -6.f}, { 6.f, -6.f}, { 7.f, -6.f}, |
| 97 | {-8.f, -5.f}, {-7.f, -5.f}, {-6.f, -5.f}, {-5.f, -5.f}, {-4.f, -5.f}, {-3.f, -5.f}, {-2.f, -5.f}, {-1.f, -5.f}, |
| 98 | { 0.f, -5.f}, { 1.f, -5.f}, { 2.f, -5.f}, { 3.f, -5.f}, { 4.f, -5.f}, { 5.f, -5.f}, { 6.f, -5.f}, { 7.f, -5.f}, |
| 99 | {-8.f, -4.f}, {-7.f, -4.f}, {-6.f, -4.f}, {-5.f, -4.f}, {-4.f, -4.f}, {-3.f, -4.f}, {-2.f, -4.f}, {-1.f, -4.f}, |
| 100 | { 0.f, -4.f}, { 1.f, -4.f}, { 2.f, -4.f}, { 3.f, -4.f}, { 4.f, -4.f}, { 5.f, -4.f}, { 6.f, -4.f}, { 7.f, -4.f}, |
| 101 | {-8.f, -3.f}, {-7.f, -3.f}, {-6.f, -3.f}, {-5.f, -3.f}, {-4.f, -3.f}, {-3.f, -3.f}, {-2.f, -3.f}, {-1.f, -3.f}, |
| 102 | { 0.f, -3.f}, { 1.f, -3.f}, { 2.f, -3.f}, { 3.f, -3.f}, { 4.f, -3.f}, { 5.f, -3.f}, { 6.f, -3.f}, { 7.f, -3.f}, |
| 103 | {-8.f, -2.f}, {-7.f, -2.f}, {-6.f, -2.f}, {-5.f, -2.f}, {-4.f, -2.f}, {-3.f, -2.f}, {-2.f, -2.f}, {-1.f, -2.f}, |
| 104 | { 0.f, -2.f}, { 1.f, -2.f}, { 2.f, -2.f}, { 3.f, -2.f}, { 4.f, -2.f}, { 5.f, -2.f}, { 6.f, -2.f}, { 7.f, -2.f}, |
| 105 | {-8.f, -1.f}, {-7.f, -1.f}, {-6.f, -1.f}, {-5.f, -1.f}, {-4.f, -1.f}, {-3.f, -1.f}, {-2.f, -1.f}, {-1.f, -1.f}, |
| 106 | { 0.f, -1.f}, { 1.f, -1.f}, { 2.f, -1.f}, { 3.f, -1.f}, { 4.f, -1.f}, { 5.f, -1.f}, { 6.f, -1.f}, { 7.f, -1.f}, |
| 107 | {-8.f, 0.f}, {-7.f, 0.f}, {-6.f, 0.f}, {-5.f, 0.f}, {-4.f, 0.f}, {-3.f, 0.f}, {-2.f, 0.f}, {-1.f, 0.f}, |
| 108 | { 0.f, 0.f}, { 1.f, 0.f}, { 2.f, 0.f}, { 3.f, 0.f}, { 4.f, 0.f}, { 5.f, 0.f}, { 6.f, 0.f}, { 7.f, 0.f}, |
| 109 | {-8.f, 1.f}, {-7.f, 1.f}, {-6.f, 1.f}, {-5.f, 1.f}, {-4.f, 1.f}, {-3.f, 1.f}, {-2.f, 1.f}, {-1.f, 1.f}, |
| 110 | { 0.f, 1.f}, { 1.f, 1.f}, { 2.f, 1.f}, { 3.f, 1.f}, { 4.f, 1.f}, { 5.f, 1.f}, { 6.f, 1.f}, { 7.f, 1.f}, |
| 111 | {-8.f, 2.f}, {-7.f, 2.f}, {-6.f, 2.f}, {-5.f, 2.f}, {-4.f, 2.f}, {-3.f, 2.f}, {-2.f, 2.f}, {-1.f, 2.f}, |
| 112 | { 0.f, 2.f}, { 1.f, 2.f}, { 2.f, 2.f}, { 3.f, 2.f}, { 4.f, 2.f}, { 5.f, 2.f}, { 6.f, 2.f}, { 7.f, 2.f}, |
| 113 | {-8.f, 3.f}, {-7.f, 3.f}, {-6.f, 3.f}, {-5.f, 3.f}, {-4.f, 3.f}, {-3.f, 3.f}, {-2.f, 3.f}, {-1.f, 3.f}, |
| 114 | { 0.f, 3.f}, { 1.f, 3.f}, { 2.f, 3.f}, { 3.f, 3.f}, { 4.f, 3.f}, { 5.f, 3.f}, { 6.f, 3.f}, { 7.f, 3.f}, |
| 115 | {-8.f, 4.f}, {-7.f, 4.f}, {-6.f, 4.f}, {-5.f, 4.f}, {-4.f, 4.f}, {-3.f, 4.f}, {-2.f, 4.f}, {-1.f, 4.f}, |
| 116 | { 0.f, 4.f}, { 1.f, 4.f}, { 2.f, 4.f}, { 3.f, 4.f}, { 4.f, 4.f}, { 5.f, 4.f}, { 6.f, 4.f}, { 7.f, 4.f}, |
| 117 | {-8.f, 5.f}, {-7.f, 5.f}, {-6.f, 5.f}, {-5.f, 5.f}, {-4.f, 5.f}, {-3.f, 5.f}, {-2.f, 5.f}, {-1.f, 5.f}, |
| 118 | { 0.f, 5.f}, { 1.f, 5.f}, { 2.f, 5.f}, { 3.f, 5.f}, { 4.f, 5.f}, { 5.f, 5.f}, { 6.f, 5.f}, { 7.f, 5.f}, |
| 119 | {-8.f, 6.f}, {-7.f, 6.f}, {-6.f, 6.f}, {-5.f, 6.f}, {-4.f, 6.f}, {-3.f, 6.f}, {-2.f, 6.f}, {-1.f, 6.f}, |
| 120 | { 0.f, 6.f}, { 1.f, 6.f}, { 2.f, 6.f}, { 3.f, 6.f}, { 4.f, 6.f}, { 5.f, 6.f}, { 6.f, 6.f}, { 7.f, 6.f}, |
| 121 | {-8.f, 7.f}, {-7.f, 7.f}, {-6.f, 7.f}, {-5.f, 7.f}, {-4.f, 7.f}, {-3.f, 7.f}, {-2.f, 7.f}, {-1.f, 7.f}, |
| 122 | { 0.f, 7.f}, { 1.f, 7.f}, { 2.f, 7.f}, { 3.f, 7.f}, { 4.f, 7.f}, { 5.f, 7.f}, { 6.f, 7.f}, { 7.f, 7.f} |
| 123 | }; |
| 124 | double sum = 0; |
| 125 | for (int i=0; i<n; ++i) { |
| 126 | float d = x->d; |
| 127 | auto q = x->qs; |
| 128 | float s = 0; |
| 129 | for (int k=0; k<4; ++k) { |
| 130 | s += y[0]*kValues[q[0]].first + y[1]*kValues[q[0]].second + |
| 131 | y[2]*kValues[q[1]].first + y[3]*kValues[q[1]].second + |
| 132 | y[4]*kValues[q[2]].first + y[5]*kValues[q[2]].second + |
| 133 | y[6]*kValues[q[3]].first + y[7]*kValues[q[3]].second; |
| 134 | y += 8; q += 4; |
| 135 | } |
| 136 | sum += s*d; |
| 137 | ++x; |
| 138 | } |
| 139 | return sum; |
| 140 | } |
| 141 | |
| 142 | inline double dot41(int n, const block_q4_1* x, const float* y) { |
| 143 | const static float kValues[16] = {0.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f, 13.f, 14.f, 15.f}; |
| 144 | constexpr uint32_t kMask1 = 0x0f0f0f0f; |
| 145 | uint32_t u1, u2; |
| 146 | auto q1 = (const uint8_t*)&u1; |
| 147 | auto q2 = (const uint8_t*)&u2; |
| 148 | double sum = 0; |
| 149 | for (int i=0; i<n; ++i) { |
| 150 | auto u = (const uint32_t*)x->qs; |
| 151 | float s = 0, s1 = 0; |
| 152 | for (int k=0; k<4; ++k) { |
| 153 | u1 = u[k] & kMask1; |
| 154 | u2 = (u[k] >> 4) & kMask1; |
| 155 | s += y[0]*kValues[q1[0]] + y[1]*kValues[q2[0]] + |
| 156 | y[2]*kValues[q1[1]] + y[3]*kValues[q2[1]] + |
| 157 | y[4]*kValues[q1[2]] + y[5]*kValues[q2[2]] + |
| 158 | y[6]*kValues[q1[3]] + y[7]*kValues[q2[3]]; |
| 159 | s1 += y[0] + y[1] + y[2] + y[3] + y[4] + y[5] + y[6] + y[7]; |
| 160 | y += 8; |
| 161 | } |
| 162 | sum += s*x->d + s1*x->m; |
| 163 | ++x; |
| 164 | } |
| 165 | return sum; |
| 166 | } |
| 167 | |
| 168 | // Copy-pasted from ggml.c |
| 169 | static void quantize_row_q8_0_reference(const float *x, block_q8_0 *y, int k) { |
| 170 | assert(k % QK8_0 == 0); |
| 171 | const int nb = k / QK8_0; |
| 172 | |
| 173 | for (int i = 0; i < nb; i++) { |
| 174 | float amax = 0.0f; // absolute max |
| 175 | |
| 176 | for (int l = 0; l < QK8_0; l++) { |
| 177 | const float v = x[i*QK8_0 + l]; |
| 178 | amax = std::max(a: amax, b: fabsf(x: v)); |
| 179 | } |
| 180 | |
| 181 | const float d = amax / ((1 << 7) - 1); |
| 182 | const float id = d ? 1.0f/d : 0.0f; |
| 183 | |
| 184 | y[i].d = d; |
| 185 | |
| 186 | for (int l = 0; l < QK8_0; ++l) { |
| 187 | const float v = x[i*QK8_0 + l]*id; |
| 188 | y[i].qs[l] = roundf(x: v); |
| 189 | } |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | // Copy-pasted from ggml.c |
| 194 | static void dot_q4_q8(const int n, float* s, const void* vx, const void* vy) { |
| 195 | const int nb = n / QK8_0; |
| 196 | const block_q4_0* x = (const block_q4_0*)vx; |
| 197 | const block_q8_0* y = (const block_q8_0*)vy; |
| 198 | float sumf = 0; |
| 199 | for (int i = 0; i < nb; i++) { |
| 200 | const float d0 = x[i].d; |
| 201 | const float d1 = y[i].d; |
| 202 | |
| 203 | const uint8_t * p0 = x[i].qs; |
| 204 | const int8_t * p1 = y[i].qs; |
| 205 | |
| 206 | int sumi = 0; |
| 207 | for (int j = 0; j < QK8_0/2; j++) { |
| 208 | const uint8_t v0 = p0[j]; |
| 209 | |
| 210 | const int i0 = (int8_t) (v0 & 0xf) - 8; |
| 211 | const int i1 = (int8_t) (v0 >> 4) - 8; |
| 212 | |
| 213 | const int i2 = p1[2*j + 0]; |
| 214 | const int i3 = p1[2*j + 1]; |
| 215 | |
| 216 | sumi += i0*i2 + i1*i3; |
| 217 | } |
| 218 | sumf += d0*d1*sumi; |
| 219 | } |
| 220 | *s = sumf; |
| 221 | } |
| 222 | |
| 223 | int main(int argc, char** argv) { |
| 224 | |
| 225 | int nloop = argc > 1 ? atoi(nptr: argv[1]) : 10; |
| 226 | bool scalar = argc > 2 ? atoi(nptr: argv[2]) : false; |
| 227 | bool useQ4_1 = argc > 3 ? atoi(nptr: argv[3]) : false; |
| 228 | |
| 229 | if (scalar && useQ4_1) { |
| 230 | printf(format: "It is not possible to use Q4_1 quantization and scalar implementations\n" ); |
| 231 | return 1; |
| 232 | } |
| 233 | |
| 234 | std::mt19937 rndm(1234); |
| 235 | |
| 236 | std::vector<float> x1(kVecSize), y1(kVecSize); |
| 237 | int n4 = useQ4_1 ? kVecSize / QK4_1 : kVecSize / QK4_0; n4 = 64*((n4 + 63)/64); |
| 238 | int n8 = kVecSize / QK8_0; n8 = 64*((n8 + 63)/64); |
| 239 | |
| 240 | const auto * funcs_cpu = ggml_get_type_traits_cpu(type: useQ4_1 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q4_0); |
| 241 | |
| 242 | std::vector<block_q4_0> q40; |
| 243 | std::vector<block_q4_1> q41; |
| 244 | if (useQ4_1) q41.resize(new_size: n4); |
| 245 | else q40.resize(new_size: n4); |
| 246 | std::vector<block_q8_0> q8(n8); |
| 247 | double sumt = 0, sumt2 = 0, maxt = 0; |
| 248 | double sumqt = 0, sumqt2 = 0, maxqt = 0; |
| 249 | double sum = 0, sumq = 0, exactSum = 0; |
| 250 | for (int iloop=0; iloop<nloop; ++iloop) { |
| 251 | |
| 252 | // Fill vector x with random numbers |
| 253 | fillRandomGaussianFloats(values&: x1, rndm); |
| 254 | |
| 255 | // Fill vector y with random numbers |
| 256 | fillRandomGaussianFloats(values&: y1, rndm); |
| 257 | |
| 258 | // Compute the exact dot product |
| 259 | for (int k=0; k<kVecSize; ++k) exactSum += x1[k]*y1[k]; |
| 260 | |
| 261 | // quantize x. |
| 262 | // Note, we do not include this in the timing as in practical application |
| 263 | // we already have the quantized model weights. |
| 264 | if (useQ4_1) { |
| 265 | funcs_cpu->from_float(x1.data(), q41.data(), kVecSize); |
| 266 | } else { |
| 267 | funcs_cpu->from_float(x1.data(), q40.data(), kVecSize); |
| 268 | } |
| 269 | |
| 270 | // Now measure time the dot product needs using the "scalar" version above |
| 271 | auto t1 = std::chrono::high_resolution_clock::now(); |
| 272 | if (useQ4_1) sum += dot41(n: kVecSize / QK4_1, x: q41.data(), y: y1.data()); |
| 273 | else sum += dot(n: kVecSize / QK4_0, x: q40.data(), y: y1.data()); |
| 274 | auto t2 = std::chrono::high_resolution_clock::now(); |
| 275 | auto t = 1e-3*std::chrono::duration_cast<std::chrono::nanoseconds>(d: t2-t1).count(); |
| 276 | sumt += t; sumt2 += t*t; maxt = std::max(a: maxt, b: t); |
| 277 | |
| 278 | // And now measure the time needed to quantize y and perform the dot product with the quantized y |
| 279 | t1 = std::chrono::high_resolution_clock::now(); |
| 280 | float result; |
| 281 | if (scalar) { |
| 282 | quantize_row_q8_0_reference(x: y1.data(), y: q8.data(), k: kVecSize); |
| 283 | dot_q4_q8(n: kVecSize, s: &result, vx: q40.data(), vy: q8.data()); |
| 284 | } |
| 285 | else { |
| 286 | const auto * vdot = ggml_get_type_traits_cpu(type: funcs_cpu->vec_dot_type); |
| 287 | vdot->from_float(y1.data(), q8.data(), kVecSize); |
| 288 | if (useQ4_1) funcs_cpu->vec_dot(kVecSize, &result, 0, q41.data(), 0, q8.data(), 0, 1); |
| 289 | else funcs_cpu->vec_dot(kVecSize, &result, 0, q40.data(), 0, q8.data(), 0, 1); |
| 290 | } |
| 291 | sumq += result; |
| 292 | t2 = std::chrono::high_resolution_clock::now(); |
| 293 | t = 1e-3*std::chrono::duration_cast<std::chrono::nanoseconds>(d: t2-t1).count(); |
| 294 | sumqt += t; sumqt2 += t*t; maxqt = std::max(a: maxqt, b: t); |
| 295 | |
| 296 | } |
| 297 | |
| 298 | // Report the time (and the average of the dot products so the compiler does not come up with the idea |
| 299 | // of optimizing away the function calls after figuring that the result is not used). |
| 300 | sum /= nloop; sumq /= nloop; |
| 301 | exactSum /= nloop; |
| 302 | printf(format: "Exact result: <dot> = %g\n" ,exactSum); |
| 303 | printf(format: "<dot> = %g, %g\n" ,sum,sumq); |
| 304 | sumt /= nloop; sumt2 /= nloop; sumt2 -= sumt*sumt; |
| 305 | if (sumt2 > 0) sumt2 = sqrt(x: sumt2); |
| 306 | printf(format: "time = %g +/- %g us. maxt = %g us\n" ,sumt,sumt2,maxt); |
| 307 | sumqt /= nloop; sumqt2 /= nloop; sumqt2 -= sumqt*sumqt; |
| 308 | if (sumqt2 > 0) sumqt2 = sqrt(x: sumqt2); |
| 309 | printf(format: "timeq = %g +/- %g us. maxt = %g us\n" ,sumqt,sumqt2,maxqt); |
| 310 | return 0; |
| 311 | } |
| 312 | |