| 1 | #include "llama-memory-recurrent.h" |
| 2 | |
| 3 | #include "llama-impl.h" |
| 4 | #include "llama-io.h" |
| 5 | #include "llama-batch.h" |
| 6 | #include "llama-model.h" |
| 7 | |
| 8 | #include <algorithm> |
| 9 | #include <cassert> |
| 10 | #include <cstring> |
| 11 | #include <limits> |
| 12 | #include <map> |
| 13 | #include <stdexcept> |
| 14 | |
| 15 | // |
| 16 | // llama_memory_recurrent |
| 17 | // |
| 18 | |
| 19 | llama_memory_recurrent::llama_memory_recurrent( |
| 20 | const llama_model & model, |
| 21 | ggml_type type_r, |
| 22 | ggml_type type_s, |
| 23 | bool offload, |
| 24 | uint32_t mem_size, |
| 25 | uint32_t n_seq_max, |
| 26 | const layer_filter_cb & filter) : hparams(model.hparams), n_seq_max(n_seq_max) { |
| 27 | const int32_t n_layer = hparams.n_layer; |
| 28 | |
| 29 | head = 0; |
| 30 | size = mem_size; |
| 31 | used = 0; |
| 32 | |
| 33 | cells.clear(); |
| 34 | cells.resize(new_size: mem_size); |
| 35 | |
| 36 | // define a comparator for the buft -> ctx map to ensure that the order is well-defined: |
| 37 | struct ggml_backend_buft_comparator { |
| 38 | bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const { |
| 39 | return strcmp(s1: ggml_backend_buft_name(buft: lhs), s2: ggml_backend_buft_name(buft: rhs)) < 0; |
| 40 | } |
| 41 | }; |
| 42 | std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map; |
| 43 | |
| 44 | // create a context for each buffer type |
| 45 | auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { |
| 46 | auto it = ctx_map.find(x: buft); |
| 47 | if (it == ctx_map.end()) { |
| 48 | ggml_init_params params = { |
| 49 | /*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()), |
| 50 | /*.mem_buffer =*/ NULL, |
| 51 | /*.no_alloc =*/ true, |
| 52 | }; |
| 53 | |
| 54 | ggml_context * ctx = ggml_init(params); |
| 55 | if (!ctx) { |
| 56 | return nullptr; |
| 57 | } |
| 58 | |
| 59 | ctx_map.emplace(args&: buft, args&: ctx); |
| 60 | |
| 61 | return ctx; |
| 62 | } |
| 63 | |
| 64 | return it->second.get(); |
| 65 | }; |
| 66 | |
| 67 | r_l.resize(new_size: n_layer); |
| 68 | s_l.resize(new_size: n_layer); |
| 69 | |
| 70 | for (int i = 0; i < n_layer; i++) { |
| 71 | if (filter && !filter(i)) { |
| 72 | LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n" , __func__, i); |
| 73 | continue; |
| 74 | } |
| 75 | |
| 76 | const char * dev_name = "CPU" ; |
| 77 | |
| 78 | ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type(); |
| 79 | |
| 80 | if (offload) { |
| 81 | auto * dev = model.dev_layer(il: i); |
| 82 | buft = ggml_backend_dev_buffer_type(device: dev); |
| 83 | |
| 84 | dev_name = ggml_backend_dev_name(device: dev); |
| 85 | } |
| 86 | |
| 87 | LLAMA_LOG_DEBUG("%s, layer %3d: dev = %s\n" , __func__, i, dev_name); |
| 88 | |
| 89 | ggml_context * ctx = ctx_for_buft(buft); |
| 90 | if (!ctx) { |
| 91 | throw std::runtime_error("failed to create ggml context for rs cache" ); |
| 92 | } |
| 93 | |
| 94 | ggml_tensor * r = ggml_new_tensor_1d(ctx, type: type_r, ne0: hparams.n_embd_r()*mem_size); |
| 95 | ggml_tensor * s = ggml_new_tensor_1d(ctx, type: type_s, ne0: hparams.n_embd_s()*mem_size); |
| 96 | ggml_format_name(tensor: r, fmt: "cache_r_l%d" , i); |
| 97 | ggml_format_name(tensor: s, fmt: "cache_s_l%d" , i); |
| 98 | r_l[i] = r; |
| 99 | s_l[i] = s; |
| 100 | } |
| 101 | |
| 102 | // allocate tensors and initialize the buffers to avoid NaNs in the padding |
| 103 | for (auto & [buft, ctx] : ctx_map) { |
| 104 | ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx: ctx.get(), buft); |
| 105 | if (!buf) { |
| 106 | throw std::runtime_error("failed to allocate buffer for rs cache" ); |
| 107 | } |
| 108 | ggml_backend_buffer_clear(buffer: buf, value: 0); |
| 109 | LLAMA_LOG_INFO("%s: %10s RS buffer size = %8.2f MiB\n" , __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); |
| 110 | ctxs_bufs.emplace_back(args: std::move(ctx), args&: buf); |
| 111 | } |
| 112 | |
| 113 | { |
| 114 | const size_t memory_size_r = size_r_bytes(); |
| 115 | const size_t memory_size_s = size_s_bytes(); |
| 116 | |
| 117 | LLAMA_LOG_INFO("%s: size = %7.2f MiB (%6u cells, %3d layers, %2u seqs), R (%s): %7.2f MiB, S (%s): %7.2f MiB\n" , __func__, |
| 118 | (float)(memory_size_r + memory_size_s) / (1024.0f * 1024.0f), mem_size, n_layer, n_seq_max, |
| 119 | ggml_type_name(type_r), (float)memory_size_r / (1024.0f * 1024.0f), |
| 120 | ggml_type_name(type_s), (float)memory_size_s / (1024.0f * 1024.0f)); |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | void llama_memory_recurrent::clear(bool data) { |
| 125 | for (int32_t i = 0; i < (int32_t) size; ++i) { |
| 126 | cells[i].pos = -1; |
| 127 | cells[i].seq_id.clear(); |
| 128 | cells[i].src = -1; |
| 129 | cells[i].tail = -1; |
| 130 | } |
| 131 | |
| 132 | head = 0; |
| 133 | used = 0; |
| 134 | |
| 135 | if (data) { |
| 136 | for (auto & [_, buf] : ctxs_bufs) { |
| 137 | ggml_backend_buffer_clear(buffer: buf.get(), value: 0); |
| 138 | } |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | bool llama_memory_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) { |
| 143 | //printf("[DEBUG] calling llama_memory_recurrent::seq_rm` with `seq_id=%d, p0=%d, p1=%d`\n", seq_id, p0, p1); |
| 144 | uint32_t new_head = size; |
| 145 | |
| 146 | if (p0 < 0) { |
| 147 | p0 = 0; |
| 148 | } |
| 149 | |
| 150 | if (p1 < 0) { |
| 151 | p1 = std::numeric_limits<llama_pos>::max(); |
| 152 | } |
| 153 | |
| 154 | // models like Mamba or RWKV can't have a state partially erased |
| 155 | if (seq_id >= (int64_t) size) { |
| 156 | // could be fatal |
| 157 | return false; |
| 158 | } |
| 159 | if (0 <= seq_id) { |
| 160 | int32_t & tail_id = cells[seq_id].tail; |
| 161 | if (tail_id >= 0) { |
| 162 | const auto & cell = cells[tail_id]; |
| 163 | // partial intersection is invalid |
| 164 | if ((0 < p0 && p0 < cell.pos) || (0 < p1 && p1 <= cell.pos)) { |
| 165 | //printf("[DEBUG] inside `llama_memory_recurrent::seq_rm`: partial intersection is invalid, so returning false\n"); |
| 166 | return false; |
| 167 | } |
| 168 | // invalidate tails which will be cleared |
| 169 | if (p0 <= cell.pos && cell.pos < p1) { |
| 170 | tail_id = -1; |
| 171 | } |
| 172 | } |
| 173 | } else { |
| 174 | // seq_id is negative, then the range should include everything or nothing |
| 175 | if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) { |
| 176 | //printf("[DEBUG] inside `llama_memory_recurrent::seq_rm`: `seq_id` is negative, so returning false\n"); |
| 177 | return false; |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | for (uint32_t i = 0; i < size; ++i) { |
| 182 | if (cells[i].pos >= p0 && cells[i].pos < p1) { |
| 183 | if (seq_id < 0) { |
| 184 | cells[i].seq_id.clear(); |
| 185 | } else if (cells[i].has_seq_id(id: seq_id)) { |
| 186 | cells[i].seq_id.erase(x: seq_id); |
| 187 | } else { |
| 188 | continue; |
| 189 | } |
| 190 | if (cells[i].is_empty()) { |
| 191 | // keep count of the number of used cells |
| 192 | if (cells[i].pos >= 0) { |
| 193 | used--; |
| 194 | } |
| 195 | cells[i].pos = -1; |
| 196 | cells[i].src = -1; |
| 197 | if (new_head == size) { |
| 198 | new_head = i; |
| 199 | } |
| 200 | } |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | // If we freed up a slot, set head to it so searching can start there. |
| 205 | if (new_head != size && new_head < head) { |
| 206 | head = new_head; |
| 207 | } |
| 208 | |
| 209 | return true; |
| 210 | } |
| 211 | |
| 212 | void llama_memory_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { |
| 213 | if (seq_id_src == seq_id_dst) { |
| 214 | return; |
| 215 | } |
| 216 | |
| 217 | if (p0 < 0) { |
| 218 | p0 = 0; |
| 219 | } |
| 220 | |
| 221 | if (p1 < 0) { |
| 222 | p1 = std::numeric_limits<llama_pos>::max(); |
| 223 | } |
| 224 | |
| 225 | if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) { |
| 226 | auto & tail_src = cells[seq_id_src]; |
| 227 | auto & tail_dst = cells[seq_id_dst]; |
| 228 | if (tail_dst.tail >= 0) { |
| 229 | // clear destination seq_id if it wasn't empty |
| 230 | auto & cell_dst = cells[tail_dst.tail]; |
| 231 | |
| 232 | cell_dst.seq_id.erase(x: seq_id_dst); |
| 233 | tail_dst.tail = -1; |
| 234 | if (cell_dst.seq_id.empty()) { |
| 235 | cell_dst.pos = -1; |
| 236 | cell_dst.src = -1; |
| 237 | used -= 1; |
| 238 | } |
| 239 | } |
| 240 | if (tail_src.tail >= 0) { |
| 241 | auto & cell_src = cells[tail_src.tail]; |
| 242 | |
| 243 | cell_src.seq_id.insert(x: seq_id_dst); |
| 244 | tail_dst.tail = tail_src.tail; |
| 245 | } |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | void llama_memory_recurrent::seq_keep(llama_seq_id seq_id) { |
| 250 | uint32_t new_head = size; |
| 251 | |
| 252 | for (uint32_t i = 0; i < size; ++i) { |
| 253 | if ((llama_seq_id) i != seq_id) { |
| 254 | cells[i].tail = -1; |
| 255 | } |
| 256 | |
| 257 | if (!cells[i].has_seq_id(id: seq_id)) { |
| 258 | if (cells[i].pos >= 0) { |
| 259 | used--; |
| 260 | } |
| 261 | |
| 262 | cells[i].pos = -1; |
| 263 | cells[i].src = -1; |
| 264 | cells[i].seq_id.clear(); |
| 265 | |
| 266 | if (new_head == size){ |
| 267 | new_head = i; |
| 268 | } |
| 269 | } else { |
| 270 | cells[i].seq_id.clear(); |
| 271 | cells[i].seq_id.insert(x: seq_id); |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | // If we freed up a slot, set head to it so searching can start there. |
| 276 | if (new_head != size && new_head < head) { |
| 277 | head = new_head; |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | void llama_memory_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) { |
| 282 | if (shift == 0) { |
| 283 | return; |
| 284 | } |
| 285 | |
| 286 | if (p0 < 0) { |
| 287 | p0 = 0; |
| 288 | } |
| 289 | |
| 290 | if (p1 < 0) { |
| 291 | p1 = std::numeric_limits<llama_pos>::max(); |
| 292 | } |
| 293 | |
| 294 | // If there is no range then return early to avoid looping over the |
| 295 | if (p0 == p1) { |
| 296 | return; |
| 297 | } |
| 298 | |
| 299 | // for Mamba-like or RWKV models, only the pos needs to be shifted |
| 300 | if (0 <= seq_id && seq_id < (int64_t) size) { |
| 301 | const int32_t tail_id = cells[seq_id].tail; |
| 302 | if (tail_id >= 0) { |
| 303 | auto & cell = cells[tail_id]; |
| 304 | if (cell.has_seq_id(id: seq_id) && p0 <= cell.pos && cell.pos < p1) { |
| 305 | cell.pos += shift; |
| 306 | } |
| 307 | } |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | void llama_memory_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { |
| 312 | if (d == 1) { |
| 313 | return; |
| 314 | } |
| 315 | |
| 316 | if (p0 < 0) { |
| 317 | p0 = 0; |
| 318 | } |
| 319 | |
| 320 | if (p1 < 0) { |
| 321 | p1 = std::numeric_limits<llama_pos>::max(); |
| 322 | } |
| 323 | |
| 324 | // If there is no range then return early to avoid looping over the cache. |
| 325 | if (p0 == p1) { |
| 326 | return; |
| 327 | } |
| 328 | |
| 329 | // for Mamba-like or RWKV models, only the pos needs to be changed |
| 330 | if (0 <= seq_id && seq_id < (int64_t) size) { |
| 331 | const int32_t tail_id = cells[seq_id].tail; |
| 332 | if (tail_id >= 0) { |
| 333 | auto & cell = cells[tail_id]; |
| 334 | if (cell.has_seq_id(id: seq_id) && p0 <= cell.pos && cell.pos < p1) { |
| 335 | cell.pos /= d; |
| 336 | } |
| 337 | } |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | llama_pos llama_memory_recurrent::seq_pos_min(llama_seq_id seq_id) const { |
| 342 | llama_pos result = std::numeric_limits<llama_pos>::max(); |
| 343 | |
| 344 | for (uint32_t i = 0; i < size; ++i) { |
| 345 | if (cells[i].has_seq_id(id: seq_id)) { |
| 346 | result = std::min(a: result, b: cells[i].pos); |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | if (result == std::numeric_limits<llama_pos>::max()) { |
| 351 | result = -1; |
| 352 | } |
| 353 | |
| 354 | return result; |
| 355 | } |
| 356 | |
| 357 | llama_pos llama_memory_recurrent::seq_pos_max(llama_seq_id seq_id) const { |
| 358 | llama_pos result = -1; |
| 359 | |
| 360 | for (uint32_t i = 0; i < size; ++i) { |
| 361 | if (cells[i].has_seq_id(id: seq_id)) { |
| 362 | result = std::max(a: result, b: cells[i].pos); |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | return result; |
| 367 | } |
| 368 | |
| 369 | std::map<ggml_backend_buffer_type_t, size_t> llama_memory_recurrent::memory_breakdown() const { |
| 370 | std::map<ggml_backend_buffer_type_t, size_t> ret; |
| 371 | for (const auto & [_, buf] : ctxs_bufs) { |
| 372 | ret[ggml_backend_buffer_get_type(buffer: buf.get())] += ggml_backend_buffer_get_size(buffer: buf.get()); |
| 373 | } |
| 374 | return ret; |
| 375 | } |
| 376 | |
| 377 | llama_memory_context_ptr llama_memory_recurrent::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) { |
| 378 | do { |
| 379 | balloc.split_reset(); |
| 380 | |
| 381 | std::vector<llama_ubatch> ubatches; |
| 382 | while (true) { |
| 383 | llama_ubatch ubatch; |
| 384 | |
| 385 | if (embd_all) { |
| 386 | // if all tokens are output, split by sequence |
| 387 | ubatch = balloc.split_seq(n_ubatch); |
| 388 | } else { |
| 389 | // TODO: non-sequential equal split can be done if using unified KV cache |
| 390 | // for simplicity, we always use sequential equal split for now |
| 391 | ubatch = balloc.split_equal(n_ubatch, sequential: true); |
| 392 | } |
| 393 | |
| 394 | if (ubatch.n_tokens == 0) { |
| 395 | break; |
| 396 | } |
| 397 | |
| 398 | ubatches.push_back(x: std::move(ubatch)); // NOLINT |
| 399 | } |
| 400 | |
| 401 | if (balloc.get_n_used() < balloc.get_n_tokens()) { |
| 402 | // failed to find a suitable split |
| 403 | break; |
| 404 | } |
| 405 | |
| 406 | if (!prepare(ubatches)) { |
| 407 | break; |
| 408 | } |
| 409 | |
| 410 | return std::make_unique<llama_memory_recurrent_context>(args: this, args: std::move(ubatches)); |
| 411 | } while (false); |
| 412 | |
| 413 | return std::make_unique<llama_memory_recurrent_context>(args: LLAMA_MEMORY_STATUS_FAILED_PREPARE); |
| 414 | } |
| 415 | |
| 416 | llama_memory_context_ptr llama_memory_recurrent::init_full() { |
| 417 | return std::make_unique<llama_memory_recurrent_context>(args: this); |
| 418 | } |
| 419 | |
| 420 | llama_memory_context_ptr llama_memory_recurrent::init_update(llama_context * lctx, bool optimize) { |
| 421 | GGML_UNUSED(lctx); |
| 422 | GGML_UNUSED(optimize); |
| 423 | |
| 424 | return std::make_unique<llama_memory_recurrent_context>(args: LLAMA_MEMORY_STATUS_NO_UPDATE); |
| 425 | } |
| 426 | |
| 427 | bool llama_memory_recurrent::prepare(const std::vector<llama_ubatch> & ubatches) { |
| 428 | // simply remember the full state because it is very small for this type of cache |
| 429 | // TODO: optimize |
| 430 | auto org_cells = cells; |
| 431 | auto org_used = used; |
| 432 | auto org_head = head; |
| 433 | |
| 434 | bool success = true; |
| 435 | |
| 436 | for (const auto & ubatch : ubatches) { |
| 437 | if (!find_slot(ubatch)) { |
| 438 | success = false; |
| 439 | break; |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | // restore the original state |
| 444 | cells = std::move(org_cells); |
| 445 | used = org_used; |
| 446 | head = org_head; |
| 447 | |
| 448 | return success; |
| 449 | } |
| 450 | |
| 451 | bool llama_memory_recurrent::find_slot(const llama_ubatch & ubatch) { |
| 452 | const uint32_t n_seq_tokens = ubatch.n_seq_tokens; |
| 453 | const uint32_t n_seqs = ubatch.n_seqs; |
| 454 | |
| 455 | // if we have enough unused cells before the current head -> |
| 456 | // better to start searching from the beginning of the cache, hoping to fill it |
| 457 | if (head > used + 2*n_seqs) { |
| 458 | head = 0; |
| 459 | } |
| 460 | |
| 461 | // For recurrent state architectures (like Mamba or RWKV), |
| 462 | // each cache cell can store the state for a whole sequence. |
| 463 | // A slot should be always be contiguous. |
| 464 | |
| 465 | // can only process batches with an equal number of new tokens in each sequence |
| 466 | GGML_ASSERT(ubatch.equal_seqs()); |
| 467 | |
| 468 | int32_t min = size - 1; |
| 469 | int32_t max = 0; |
| 470 | |
| 471 | // everything should fit if all seq_ids are smaller than the max |
| 472 | for (uint32_t s = 0; s < n_seqs; ++s) { |
| 473 | const uint32_t i = s*n_seq_tokens; // first token of sequence set s |
| 474 | const uint32_t n_seq_id = ubatch.n_seq_id[i]; |
| 475 | |
| 476 | for (uint32_t j = 0; j < n_seq_id; ++j) { |
| 477 | const llama_seq_id seq_id = ubatch.seq_id[i][j]; |
| 478 | |
| 479 | if (seq_id < 0 || (uint32_t) seq_id >= size) { |
| 480 | // too big seq_id |
| 481 | // TODO: would it be possible to resize the cache instead? |
| 482 | LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%u Try using a bigger --parallel value\n" , __func__, seq_id, n_seq_max); |
| 483 | return false; |
| 484 | } |
| 485 | if (j > 0) { |
| 486 | auto & seq = cells[seq_id]; |
| 487 | if (seq.tail >= 0) { |
| 488 | auto & cell = cells[seq.tail]; |
| 489 | // clear cells from seq_ids that become shared |
| 490 | // (should not normally happen, but let's handle it anyway) |
| 491 | cell.seq_id.erase(x: seq_id); |
| 492 | seq.tail = -1; |
| 493 | if (cell.seq_id.empty()) { |
| 494 | cell.pos = -1; |
| 495 | cell.src = -1; |
| 496 | used -= 1; |
| 497 | } |
| 498 | } |
| 499 | } |
| 500 | } |
| 501 | } |
| 502 | |
| 503 | #ifndef NDEBUG |
| 504 | { |
| 505 | std::vector<int32_t> tails_verif; |
| 506 | tails_verif.assign(size, -1); |
| 507 | for (uint32_t i = 0; i < size; ++i) { |
| 508 | auto & cell = cells[i]; |
| 509 | for (llama_seq_id seq_id : cell.seq_id) { |
| 510 | if (tails_verif[seq_id] != -1) { |
| 511 | LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n" , __func__, seq_id, i, tails_verif[seq_id]); |
| 512 | } |
| 513 | tails_verif[seq_id] = i; |
| 514 | } |
| 515 | } |
| 516 | for (uint32_t i = 0; i < size; ++i) { |
| 517 | if (tails_verif[i] != cells[i].tail) { |
| 518 | LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n" , __func__, i, cells[i].tail, tails_verif[i]); |
| 519 | } |
| 520 | } |
| 521 | } |
| 522 | #endif |
| 523 | |
| 524 | // find next empty cell |
| 525 | uint32_t next_empty_cell = head; |
| 526 | |
| 527 | for (uint32_t i = 0; i < size; ++i) { |
| 528 | if (next_empty_cell >= size) { next_empty_cell -= size; } |
| 529 | auto & cell = cells[next_empty_cell]; |
| 530 | if (cell.is_empty()) { break; } |
| 531 | next_empty_cell += 1; |
| 532 | } |
| 533 | |
| 534 | // find usable cell range |
| 535 | for (uint32_t s = 0; s < n_seqs; ++s) { |
| 536 | const uint32_t i = s*n_seq_tokens; |
| 537 | const llama_seq_id seq_id = ubatch.seq_id[i][0]; |
| 538 | auto & seq_meta = cells[seq_id]; |
| 539 | bool has_cell = false; |
| 540 | if (seq_meta.tail >= 0) { |
| 541 | auto & cell = cells[seq_meta.tail]; |
| 542 | GGML_ASSERT(cell.has_seq_id(seq_id)); |
| 543 | // does this seq_id "own" the cell? |
| 544 | if (cell.seq_id.size() == 1) { has_cell = true; } |
| 545 | } |
| 546 | if (!has_cell) { |
| 547 | auto & empty_cell = cells[next_empty_cell]; |
| 548 | GGML_ASSERT(empty_cell.is_empty()); |
| 549 | // copy old tail into the empty cell |
| 550 | if (seq_meta.tail >= 0) { |
| 551 | auto & orig_cell = cells[seq_meta.tail]; |
| 552 | empty_cell.pos = orig_cell.pos; |
| 553 | empty_cell.src = orig_cell.src; |
| 554 | orig_cell.seq_id.erase(x: seq_id); |
| 555 | empty_cell.seq_id.insert(x: seq_id); // will be overwritten |
| 556 | GGML_ASSERT(!orig_cell.is_empty()); // has at least one remaining seq_id |
| 557 | } |
| 558 | seq_meta.tail = next_empty_cell; |
| 559 | // find next empty cell |
| 560 | if (s + 1 < n_seqs) { |
| 561 | for (uint32_t j = 0; j < size; ++j) { |
| 562 | next_empty_cell += 1; |
| 563 | if (next_empty_cell >= size) { next_empty_cell -= size; } |
| 564 | auto & cell = cells[next_empty_cell]; |
| 565 | if (cell.is_empty()) { break; } |
| 566 | } |
| 567 | } |
| 568 | } |
| 569 | if (min > seq_meta.tail) { min = seq_meta.tail; } |
| 570 | if (max < seq_meta.tail) { max = seq_meta.tail; } |
| 571 | } |
| 572 | |
| 573 | // gather and re-order |
| 574 | for (uint32_t s = 0; s < n_seqs; ++s) { |
| 575 | const uint32_t i = s*n_seq_tokens; |
| 576 | const int32_t dst_id = s + min; |
| 577 | const int32_t src_id = cells[ubatch.seq_id[i][0]].tail; |
| 578 | if (dst_id != src_id) { |
| 579 | auto & dst_cell = cells[dst_id]; |
| 580 | auto & src_cell = cells[src_id]; |
| 581 | |
| 582 | std::swap(a&: dst_cell.pos, b&: src_cell.pos); |
| 583 | std::swap(a&: dst_cell.src, b&: src_cell.src); |
| 584 | std::swap(x&: dst_cell.seq_id, y&: src_cell.seq_id); |
| 585 | |
| 586 | // swap tails |
| 587 | for (uint32_t j = 0; j < size; ++j) { |
| 588 | int32_t & tail = cells[j].tail; |
| 589 | if (tail == src_id) { |
| 590 | tail = dst_id; |
| 591 | } else if (tail == dst_id) { |
| 592 | tail = src_id; |
| 593 | } |
| 594 | } |
| 595 | } |
| 596 | } |
| 597 | |
| 598 | // update the pos of the used seqs |
| 599 | for (uint32_t s = 0; s < n_seqs; ++s) { |
| 600 | const uint32_t i = s*n_seq_tokens; |
| 601 | const llama_pos last_pos = ubatch.pos[i + n_seq_tokens - 1]; |
| 602 | const int32_t cell_id = s + min; |
| 603 | auto & cell = cells[cell_id]; |
| 604 | |
| 605 | if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) { |
| 606 | // What should happen when the pos backtracks or skips a value? |
| 607 | // Clearing the state mid-batch would require special-casing which isn't done. |
| 608 | LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n" , |
| 609 | __func__, last_pos, cell.pos, ubatch.seq_id[i][0], n_seq_tokens); |
| 610 | } |
| 611 | cell.pos = last_pos; |
| 612 | cell.seq_id.clear(); |
| 613 | for (int32_t j = 0; j < ubatch.n_seq_id[i]; ++j) { |
| 614 | const llama_seq_id seq_id = ubatch.seq_id[i][j]; |
| 615 | cell.seq_id.insert(x: seq_id); |
| 616 | cells[seq_id].tail = cell_id; |
| 617 | } |
| 618 | } |
| 619 | |
| 620 | // Find first cell without src refs, to use as the zero-ed state |
| 621 | { |
| 622 | // TODO: bake-in src refcounts in the cell metadata |
| 623 | std::vector<int32_t> refcounts(size, 0); |
| 624 | for (size_t i = 0; i < size; ++i) { |
| 625 | const int32_t src = cells[i].src; |
| 626 | if (src >= 0) { |
| 627 | refcounts[src] += 1; |
| 628 | } |
| 629 | } |
| 630 | |
| 631 | rs_z = -1; |
| 632 | for (int i = min; i <= max; ++i) { |
| 633 | if (refcounts[i] == 0) { |
| 634 | rs_z = i; |
| 635 | break; |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | for (int i = min; i <= max; ++i) { |
| 640 | if (cells[i].src < 0) { |
| 641 | GGML_ASSERT(rs_z >= 0); |
| 642 | cells[i].src0 = rs_z; |
| 643 | } else { |
| 644 | // Stage the source ids for all used cells to allow correct seq_* behavior |
| 645 | // and still make these values available when setting the inputs |
| 646 | cells[i].src0 = cells[i].src; |
| 647 | } |
| 648 | cells[i].src = i; // avoid moving or clearing twice |
| 649 | } |
| 650 | } |
| 651 | |
| 652 | // allow getting the range of used cells, from head to head + n |
| 653 | head = min; |
| 654 | n = max - min + 1; |
| 655 | used = std::count_if(first: cells.begin(), last: cells.end(), |
| 656 | pred: [](const mem_cell & cell){ return !cell.is_empty(); }); |
| 657 | |
| 658 | // sanity check |
| 659 | return n >= n_seqs; |
| 660 | } |
| 661 | |
| 662 | bool llama_memory_recurrent::get_can_shift() const { |
| 663 | // shifting the pos is trivial for recurrent models |
| 664 | return true; |
| 665 | } |
| 666 | |
| 667 | size_t llama_memory_recurrent::total_size() const { |
| 668 | size_t size = 0; |
| 669 | for (const auto & [_, buf] : ctxs_bufs) { |
| 670 | size += ggml_backend_buffer_get_size(buffer: buf.get()); |
| 671 | } |
| 672 | |
| 673 | return size; |
| 674 | } |
| 675 | |
| 676 | size_t llama_memory_recurrent::size_r_bytes() const { |
| 677 | size_t size_r_bytes = 0; |
| 678 | |
| 679 | for (const auto & r : r_l) { |
| 680 | if (r != nullptr) { |
| 681 | size_r_bytes += ggml_nbytes(tensor: r); |
| 682 | } |
| 683 | } |
| 684 | |
| 685 | return size_r_bytes; |
| 686 | } |
| 687 | |
| 688 | size_t llama_memory_recurrent::size_s_bytes() const { |
| 689 | size_t size_s_bytes = 0; |
| 690 | |
| 691 | for (const auto & s : s_l) { |
| 692 | if (s != nullptr) { |
| 693 | size_s_bytes += ggml_nbytes(tensor: s); |
| 694 | } |
| 695 | } |
| 696 | |
| 697 | return size_s_bytes; |
| 698 | } |
| 699 | |
| 700 | void llama_memory_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const { |
| 701 | GGML_UNUSED(flags); |
| 702 | |
| 703 | std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive |
| 704 | uint32_t cell_count = 0; |
| 705 | |
| 706 | // Count the number of cells with the specified seq_id |
| 707 | // Find all the ranges of cells with this seq id (or all, when -1) |
| 708 | uint32_t cell_range_begin = size; |
| 709 | for (uint32_t i = 0; i < size; ++i) { |
| 710 | const auto & cell = cells[i]; |
| 711 | if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(id: seq_id)) { |
| 712 | ++cell_count; |
| 713 | if (cell_range_begin == size) { |
| 714 | cell_range_begin = i; |
| 715 | } |
| 716 | } else { |
| 717 | if (cell_range_begin != size) { |
| 718 | cell_ranges.emplace_back(args&: cell_range_begin, args&: i); |
| 719 | cell_range_begin = size; |
| 720 | } |
| 721 | } |
| 722 | } |
| 723 | if (cell_range_begin != size) { |
| 724 | cell_ranges.emplace_back(args&: cell_range_begin, args: size); |
| 725 | } |
| 726 | |
| 727 | // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count |
| 728 | uint32_t cell_count_check = 0; |
| 729 | for (const auto & range : cell_ranges) { |
| 730 | cell_count_check += range.second - range.first; |
| 731 | } |
| 732 | GGML_ASSERT(cell_count == cell_count_check); |
| 733 | |
| 734 | io.write(src: &cell_count, size: sizeof(cell_count)); |
| 735 | |
| 736 | state_write_meta(io, cell_ranges, seq_id); |
| 737 | state_write_data(io, cell_ranges); |
| 738 | } |
| 739 | |
| 740 | void llama_memory_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) { |
| 741 | GGML_UNUSED(flags); |
| 742 | |
| 743 | uint32_t cell_count; |
| 744 | io.read_to(dst: &cell_count, size: sizeof(cell_count)); |
| 745 | |
| 746 | bool res = true; |
| 747 | |
| 748 | res = res && state_read_meta(io, cell_count, dest_seq_id: seq_id); |
| 749 | res = res && state_read_data(io, cell_count); |
| 750 | |
| 751 | if (!res) { |
| 752 | if (seq_id == -1) { |
| 753 | clear(data: true); |
| 754 | } else { |
| 755 | seq_rm(seq_id, p0: -1, p1: -1); |
| 756 | } |
| 757 | throw std::runtime_error("failed to restore kv cache" ); |
| 758 | } |
| 759 | } |
| 760 | |
| 761 | void llama_memory_recurrent::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const { |
| 762 | for (const auto & range : cell_ranges) { |
| 763 | for (uint32_t i = range.first; i < range.second; ++i) { |
| 764 | const auto & cell = cells[i]; |
| 765 | const llama_pos pos = cell.pos; |
| 766 | const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0; |
| 767 | |
| 768 | io.write(src: &pos, size: sizeof(pos)); |
| 769 | io.write(src: &n_seq_id, size: sizeof(n_seq_id)); |
| 770 | |
| 771 | if (n_seq_id) { |
| 772 | for (auto seq_id : cell.seq_id) { |
| 773 | io.write(src: &seq_id, size: sizeof(seq_id)); |
| 774 | } |
| 775 | } |
| 776 | } |
| 777 | } |
| 778 | } |
| 779 | |
| 780 | void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const { |
| 781 | const uint32_t s_trans = 0; |
| 782 | const uint32_t n_layer = hparams.n_layer; |
| 783 | |
| 784 | io.write(src: &s_trans, size: sizeof(s_trans)); |
| 785 | io.write(src: &n_layer, size: sizeof(n_layer)); |
| 786 | |
| 787 | std::vector<uint8_t> tmp_buf; |
| 788 | |
| 789 | // Iterate and write all the keys first, each row is a cell |
| 790 | // Get whole range at a time |
| 791 | for (uint32_t il = 0; il < n_layer; ++il) { |
| 792 | // skip null layers (read_data will handle this by checking "r_l" and "s_l" for null) |
| 793 | if (r_l[il] == nullptr) continue; |
| 794 | |
| 795 | // Write key type |
| 796 | const int32_t r_type_i = (int32_t)r_l[il]->type; |
| 797 | io.write(src: &r_type_i, size: sizeof(r_type_i)); |
| 798 | |
| 799 | // Write row size of key |
| 800 | const uint64_t r_size_row = ggml_row_size(type: r_l[il]->type, ne: hparams.n_embd_r()); |
| 801 | io.write(src: &r_size_row, size: sizeof(r_size_row)); |
| 802 | |
| 803 | // Read each range of cells of k_size length each into tmp_buf and write out |
| 804 | for (const auto & range : cell_ranges) { |
| 805 | const size_t range_size = range.second - range.first; |
| 806 | const size_t buf_size = range_size * r_size_row; |
| 807 | io.write_tensor(tensor: r_l[il], offset: range.first * r_size_row, size: buf_size); |
| 808 | } |
| 809 | } |
| 810 | |
| 811 | if (!s_trans) { |
| 812 | for (uint32_t il = 0; il < n_layer; ++il) { |
| 813 | // skip null layers (read_data will handle this by checking "r_l" and "s_l" for null) |
| 814 | if (s_l[il] == nullptr) continue; |
| 815 | |
| 816 | // Write value type |
| 817 | const int32_t s_type_i = (int32_t)s_l[il]->type; |
| 818 | io.write(src: &s_type_i, size: sizeof(s_type_i)); |
| 819 | |
| 820 | // Write row size of value |
| 821 | const uint64_t s_size_row = ggml_row_size(type: s_l[il]->type, ne: hparams.n_embd_s()); |
| 822 | io.write(src: &s_size_row, size: sizeof(s_size_row)); |
| 823 | |
| 824 | // Read each range of cells of s_size length each into tmp_buf and write out |
| 825 | for (const auto & range : cell_ranges) { |
| 826 | const size_t range_size = range.second - range.first; |
| 827 | const size_t buf_size = range_size * s_size_row; |
| 828 | io.write_tensor(tensor: s_l[il], offset: range.first * s_size_row, size: buf_size); |
| 829 | } |
| 830 | } |
| 831 | } else { |
| 832 | // When v is transposed, we also need the element size and get the element ranges from each row |
| 833 | const uint32_t mem_size = size; |
| 834 | for (uint32_t il = 0; il < n_layer; ++il) { |
| 835 | // skip null layers (read_data will handle this by checking "r_l" and "s_l" for null) |
| 836 | if (s_l[il] == nullptr) continue; |
| 837 | |
| 838 | const uint32_t n_embd_s = hparams.n_embd_s(); |
| 839 | |
| 840 | // Write value type |
| 841 | const int32_t s_type_i = (int32_t)s_l[il]->type; |
| 842 | io.write(src: &s_type_i, size: sizeof(s_type_i)); |
| 843 | |
| 844 | // Write element size |
| 845 | const uint32_t s_size_el = ggml_type_size(type: s_l[il]->type); |
| 846 | io.write(src: &s_size_el, size: sizeof(s_size_el)); |
| 847 | |
| 848 | // Write GQA embedding size |
| 849 | io.write(src: &n_embd_s, size: sizeof(n_embd_s)); |
| 850 | |
| 851 | // For each row, we get the element values of each cell |
| 852 | for (uint32_t j = 0; j < n_embd_s; ++j) { |
| 853 | // Read each range of cells of v_size_el length each into tmp_buf and write out |
| 854 | for (const auto & range : cell_ranges) { |
| 855 | const size_t range_size = range.second - range.first; |
| 856 | const size_t src_offset = (range.first + j * mem_size) * s_size_el; |
| 857 | const size_t buf_size = range_size * s_size_el; |
| 858 | io.write_tensor(tensor: s_l[il], offset: src_offset, size: buf_size); |
| 859 | } |
| 860 | } |
| 861 | } |
| 862 | } |
| 863 | } |
| 864 | |
| 865 | bool llama_memory_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) { |
| 866 | if (dest_seq_id != -1) { |
| 867 | // single sequence |
| 868 | seq_rm(seq_id: dest_seq_id, p0: -1, p1: -1); |
| 869 | |
| 870 | if (cell_count == 0) { |
| 871 | return true; |
| 872 | } |
| 873 | |
| 874 | llama_batch_allocr balloc(hparams.n_pos_per_embd()); |
| 875 | |
| 876 | llama_ubatch ubatch = balloc.ubatch_reserve(n_seq_tokens: cell_count, n_seqs: 1); |
| 877 | |
| 878 | for (uint32_t i = 0; i < cell_count; ++i) { |
| 879 | llama_pos pos; |
| 880 | uint32_t n_seq_id; |
| 881 | |
| 882 | io.read_to(dst: &pos, size: sizeof(pos)); |
| 883 | io.read_to(dst: &n_seq_id, size: sizeof(n_seq_id)); |
| 884 | |
| 885 | if (n_seq_id != 0) { |
| 886 | LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n" , __func__); |
| 887 | return false; |
| 888 | } |
| 889 | |
| 890 | ubatch.pos[i] = pos; |
| 891 | } |
| 892 | ubatch.n_seq_id[0] = 1; |
| 893 | ubatch.seq_id[0] = &dest_seq_id; |
| 894 | |
| 895 | if (!find_slot(ubatch)) { |
| 896 | LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n" , __func__); |
| 897 | return false; |
| 898 | } |
| 899 | |
| 900 | // DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values) |
| 901 | // Assume that this is one contiguous block of cells |
| 902 | GGML_ASSERT(head + cell_count <= size); |
| 903 | GGML_ASSERT(cells[head].pos == ubatch.pos[0]); |
| 904 | GGML_ASSERT(cells[head + cell_count - 1].pos == ubatch.pos[cell_count - 1]); |
| 905 | GGML_ASSERT(cells[head].has_seq_id(dest_seq_id)); |
| 906 | GGML_ASSERT(cells[head + cell_count - 1].has_seq_id(dest_seq_id)); |
| 907 | } else { |
| 908 | // whole KV cache restore |
| 909 | |
| 910 | if (cell_count > size) { |
| 911 | LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n" , __func__); |
| 912 | return false; |
| 913 | } |
| 914 | |
| 915 | clear(data: true); |
| 916 | |
| 917 | for (uint32_t i = 0; i < cell_count; ++i) { |
| 918 | auto & cell = cells[i]; |
| 919 | |
| 920 | llama_pos pos; |
| 921 | uint32_t n_seq_id; |
| 922 | |
| 923 | io.read_to(dst: &pos, size: sizeof(pos)); |
| 924 | io.read_to(dst: &n_seq_id, size: sizeof(n_seq_id)); |
| 925 | |
| 926 | cell.pos = pos; |
| 927 | |
| 928 | for (uint32_t j = 0; j < n_seq_id; ++j) { |
| 929 | llama_seq_id seq_id; |
| 930 | io.read_to(dst: &seq_id, size: sizeof(seq_id)); |
| 931 | |
| 932 | // TODO: llama_memory_recurrent should have a notion of max sequences |
| 933 | //if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) { |
| 934 | if (seq_id < 0) { |
| 935 | //LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx)); |
| 936 | LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, inf)\n" , __func__, seq_id); |
| 937 | return false; |
| 938 | } |
| 939 | |
| 940 | cell.seq_id.insert(x: seq_id); |
| 941 | |
| 942 | int32_t & tail = cells[seq_id].tail; |
| 943 | if (tail != -1) { |
| 944 | LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n" , __func__, seq_id, i, tail); |
| 945 | return false; |
| 946 | } |
| 947 | tail = i; |
| 948 | } |
| 949 | } |
| 950 | |
| 951 | head = 0; |
| 952 | used = cell_count; |
| 953 | } |
| 954 | |
| 955 | for (uint32_t i = 0; i < cell_count; ++i) { |
| 956 | uint32_t cell_id = head + i; |
| 957 | // make sure the recurrent states will keep their restored state |
| 958 | cells[cell_id].src = cell_id; |
| 959 | } |
| 960 | |
| 961 | return true; |
| 962 | } |
| 963 | |
| 964 | bool llama_memory_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell_count) { |
| 965 | uint32_t s_trans; |
| 966 | uint32_t n_layer; |
| 967 | io.read_to(dst: &s_trans, size: sizeof(s_trans)); |
| 968 | io.read_to(dst: &n_layer, size: sizeof(n_layer)); |
| 969 | |
| 970 | if (n_layer != hparams.n_layer) { |
| 971 | LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n" , __func__, n_layer, hparams.n_layer); |
| 972 | return false; |
| 973 | } |
| 974 | if (cell_count > size) { |
| 975 | LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n" , __func__, cell_count, size); |
| 976 | return false; |
| 977 | } |
| 978 | if (false != (bool) s_trans) { |
| 979 | LLAMA_LOG_ERROR("%s: incompatible s transposition\n" , __func__); |
| 980 | return false; |
| 981 | } |
| 982 | |
| 983 | // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block |
| 984 | for (uint32_t il = 0; il < n_layer; ++il) { |
| 985 | // skip null layers |
| 986 | if (r_l[il] == nullptr) continue; |
| 987 | |
| 988 | // Read type of key |
| 989 | int32_t r_type_i_ref; |
| 990 | io.read_to(dst: &r_type_i_ref, size: sizeof(r_type_i_ref)); |
| 991 | const int32_t r_type_i = (int32_t) r_l[il]->type; |
| 992 | if (r_type_i != r_type_i_ref) { |
| 993 | LLAMA_LOG_ERROR("%s: mismatched r type (%d != %d, layer %d)\n" , __func__, r_type_i, r_type_i_ref, il); |
| 994 | return false; |
| 995 | } |
| 996 | |
| 997 | // Read row size of key |
| 998 | uint64_t r_size_row_ref; |
| 999 | io.read_to(dst: &r_size_row_ref, size: sizeof(r_size_row_ref)); |
| 1000 | const size_t r_size_row = ggml_row_size(type: r_l[il]->type, ne: hparams.n_embd_r()); |
| 1001 | if (r_size_row != r_size_row_ref) { |
| 1002 | LLAMA_LOG_ERROR("%s: mismatched r row size (%zu != %zu, layer %d)\n" , __func__, r_size_row, (size_t) r_size_row_ref, il); |
| 1003 | return false; |
| 1004 | } |
| 1005 | |
| 1006 | if (cell_count) { |
| 1007 | // Read and set the keys for the whole cell range |
| 1008 | ggml_backend_tensor_set(tensor: r_l[il], data: io.read(size: cell_count * r_size_row), offset: head * r_size_row, size: cell_count * r_size_row); |
| 1009 | } |
| 1010 | } |
| 1011 | |
| 1012 | if (!s_trans) { |
| 1013 | for (uint32_t il = 0; il < n_layer; ++il) { |
| 1014 | // skip null layers |
| 1015 | if (s_l[il] == nullptr) continue; |
| 1016 | |
| 1017 | // Read type of value |
| 1018 | int32_t s_type_i_ref; |
| 1019 | io.read_to(dst: &s_type_i_ref, size: sizeof(s_type_i_ref)); |
| 1020 | const int32_t s_type_i = (int32_t)s_l[il]->type; |
| 1021 | |
| 1022 | if (s_type_i != s_type_i_ref) { |
| 1023 | LLAMA_LOG_ERROR("%s: mismatched s type (%d != %d, layer %d)\n" , __func__, s_type_i, s_type_i_ref, il); |
| 1024 | return false; |
| 1025 | } |
| 1026 | |
| 1027 | // Read row size of value |
| 1028 | uint64_t s_size_row_ref; |
| 1029 | io.read_to(dst: &s_size_row_ref, size: sizeof(s_size_row_ref)); |
| 1030 | const size_t s_size_row = ggml_row_size(type: s_l[il]->type, ne: hparams.n_embd_s()); |
| 1031 | if (s_size_row != s_size_row_ref) { |
| 1032 | LLAMA_LOG_ERROR("%s: mismatched s row size (%zu != %zu, layer %d)\n" , __func__, s_size_row, (size_t) s_size_row_ref, il); |
| 1033 | return false; |
| 1034 | } |
| 1035 | |
| 1036 | if (cell_count) { |
| 1037 | // Read and set the values for the whole cell range |
| 1038 | ggml_backend_tensor_set(tensor: s_l[il], data: io.read(size: cell_count * s_size_row), offset: head * s_size_row, size: cell_count * s_size_row); |
| 1039 | } |
| 1040 | } |
| 1041 | } else { |
| 1042 | // For each layer, read the values for each cell (transposed) |
| 1043 | for (uint32_t il = 0; il < n_layer; ++il) { |
| 1044 | // skip null layers |
| 1045 | if (s_l[il] == nullptr) continue; |
| 1046 | |
| 1047 | const uint32_t n_embd_s = hparams.n_embd_s(); |
| 1048 | |
| 1049 | // Read type of value |
| 1050 | int32_t s_type_i_ref; |
| 1051 | io.read_to(dst: &s_type_i_ref, size: sizeof(s_type_i_ref)); |
| 1052 | const int32_t s_type_i = (int32_t)s_l[il]->type; |
| 1053 | if (s_type_i != s_type_i_ref) { |
| 1054 | LLAMA_LOG_ERROR("%s: mismatched s type (%d != %d, layer %d)\n" , __func__, s_type_i, s_type_i_ref, il); |
| 1055 | return false; |
| 1056 | } |
| 1057 | |
| 1058 | // Read element size of value |
| 1059 | uint32_t s_size_el_ref; |
| 1060 | io.read_to(dst: &s_size_el_ref, size: sizeof(s_size_el_ref)); |
| 1061 | const size_t s_size_el = ggml_type_size(type: s_l[il]->type); |
| 1062 | if (s_size_el != s_size_el_ref) { |
| 1063 | LLAMA_LOG_ERROR("%s: mismatched s element size (%zu != %zu, layer %d)\n" , __func__, s_size_el, (size_t) s_size_el_ref, il); |
| 1064 | return false; |
| 1065 | } |
| 1066 | |
| 1067 | // Read state embedding size |
| 1068 | uint32_t n_embd_s_ref; |
| 1069 | io.read_to(dst: &n_embd_s_ref, size: sizeof(n_embd_s_ref)); |
| 1070 | if (n_embd_s != n_embd_s_ref) { |
| 1071 | LLAMA_LOG_ERROR("%s: mismatched s embedding size (%u != %u, layer %d)\n" , __func__, n_embd_s, n_embd_s_ref, il); |
| 1072 | return false; |
| 1073 | } |
| 1074 | |
| 1075 | if (cell_count) { |
| 1076 | // For each row in the transposed matrix, read the values for the whole cell range |
| 1077 | for (uint32_t j = 0; j < n_embd_s; ++j) { |
| 1078 | const size_t dst_offset = (head + j * size) * s_size_el; |
| 1079 | ggml_backend_tensor_set(tensor: s_l[il], data: io.read(size: cell_count * s_size_el), offset: dst_offset, size: cell_count * s_size_el); |
| 1080 | } |
| 1081 | } |
| 1082 | } |
| 1083 | } |
| 1084 | |
| 1085 | return true; |
| 1086 | } |
| 1087 | |
| 1088 | // |
| 1089 | // llama_memory_recurrent_context |
| 1090 | // |
| 1091 | |
| 1092 | llama_memory_recurrent_context::llama_memory_recurrent_context(llama_memory_status status) : status(status) {} |
| 1093 | |
| 1094 | llama_memory_recurrent_context::llama_memory_recurrent_context( |
| 1095 | llama_memory_recurrent * mem) : status(LLAMA_MEMORY_STATUS_SUCCESS), mem(mem), is_full(true) { |
| 1096 | } |
| 1097 | |
| 1098 | llama_memory_recurrent_context::llama_memory_recurrent_context( |
| 1099 | llama_memory_recurrent * mem, |
| 1100 | std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), mem(mem), ubatches(std::move(ubatches)) {} |
| 1101 | |
| 1102 | llama_memory_recurrent_context::~llama_memory_recurrent_context() = default; |
| 1103 | |
| 1104 | bool llama_memory_recurrent_context::next() { |
| 1105 | assert(status == LLAMA_MEMORY_STATUS_SUCCESS); |
| 1106 | |
| 1107 | if (++i_next >= ubatches.size()) { |
| 1108 | return false; |
| 1109 | } |
| 1110 | |
| 1111 | return true; |
| 1112 | } |
| 1113 | |
| 1114 | bool llama_memory_recurrent_context::apply() { |
| 1115 | assert(!llama_memory_status_is_fail(status)); |
| 1116 | |
| 1117 | // no ubatches -> this is an update |
| 1118 | if (ubatches.empty()) { |
| 1119 | // recurrent cache never performs updates |
| 1120 | assert(status == LLAMA_MEMORY_STATUS_NO_UPDATE); |
| 1121 | |
| 1122 | return true; |
| 1123 | } |
| 1124 | |
| 1125 | mem->find_slot(ubatch: ubatches[i_next]); |
| 1126 | |
| 1127 | return true; |
| 1128 | } |
| 1129 | |
| 1130 | llama_memory_status llama_memory_recurrent_context::get_status() const { |
| 1131 | return status; |
| 1132 | } |
| 1133 | |
| 1134 | const llama_ubatch & llama_memory_recurrent_context::get_ubatch() const { |
| 1135 | assert(status == LLAMA_MEMORY_STATUS_SUCCESS); |
| 1136 | |
| 1137 | return ubatches[i_next]; |
| 1138 | } |
| 1139 | |
| 1140 | uint32_t llama_memory_recurrent_context::get_n_rs() const { |
| 1141 | return is_full ? mem->size : mem->n; |
| 1142 | } |
| 1143 | |
| 1144 | uint32_t llama_memory_recurrent_context::get_head() const { |
| 1145 | return is_full ? 0 : mem->head; |
| 1146 | } |
| 1147 | |
| 1148 | int32_t llama_memory_recurrent_context::get_rs_z() const { |
| 1149 | return is_full ? 0 : mem->rs_z; |
| 1150 | } |
| 1151 | |
| 1152 | uint32_t llama_memory_recurrent_context::get_size() const { |
| 1153 | return mem->size; |
| 1154 | } |
| 1155 | |
| 1156 | ggml_tensor * llama_memory_recurrent_context::get_r_l(int32_t il) const { |
| 1157 | return mem->r_l[il]; |
| 1158 | } |
| 1159 | |
| 1160 | ggml_tensor * llama_memory_recurrent_context::get_s_l(int32_t il) const { |
| 1161 | return mem->s_l[il]; |
| 1162 | } |
| 1163 | |
| 1164 | int32_t llama_memory_recurrent_context::s_copy(int i) const { |
| 1165 | return mem->cells[i + mem->head].src0; |
| 1166 | } |
| 1167 | |