| 1 | #include "llama-adapter.h" |
| 2 | |
| 3 | #include "llama-impl.h" |
| 4 | #include "llama-mmap.h" |
| 5 | #include "llama-model.h" |
| 6 | |
| 7 | #include <map> |
| 8 | #include <cassert> |
| 9 | #include <sstream> |
| 10 | #include <stdexcept> |
| 11 | |
| 12 | // vec |
| 13 | |
| 14 | ggml_tensor * llama_adapter_cvec::tensor_for(int il) const { |
| 15 | if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) { |
| 16 | return nullptr; |
| 17 | } |
| 18 | |
| 19 | return tensors[il]; |
| 20 | } |
| 21 | |
| 22 | ggml_tensor * llama_adapter_cvec::apply_to(ggml_context * ctx, ggml_tensor * cur, int il) const { |
| 23 | ggml_tensor * layer_dir = tensor_for(il); |
| 24 | if (layer_dir != nullptr) { |
| 25 | cur = ggml_add(ctx, a: cur, b: layer_dir); |
| 26 | } |
| 27 | |
| 28 | return cur; |
| 29 | } |
| 30 | |
| 31 | bool llama_adapter_cvec::init(const llama_model & model) { |
| 32 | const auto & hparams = model.hparams; |
| 33 | |
| 34 | GGML_ASSERT(tensors.empty()); |
| 35 | GGML_ASSERT(ctxs.empty()); |
| 36 | GGML_ASSERT(bufs.empty()); |
| 37 | |
| 38 | // create a context for each buffer type |
| 39 | std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map; |
| 40 | auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { |
| 41 | auto it = ctx_map.find(x: buft); |
| 42 | if (it == ctx_map.end()) { |
| 43 | ggml_init_params params = { |
| 44 | /*.mem_size =*/ hparams.n_layer*ggml_tensor_overhead(), |
| 45 | /*.mem_buffer =*/ NULL, |
| 46 | /*.no_alloc =*/ true, |
| 47 | }; |
| 48 | |
| 49 | ggml_context * ctx = ggml_init(params); |
| 50 | if (!ctx) { |
| 51 | return nullptr; |
| 52 | } |
| 53 | |
| 54 | ctx_map[buft] = ctx; |
| 55 | ctxs.emplace_back(args&: ctx); |
| 56 | |
| 57 | return ctx; |
| 58 | } |
| 59 | |
| 60 | return it->second; |
| 61 | }; |
| 62 | |
| 63 | // make tensors |
| 64 | tensors.reserve(n: hparams.n_layer); |
| 65 | tensors.push_back(x: nullptr); // there's never a tensor for layer 0 |
| 66 | for (size_t il = 1; il < hparams.n_layer; il++) { |
| 67 | ggml_backend_buffer_type_t buft = model.select_buft(il); |
| 68 | ggml_context * ctx = ctx_for_buft(buft); |
| 69 | if (!ctx) { |
| 70 | LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n" , __func__); |
| 71 | return false; |
| 72 | } |
| 73 | ggml_tensor * tensor = ggml_new_tensor_1d(ctx, type: GGML_TYPE_F32, ne0: hparams.n_embd); |
| 74 | tensors.push_back(x: tensor); |
| 75 | } |
| 76 | |
| 77 | // allocate tensors / buffers and zero |
| 78 | bufs.reserve(n: ctx_map.size()); |
| 79 | for (auto it : ctx_map) { |
| 80 | ggml_backend_buffer_type_t buft = it.first; |
| 81 | ggml_context * ctx = it.second; |
| 82 | ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); |
| 83 | if (!buf) { |
| 84 | LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n" , __func__); |
| 85 | return false; |
| 86 | } |
| 87 | ggml_backend_buffer_clear(buffer: buf, value: 0); |
| 88 | bufs.emplace_back(args&: buf); |
| 89 | } |
| 90 | |
| 91 | return true; |
| 92 | } |
| 93 | |
| 94 | bool llama_adapter_cvec::apply( |
| 95 | const llama_model & model, |
| 96 | const float * data, |
| 97 | size_t len, |
| 98 | int32_t n_embd, |
| 99 | int32_t il_start, |
| 100 | int32_t il_end) { |
| 101 | const auto & hparams = model.hparams; |
| 102 | |
| 103 | if (data == nullptr) { |
| 104 | // disable the current control vector (but leave allocated for later) |
| 105 | layer_start = -1; |
| 106 | layer_end = -1; |
| 107 | return true; |
| 108 | } |
| 109 | |
| 110 | if (n_embd != (int) hparams.n_embd) { |
| 111 | LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n" , __func__); |
| 112 | return false; |
| 113 | } |
| 114 | |
| 115 | if (tensors.empty()) { |
| 116 | if (!init(model)) { |
| 117 | return false; |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | layer_start = il_start; |
| 122 | layer_end = il_end; |
| 123 | |
| 124 | for (size_t il = 1; il < hparams.n_layer; il++) { |
| 125 | assert(tensors[il] != nullptr); |
| 126 | |
| 127 | const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present |
| 128 | if (off + n_embd <= len) { |
| 129 | ggml_backend_tensor_set(tensor: tensors[il], data: data + off, offset: 0, size: n_embd * ggml_element_size(tensor: tensors[il])); |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | return true; |
| 134 | } |
| 135 | |
| 136 | // lora |
| 137 | |
| 138 | llama_adapter_lora_weight * llama_adapter_lora::get_weight(ggml_tensor * w) { |
| 139 | const std::string name(w->name); |
| 140 | |
| 141 | const auto pos = ab_map.find(x: name); |
| 142 | if (pos != ab_map.end()) { |
| 143 | return &pos->second; |
| 144 | } |
| 145 | |
| 146 | return nullptr; |
| 147 | } |
| 148 | |
| 149 | static void llama_adapter_lora_init_impl(llama_model & model, const char * path_lora, llama_adapter_lora & adapter) { |
| 150 | LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n" , __func__, path_lora); |
| 151 | |
| 152 | ggml_context * ctx_init; |
| 153 | gguf_init_params meta_gguf_params = { |
| 154 | /* .no_alloc = */ true, |
| 155 | /* .ctx = */ &ctx_init, |
| 156 | }; |
| 157 | |
| 158 | gguf_context_ptr ctx_gguf { gguf_init_from_file(fname: path_lora, params: meta_gguf_params) }; |
| 159 | if (!ctx_gguf) { |
| 160 | throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora)); |
| 161 | } |
| 162 | |
| 163 | ggml_context_ptr ctx { ctx_init }; |
| 164 | |
| 165 | // check metadata |
| 166 | { |
| 167 | const gguf_context * gguf_ctx = ctx_gguf.get(); |
| 168 | |
| 169 | LLAMA_LOG_INFO("%s: Dumping metadata keys/values.\n" , __func__); |
| 170 | |
| 171 | // get metadata as string |
| 172 | for (int i = 0; i < gguf_get_n_kv(ctx: gguf_ctx); i++) { |
| 173 | gguf_type type = gguf_get_kv_type(ctx: gguf_ctx, key_id: i); |
| 174 | const std::string type_name = |
| 175 | type == GGUF_TYPE_ARRAY |
| 176 | ? format(fmt: "%s[%s,%zu]" , gguf_type_name(type), gguf_type_name(type: gguf_get_arr_type(ctx: gguf_ctx, key_id: i)), gguf_get_arr_n(ctx: gguf_ctx, key_id: i)) |
| 177 | : gguf_type_name(type); |
| 178 | const char * name = gguf_get_key(ctx: gguf_ctx, key_id: i); |
| 179 | const std::string value = gguf_kv_to_str(ctx_gguf: gguf_ctx, i); |
| 180 | |
| 181 | if (type != GGUF_TYPE_ARRAY) { |
| 182 | adapter.gguf_kv.emplace(args&: name, args: value); |
| 183 | } |
| 184 | |
| 185 | const size_t MAX_VALUE_LEN = 40; |
| 186 | std::string print_value = value.size() > MAX_VALUE_LEN ? format(fmt: "%s..." , value.substr(pos: 0, n: MAX_VALUE_LEN - 3).c_str()) : value; |
| 187 | replace_all(s&: print_value, search: "\n" , replace: "\\n" ); |
| 188 | |
| 189 | LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n" , __func__, i, name, type_name.c_str(), print_value.c_str()); |
| 190 | } |
| 191 | |
| 192 | auto get_kv_str = [&](const std::string & key) -> std::string { |
| 193 | int id = gguf_find_key(ctx: gguf_ctx, key: key.c_str()); |
| 194 | return id < 0 ? "" : std::string(gguf_get_val_str(ctx: gguf_ctx, key_id: id)); |
| 195 | }; |
| 196 | auto get_kv_f32 = [&](const std::string & key) -> float { |
| 197 | int id = gguf_find_key(ctx: gguf_ctx, key: key.c_str()); |
| 198 | return id < 0 ? 0.0f : gguf_get_val_f32(ctx: gguf_ctx, key_id: id); |
| 199 | }; |
| 200 | LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); |
| 201 | |
| 202 | auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE)); |
| 203 | if (general_type != "adapter" ) { |
| 204 | throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type); |
| 205 | } |
| 206 | |
| 207 | auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE)); |
| 208 | auto general_arch = llm_arch_from_string(name: general_arch_str); |
| 209 | if (general_arch != model.arch) { |
| 210 | throw std::runtime_error("model arch and LoRA arch mismatch" ); |
| 211 | } |
| 212 | |
| 213 | auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE)); |
| 214 | if (adapter_type != "lora" ) { |
| 215 | throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type); |
| 216 | } |
| 217 | |
| 218 | adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA)); |
| 219 | |
| 220 | // parse alora invocation sequence vector |
| 221 | const auto & key = llm_kv(LLM_KV_ADAPTER_ALORA_INVOCATION_TOKENS); |
| 222 | const int kid = gguf_find_key(ctx: ctx_gguf.get(), key: key.c_str()); |
| 223 | if (kid >= 0) { |
| 224 | if (gguf_get_kv_type(ctx: ctx_gguf.get(), key_id: kid) != GGUF_TYPE_ARRAY) { |
| 225 | throw std::runtime_error("invalid gguf type for " + key); |
| 226 | } |
| 227 | const auto arr_type = gguf_get_arr_type(ctx: ctx_gguf.get(), key_id: kid); |
| 228 | if (arr_type != GGUF_TYPE_UINT32) { |
| 229 | throw std::runtime_error("invalid gguf element type for " + key); |
| 230 | } |
| 231 | const size_t seq_len = gguf_get_arr_n(ctx: ctx_gguf.get(), key_id: kid); |
| 232 | const void * data = gguf_get_arr_data(ctx: ctx_gguf.get(), key_id: kid); |
| 233 | adapter.alora_invocation_tokens.resize(new_size: seq_len); |
| 234 | std::copy( |
| 235 | first: (const llama_token *)data, |
| 236 | last: (const llama_token *)data + seq_len, |
| 237 | result: adapter.alora_invocation_tokens.begin()); |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | int n_tensors = gguf_get_n_tensors(ctx: ctx_gguf.get()); |
| 242 | |
| 243 | // contexts for each buffer type |
| 244 | std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map; |
| 245 | auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { |
| 246 | auto it = ctx_map.find(x: buft); |
| 247 | if (it == ctx_map.end()) { |
| 248 | // add a new context |
| 249 | ggml_init_params params = { |
| 250 | /*.mem_size =*/ n_tensors*ggml_tensor_overhead(), |
| 251 | /*.mem_buffer =*/ NULL, |
| 252 | /*.no_alloc =*/ true, |
| 253 | }; |
| 254 | ggml_context * buft_ctx = ggml_init(params); |
| 255 | if (!buft_ctx) { |
| 256 | return nullptr; |
| 257 | } |
| 258 | ctx_map[buft] = buft_ctx; |
| 259 | adapter.ctxs.emplace_back(args&: buft_ctx); |
| 260 | return buft_ctx; |
| 261 | }; |
| 262 | return it->second; |
| 263 | }; |
| 264 | |
| 265 | // bundle lora_a and lora_b into pairs |
| 266 | std::map<std::string, llama_adapter_lora_weight> ab_map; |
| 267 | auto str_endswith = [](const std::string & str, const std::string & suffix) { |
| 268 | return str.size() >= suffix.size() && str.compare(pos: str.size()-suffix.size(), n: suffix.size(), str: suffix) == 0; |
| 269 | }; |
| 270 | |
| 271 | for (ggml_tensor * cur = ggml_get_first_tensor(ctx: ctx.get()); cur; cur = ggml_get_next_tensor(ctx: ctx.get(), tensor: cur)) { |
| 272 | std::string name(cur->name); |
| 273 | if (str_endswith(name, ".lora_a" )) { |
| 274 | replace_all(s&: name, search: ".lora_a" , replace: "" ); |
| 275 | if (ab_map.find(x: name) == ab_map.end()) { |
| 276 | ab_map[name] = llama_adapter_lora_weight(cur, nullptr); |
| 277 | } else { |
| 278 | ab_map[name].a = cur; |
| 279 | } |
| 280 | } else if (str_endswith(name, ".lora_b" )) { |
| 281 | replace_all(s&: name, search: ".lora_b" , replace: "" ); |
| 282 | if (ab_map.find(x: name) == ab_map.end()) { |
| 283 | ab_map[name] = llama_adapter_lora_weight(nullptr, cur); |
| 284 | } else { |
| 285 | ab_map[name].b = cur; |
| 286 | } |
| 287 | } else if (str_endswith(name, "_norm.weight" )) { |
| 288 | // TODO: add support for norm vector |
| 289 | // for now, we don't really care because most adapters still work fine without it |
| 290 | continue; |
| 291 | } else { |
| 292 | throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix" ); |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | // get extra buffer types of the CPU |
| 297 | // TODO: a more general solution for non-CPU extra buft should be imlpemented in the future |
| 298 | // ref: https://github.com/ggml-org/llama.cpp/pull/12593#pullrequestreview-2718659948 |
| 299 | std::vector<ggml_backend_buffer_type_t> ; |
| 300 | { |
| 301 | auto * cpu_dev = ggml_backend_dev_by_type(type: GGML_BACKEND_DEVICE_TYPE_CPU); |
| 302 | if (!cpu_dev) { |
| 303 | throw std::runtime_error(format(fmt: "%s: no CPU backend found" , __func__)); |
| 304 | } |
| 305 | auto * cpu_reg = ggml_backend_dev_backend_reg(device: cpu_dev); |
| 306 | |
| 307 | auto = (ggml_backend_dev_get_extra_bufts_t) |
| 308 | ggml_backend_reg_get_proc_address(reg: cpu_reg, name: "ggml_backend_dev_get_extra_bufts" ); |
| 309 | |
| 310 | if (ggml_backend_dev_get_extra_bufts_fn) { |
| 311 | ggml_backend_buffer_type_t * = ggml_backend_dev_get_extra_bufts_fn(cpu_dev); |
| 312 | while (extra_bufts && *extra_bufts) { |
| 313 | buft_extra.emplace_back(args&: *extra_bufts); |
| 314 | ++extra_bufts; |
| 315 | } |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | // add tensors |
| 320 | for (auto & it : ab_map) { |
| 321 | const std::string & name = it.first; |
| 322 | llama_adapter_lora_weight & w = it.second; |
| 323 | bool is_token_embd = str_endswith(name, "token_embd.weight" ); |
| 324 | |
| 325 | if (!w.a || !w.b) { |
| 326 | throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component" ); |
| 327 | } |
| 328 | |
| 329 | // device buft and device ctx |
| 330 | const auto * model_tensor = model.get_tensor(name: name.c_str()); |
| 331 | if (!model_tensor) { |
| 332 | throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model (hint: maybe wrong base model?)" ); |
| 333 | } |
| 334 | |
| 335 | auto * buft = ggml_backend_buffer_get_type(buffer: model_tensor->buffer); |
| 336 | |
| 337 | // do not load loras to extra buffer types (i.e. bufts for repacking) -> use the CPU in that case |
| 338 | for (auto & ex : buft_extra) { |
| 339 | if (ex == buft) { |
| 340 | LLAMA_LOG_WARN("%s: lora for '%s' cannot use buft '%s', fallback to CPU\n" , __func__, model_tensor->name, ggml_backend_buft_name(buft)); |
| 341 | |
| 342 | auto * cpu_dev = ggml_backend_dev_by_type(type: GGML_BACKEND_DEVICE_TYPE_CPU); |
| 343 | if (!cpu_dev) { |
| 344 | throw std::runtime_error(format(fmt: "%s: no CPU backend found" , __func__)); |
| 345 | } |
| 346 | buft = ggml_backend_dev_buffer_type(device: cpu_dev); |
| 347 | |
| 348 | break; |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | LLAMA_LOG_DEBUG("%s: lora for '%s' -> '%s'\n" , __func__, model_tensor->name, ggml_backend_buft_name(buft)); |
| 353 | |
| 354 | ggml_context * dev_ctx = ctx_for_buft(buft); |
| 355 | // validate tensor shape |
| 356 | if (is_token_embd) { |
| 357 | // expect B to be non-transposed, A and B are flipped; see llm_build_inp_embd() |
| 358 | if (model_tensor->ne[0] != w.b->ne[1] || model_tensor->ne[1] != w.a->ne[1]) { |
| 359 | throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)" ); |
| 360 | } |
| 361 | } else { |
| 362 | if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) { |
| 363 | throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)" ); |
| 364 | } |
| 365 | if (w.a->ne[1] != w.b->ne[0]) { |
| 366 | throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)" ); |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | // save tensor to adapter |
| 371 | ggml_tensor * tensor_a = ggml_dup_tensor(ctx: dev_ctx, src: w.a); |
| 372 | ggml_tensor * tensor_b = ggml_dup_tensor(ctx: dev_ctx, src: w.b); |
| 373 | ggml_set_name(tensor: tensor_a, name: w.a->name); |
| 374 | ggml_set_name(tensor: tensor_b, name: w.b->name); |
| 375 | adapter.ab_map[name] = llama_adapter_lora_weight(tensor_a, tensor_b); |
| 376 | } |
| 377 | |
| 378 | // allocate tensors / buffers and zero |
| 379 | { |
| 380 | adapter.ctxs.reserve(n: ctx_map.size()); |
| 381 | adapter.bufs.reserve(n: ctx_map.size()); |
| 382 | for (auto & it : ctx_map) { |
| 383 | ggml_backend_buffer_type_t buft = it.first; |
| 384 | ggml_context * ctx_dev = it.second; |
| 385 | ggml_backend_buffer_ptr buf { ggml_backend_alloc_ctx_tensors_from_buft(ctx: ctx_dev, buft) }; |
| 386 | if (!buf) { |
| 387 | throw std::runtime_error("failed to allocate buffer for lora adapter\n" ); |
| 388 | } |
| 389 | LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n" , __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get())/1024.0/1024.0); |
| 390 | adapter.bufs.emplace_back(args: std::move(buf)); |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | // set tensor data |
| 395 | { |
| 396 | llama_file gguf_file(path_lora, "rb" ); |
| 397 | std::vector<uint8_t> read_buf; |
| 398 | auto set_tensor = [&](ggml_tensor * orig, ggml_tensor * dev) { |
| 399 | size_t offs = gguf_get_data_offset(ctx: ctx_gguf.get()) + gguf_get_tensor_offset(ctx: ctx_gguf.get(), tensor_id: gguf_find_tensor(ctx: ctx_gguf.get(), name: orig->name)); |
| 400 | size_t size = ggml_nbytes(tensor: orig); |
| 401 | read_buf.resize(new_size: size); |
| 402 | gguf_file.seek(offset: offs, SEEK_SET); |
| 403 | gguf_file.read_raw(ptr: read_buf.data(), len: size); |
| 404 | ggml_backend_tensor_set(tensor: dev, data: read_buf.data(), offset: 0, size); |
| 405 | }; |
| 406 | for (auto & it : adapter.ab_map) { |
| 407 | auto orig = ab_map[it.first]; |
| 408 | auto dev = it.second; |
| 409 | set_tensor(orig.a, dev.a); |
| 410 | set_tensor(orig.b, dev.b); |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n" , __func__, adapter.ab_map.size()*2); |
| 415 | } |
| 416 | |
| 417 | llama_adapter_lora * llama_adapter_lora_init(llama_model * model, const char * path_lora) { |
| 418 | llama_adapter_lora * adapter = new llama_adapter_lora(); |
| 419 | |
| 420 | try { |
| 421 | llama_adapter_lora_init_impl(model&: *model, path_lora, adapter&: *adapter); |
| 422 | return adapter; |
| 423 | } catch (const std::exception & err) { |
| 424 | LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n" , __func__, err.what()); |
| 425 | |
| 426 | delete adapter; |
| 427 | } |
| 428 | |
| 429 | return nullptr; |
| 430 | } |
| 431 | |
| 432 | int32_t llama_adapter_meta_val_str(const llama_adapter_lora * adapter, const char * key, char * buf, size_t buf_size) { |
| 433 | const auto & it = adapter->gguf_kv.find(x: key); |
| 434 | if (it == adapter->gguf_kv.end()) { |
| 435 | if (buf_size > 0) { |
| 436 | buf[0] = '\0'; |
| 437 | } |
| 438 | return -1; |
| 439 | } |
| 440 | return snprintf(s: buf, maxlen: buf_size, format: "%s" , it->second.c_str()); |
| 441 | } |
| 442 | |
| 443 | int32_t llama_adapter_meta_count(const llama_adapter_lora * adapter) { |
| 444 | return (int)adapter->gguf_kv.size(); |
| 445 | } |
| 446 | |
| 447 | int32_t llama_adapter_meta_key_by_index(const llama_adapter_lora * adapter, int i, char * buf, size_t buf_size) { |
| 448 | if (i < 0 || i >= (int)adapter->gguf_kv.size()) { |
| 449 | if (buf_size > 0) { |
| 450 | buf[0] = '\0'; |
| 451 | } |
| 452 | return -1; |
| 453 | } |
| 454 | auto it = adapter->gguf_kv.begin(); |
| 455 | std::advance(i&: it, n: i); |
| 456 | return snprintf(s: buf, maxlen: buf_size, format: "%s" , it->first.c_str()); |
| 457 | } |
| 458 | |
| 459 | int32_t llama_adapter_meta_val_str_by_index(const llama_adapter_lora * adapter, int32_t i, char * buf, size_t buf_size) { |
| 460 | if (i < 0 || i >= (int)adapter->gguf_kv.size()) { |
| 461 | if (buf_size > 0) { |
| 462 | buf[0] = '\0'; |
| 463 | } |
| 464 | return -1; |
| 465 | } |
| 466 | auto it = adapter->gguf_kv.begin(); |
| 467 | std::advance(i&: it, n: i); |
| 468 | return snprintf(s: buf, maxlen: buf_size, format: "%s" , it->second.c_str()); |
| 469 | } |
| 470 | |
| 471 | void llama_adapter_lora_free(llama_adapter_lora * adapter) { |
| 472 | delete adapter; |
| 473 | } |
| 474 | |
| 475 | uint64_t llama_adapter_get_alora_n_invocation_tokens(const struct llama_adapter_lora * adapter) { |
| 476 | if (!adapter) { |
| 477 | return 0; |
| 478 | } |
| 479 | return adapter->alora_invocation_tokens.size(); |
| 480 | } |
| 481 | |
| 482 | const llama_token * llama_adapter_get_alora_invocation_tokens(const llama_adapter_lora * adapter) { |
| 483 | GGML_ASSERT(adapter); |
| 484 | return adapter->alora_invocation_tokens.data(); |
| 485 | } |
| 486 | |