| 1 | #include "models.h" |
| 2 | |
| 3 | |
| 4 | |
| 5 | llm_build_bert::llm_build_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
| 6 | const int64_t n_embd_head = hparams.n_embd_head_v; |
| 7 | const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); |
| 8 | |
| 9 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
| 10 | |
| 11 | ggml_tensor * cur; |
| 12 | ggml_tensor * inpL; |
| 13 | ggml_tensor * inp_pos = nullptr; |
| 14 | |
| 15 | if (model.arch != LLM_ARCH_JINA_BERT_V2) { |
| 16 | inp_pos = build_inp_pos(); |
| 17 | } |
| 18 | |
| 19 | // construct input embeddings (token, type, position) |
| 20 | inpL = build_inp_embd(tok_embd: model.tok_embd); |
| 21 | |
| 22 | // token types are hardcoded to zero ("Sentence A") |
| 23 | if (model.type_embd) { |
| 24 | ggml_tensor * type_row0 = ggml_view_1d(ctx: ctx0, a: model.type_embd, ne0: n_embd, offset: 0); |
| 25 | inpL = ggml_add(ctx: ctx0, a: inpL, b: type_row0); |
| 26 | } |
| 27 | if (model.arch == LLM_ARCH_BERT) { |
| 28 | inpL = ggml_add(ctx: ctx0, a: ggml_get_rows(ctx: ctx0, a: model.pos_embd, b: inp_pos), b: inpL); |
| 29 | } |
| 30 | cb(cur: inpL, name: "inp_embd" , il: -1); |
| 31 | |
| 32 | // embed layer norm |
| 33 | inpL = build_norm(cur: inpL, mw: model.tok_norm, mb: model.tok_norm_b, type: LLM_NORM, il: -1); |
| 34 | cb(cur: inpL, name: "inp_norm" , il: -1); |
| 35 | |
| 36 | auto * inp_attn = build_attn_inp_no_cache(); |
| 37 | |
| 38 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
| 39 | |
| 40 | for (int il = 0; il < n_layer; ++il) { |
| 41 | ggml_tensor * cur = inpL; |
| 42 | |
| 43 | { |
| 44 | ggml_tensor * Qcur; |
| 45 | ggml_tensor * Kcur; |
| 46 | ggml_tensor * Vcur; |
| 47 | |
| 48 | // self-attention |
| 49 | if (model.layers[il].wqkv) { |
| 50 | cur = build_lora_mm(w: model.layers[il].wqkv, cur); |
| 51 | cb(cur, name: "wqkv" , il); |
| 52 | |
| 53 | if (model.layers[il].bqkv) { |
| 54 | cur = ggml_add(ctx: ctx0, a: cur, b: model.layers[il].bqkv); |
| 55 | cb(cur, name: "bqkv" , il); |
| 56 | } |
| 57 | |
| 58 | Qcur = ggml_view_3d(ctx: ctx0, a: cur, ne0: n_embd_head, ne1: n_head, ne2: n_tokens, nb1: n_embd_head * sizeof(float), nb2: cur->nb[1], |
| 59 | offset: 0 * sizeof(float) * (n_embd)); |
| 60 | Kcur = ggml_view_3d(ctx: ctx0, a: cur, ne0: n_embd_head, ne1: n_head_kv, ne2: n_tokens, nb1: n_embd_head * sizeof(float), |
| 61 | nb2: cur->nb[1], offset: 1 * sizeof(float) * (n_embd)); |
| 62 | Vcur = ggml_view_3d(ctx: ctx0, a: cur, ne0: n_embd_head, ne1: n_head_kv, ne2: n_tokens, nb1: n_embd_head * sizeof(float), |
| 63 | nb2: cur->nb[1], offset: 1 * sizeof(float) * (n_embd + n_embd_gqa)); |
| 64 | } else { |
| 65 | Qcur = ggml_add(ctx: ctx0, a: build_lora_mm(w: model.layers[il].wq, cur), b: model.layers[il].bq); |
| 66 | Kcur = ggml_add(ctx: ctx0, a: build_lora_mm(w: model.layers[il].wk, cur), b: model.layers[il].bk); |
| 67 | Vcur = ggml_add(ctx: ctx0, a: build_lora_mm(w: model.layers[il].wv, cur), b: model.layers[il].bv); |
| 68 | |
| 69 | Qcur = ggml_reshape_3d(ctx: ctx0, a: Qcur, ne0: n_embd_head, ne1: n_head, ne2: n_tokens); |
| 70 | Kcur = ggml_reshape_3d(ctx: ctx0, a: Kcur, ne0: n_embd_head, ne1: n_head_kv, ne2: n_tokens); |
| 71 | Vcur = ggml_reshape_3d(ctx: ctx0, a: Vcur, ne0: n_embd_head, ne1: n_head_kv, ne2: n_tokens); |
| 72 | } |
| 73 | |
| 74 | if (model.layers[il].attn_q_norm) { |
| 75 | Qcur = ggml_reshape_2d(ctx: ctx0, a: Qcur, ne0: n_embd_head * n_head, ne1: n_tokens); |
| 76 | |
| 77 | Qcur = build_norm(cur: Qcur, mw: model.layers[il].attn_q_norm, mb: model.layers[il].attn_q_norm_b, type: LLM_NORM, il); |
| 78 | |
| 79 | Qcur = ggml_reshape_3d(ctx: ctx0, a: Qcur, ne0: n_embd_head, ne1: n_head, ne2: n_tokens); |
| 80 | } |
| 81 | |
| 82 | if (model.layers[il].attn_k_norm) { |
| 83 | Kcur = ggml_reshape_2d(ctx: ctx0, a: Kcur, ne0: n_embd_head * n_head_kv, ne1: n_tokens); |
| 84 | |
| 85 | Kcur = build_norm(cur: Kcur, mw: model.layers[il].attn_k_norm, mb: model.layers[il].attn_k_norm_b, type: LLM_NORM, il); |
| 86 | |
| 87 | Kcur = ggml_reshape_3d(ctx: ctx0, a: Kcur, ne0: n_embd_head, ne1: n_head_kv, ne2: n_tokens); |
| 88 | } |
| 89 | |
| 90 | // RoPE |
| 91 | if (model.arch == LLM_ARCH_NOMIC_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE || |
| 92 | model.arch == LLM_ARCH_JINA_BERT_V3) { |
| 93 | Qcur = ggml_rope_ext(ctx: ctx0, a: Qcur, b: inp_pos, c: nullptr, n_dims: n_rot, mode: rope_type, n_ctx_orig, freq_base, freq_scale, |
| 94 | ext_factor, attn_factor, beta_fast, beta_slow); |
| 95 | |
| 96 | Kcur = ggml_rope_ext(ctx: ctx0, a: Kcur, b: inp_pos, c: nullptr, n_dims: n_rot, mode: rope_type, n_ctx_orig, freq_base, freq_scale, |
| 97 | ext_factor, attn_factor, beta_fast, beta_slow); |
| 98 | } |
| 99 | |
| 100 | cb(cur: Qcur, name: "Qcur" , il); |
| 101 | cb(cur: Kcur, name: "Kcur" , il); |
| 102 | cb(cur: Vcur, name: "Vcur" , il); |
| 103 | |
| 104 | cur = build_attn(inp: inp_attn, |
| 105 | wo: model.layers[il].wo, wo_b: model.layers[il].bo, |
| 106 | q_cur: Qcur, k_cur: Kcur, v_cur: Vcur, kq_b: nullptr, sinks: nullptr, v_mla: nullptr, kq_scale: 1.0f / sqrtf(x: float(n_embd_head)), il); |
| 107 | cb(cur, name: "kqv_out" , il); |
| 108 | } |
| 109 | |
| 110 | if (il == n_layer - 1 && inp_out_ids) { |
| 111 | cur = ggml_get_rows(ctx: ctx0, a: cur, b: inp_out_ids); |
| 112 | inpL = ggml_get_rows(ctx: ctx0, a: inpL, b: inp_out_ids); |
| 113 | } |
| 114 | |
| 115 | // re-add the layer input |
| 116 | cur = ggml_add(ctx: ctx0, a: cur, b: inpL); |
| 117 | |
| 118 | // attention layer norm |
| 119 | cur = build_norm(cur, mw: model.layers[il].attn_out_norm, mb: model.layers[il].attn_out_norm_b, type: LLM_NORM, il); |
| 120 | |
| 121 | if (model.layers[il].attn_norm_2 != nullptr) { |
| 122 | cur = ggml_add(ctx: ctx0, a: cur, b: inpL); // re-add the layer input |
| 123 | cur = build_norm(cur, mw: model.layers[il].attn_norm_2, mb: model.layers[il].attn_norm_2_b, type: LLM_NORM, il); |
| 124 | } |
| 125 | |
| 126 | ggml_tensor * ffn_inp = cur; |
| 127 | cb(cur: ffn_inp, name: "ffn_inp" , il); |
| 128 | |
| 129 | // feed-forward network |
| 130 | if (hparams.moe_every_n_layers > 0 && il % hparams.moe_every_n_layers == 1) { |
| 131 | // MoE branch |
| 132 | cur = build_moe_ffn(cur, gate_inp: model.layers[il].ffn_gate_inp, up_exps: model.layers[il].ffn_up_exps, gate_exps: nullptr, |
| 133 | down_exps: model.layers[il].ffn_down_exps, exp_probs_b: nullptr, n_expert: hparams.n_expert, n_expert_used: hparams.n_expert_used, |
| 134 | type_op: LLM_FFN_GELU, norm_w: false, scale_w: false, w_scale: 0.0f, gating_op: LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il); |
| 135 | cb(cur, name: "ffn_moe_out" , il); |
| 136 | } else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE || |
| 137 | model.arch == LLM_ARCH_JINA_BERT_V3) { |
| 138 | cur = build_ffn(cur, |
| 139 | up: model.layers[il].ffn_up, up_b: model.layers[il].ffn_up_b, NULL, |
| 140 | NULL, NULL, NULL, |
| 141 | down: model.layers[il].ffn_down, down_b: model.layers[il].ffn_down_b, NULL, NULL, |
| 142 | type_op: LLM_FFN_GELU, type_gate: LLM_FFN_SEQ, il); |
| 143 | cb(cur, name: "ffn_out" , il); |
| 144 | } else if (model.arch == LLM_ARCH_JINA_BERT_V2) { |
| 145 | cur = build_ffn(cur, |
| 146 | up: model.layers[il].ffn_up, NULL, NULL, |
| 147 | gate: model.layers[il].ffn_gate, NULL, NULL, |
| 148 | down: model.layers[il].ffn_down, down_b: model.layers[il].ffn_down_b, NULL, NULL, |
| 149 | type_op: model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_GEGLU, type_gate: LLM_FFN_PAR, il); |
| 150 | cb(cur, name: "ffn_out" , il); |
| 151 | } else { |
| 152 | cur = build_ffn(cur, |
| 153 | up: model.layers[il].ffn_up, NULL, NULL, |
| 154 | gate: model.layers[il].ffn_gate, NULL, NULL, |
| 155 | down: model.layers[il].ffn_down, NULL, NULL, |
| 156 | NULL, type_op: LLM_FFN_SILU, type_gate: LLM_FFN_PAR, il); |
| 157 | cb(cur, name: "ffn_out" , il); |
| 158 | } |
| 159 | |
| 160 | // attentions bypass the intermediate layer |
| 161 | cur = ggml_add(ctx: ctx0, a: cur, b: ffn_inp); |
| 162 | |
| 163 | // output layer norm |
| 164 | cur = build_norm(cur, mw: model.layers[il].layer_out_norm, mb: model.layers[il].layer_out_norm_b, type: LLM_NORM, il); |
| 165 | |
| 166 | // input for next layer |
| 167 | inpL = cur; |
| 168 | } |
| 169 | |
| 170 | cur = inpL; |
| 171 | |
| 172 | cb(cur, name: "result_embd" , il: -1); |
| 173 | res->t_embd = cur; |
| 174 | |
| 175 | ggml_build_forward_expand(cgraph: gf, tensor: cur); |
| 176 | } |
| 177 | |