1#pragma once
2
3#include "llama.h"
4
5#include "llama-impl.h"
6#include "llama-arch.h"
7#include "llama-mmap.h"
8
9#include "ggml-cpp.h"
10
11#include <cstddef>
12#include <map>
13#include <stdexcept>
14#include <unordered_map>
15
16using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
17
18enum llama_fver {
19 GGUF_FILE_VERSION_V1 = 1,
20 GGUF_FILE_VERSION_V2 = 2,
21 GGUF_FILE_VERSION_V3 = 3,
22};
23
24const char * llama_file_version_name(llama_fver version);
25
26struct llama_model_loader {
27 // Holds information on a model weight
28 struct llama_tensor_weight {
29 uint16_t idx; // source file index
30 size_t offs; // tensor data offset in the original file
31
32 ggml_tensor * tensor;
33
34 llama_tensor_weight(const llama_file * file, uint16_t idx, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
35 const int tensor_idx = gguf_find_tensor(ctx: gguf_ctx, name: ggml_get_name(tensor));
36 if (tensor_idx < 0) {
37 throw std::runtime_error(format(fmt: "tensor '%s' not found in the model", ggml_get_name(tensor)));
38 }
39
40 offs = gguf_get_data_offset(ctx: gguf_ctx) + gguf_get_tensor_offset(ctx: gguf_ctx, tensor_id: tensor_idx);
41 if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size()) {
42 throw std::runtime_error(format(fmt: "tensor '%s' data is not within the file bounds, model is corrupted or incomplete", ggml_get_name(tensor)));
43 }
44 }
45 };
46
47 // custom comparator to sort weights more nicely by layer
48 struct weight_name_comparer {
49 bool operator()(const std::string & a, const std::string & b) const {
50 int a_layer = -1;
51 int b_layer = -1;
52 sscanf(s: a.c_str(), format: "blk.%d.", &a_layer);
53 sscanf(s: b.c_str(), format: "blk.%d.", &b_layer);
54 if (a_layer != b_layer) {
55 return a_layer < b_layer;
56 }
57 return a < b;
58 }
59 };
60
61 static const int TENSOR_NOT_REQUIRED = 1 << 0;
62 static const int TENSOR_DUPLICATED = 1 << 1;
63 static const int TENSOR_SKIP = 1 << 2;
64
65 int n_kv = 0;
66 int n_tensors = 0;
67 int n_created = 0;
68
69 uint64_t n_elements = 0;
70 size_t n_bytes = 0;
71
72 bool use_mmap = false;
73 bool check_tensors;
74
75 llama_files files;
76 llama_ftype ftype;
77 llama_fver fver;
78
79 llama_mmaps mappings;
80
81 std::map<std::string, llama_tensor_weight, weight_name_comparer> weights_map;
82 std::unordered_map<std::string, llama_model_kv_override> kv_overrides;
83 const llama_model_tensor_buft_override * tensor_buft_overrides;
84
85 gguf_context_ptr meta;
86 std::vector<ggml_context_ptr> contexts;
87
88 std::string arch_name;
89 LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
90
91 size_t size_done = 0;
92 size_t size_data = 0;
93 std::vector<std::pair<size_t, size_t>> mmaps_used;
94
95 llama_model_loader(
96 const std::string & fname,
97 std::vector<std::string> & splits, // optional, only need if the split does not follow naming scheme
98 bool use_mmap,
99 bool check_tensors,
100 const llama_model_kv_override * param_overrides_p,
101 const llama_model_tensor_buft_override * param_tensor_buft_overrides_p);
102
103 template<typename T>
104 typename std::enable_if<std::is_integral<T>::value, bool>::type
105 get_arr_n(const std::string & key, T & result, bool required = true);
106
107 template<typename T>
108 typename std::enable_if<std::is_integral<T>::value, bool>::type
109 get_arr_n(enum llm_kv kid, T & result, bool required = true);
110
111 template<typename T>
112 bool get_arr(const std::string & key, std::vector<T> & result, bool required = true);
113
114 template<typename T, size_t N_MAX>
115 bool get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required = true);
116
117 template<typename T>
118 bool get_arr(enum llm_kv kid, T & result, bool required = true);
119
120 template<typename T>
121 bool get_key(const std::string & key, T & result, bool required = true);
122
123 template<typename T>
124 bool get_key(enum llm_kv kid, T & result, bool required = true);
125
126 template<typename T, size_t N_MAX>
127 bool get_key_or_arr(const std::string & key, std::array<T, N_MAX> & result, uint32_t n, bool required = true);
128
129 template<typename T>
130 bool get_key_or_arr(enum llm_kv kid, T & result, uint32_t n, bool required = true);
131
132 std::string get_arch_name() const;
133
134 enum llm_arch get_arch() const;
135
136 const llama_tensor_weight * get_weight(const char * name) const;
137
138 const llama_tensor_weight & require_weight(const char * name) const;
139
140 struct ggml_tensor * get_tensor_meta(const char * name) const;
141
142 struct ggml_tensor * require_tensor_meta(const std::string & name) const;
143
144 const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const;
145
146 struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::initializer_list<int64_t> & ne, int flags = 0);
147
148 struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::initializer_list<int64_t> & ne, size_t offset, bool required = true);
149
150 void done_getting_tensors() const;
151
152 void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr);
153
154 void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const;
155
156 // for backwards compatibility, does not support ggml-backend
157 void load_data_for(struct ggml_tensor * cur) const;
158
159 // Returns false if cancelled by progress_callback
160 bool load_all_data(
161 struct ggml_context * ctx,
162 llama_buf_map & bufs,
163 llama_mlocks * lmlocks,
164 llama_progress_callback progress_callback,
165 void * progress_callback_user_data);
166
167 std::string ftype_name() const;
168
169 void print_info() const;
170};
171