| 1 | #include "models.h" |
| 2 | |
| 3 | #include <float.h> |
| 4 | |
| 5 | llm_build_chameleon::llm_build_chameleon(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
| 6 | const int64_t n_embd_head = hparams.n_embd_head_v; |
| 7 | |
| 8 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
| 9 | GGML_ASSERT(n_embd_head == hparams.n_rot); |
| 10 | |
| 11 | ggml_tensor * cur; |
| 12 | ggml_tensor * inpL; |
| 13 | |
| 14 | inpL = build_inp_embd(tok_embd: model.tok_embd); |
| 15 | |
| 16 | // inp_pos - contains the positions |
| 17 | ggml_tensor * inp_pos = build_inp_pos(); |
| 18 | |
| 19 | auto * inp_attn = build_attn_inp_kv(); |
| 20 | |
| 21 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
| 22 | |
| 23 | for (int il = 0; il < n_layer; ++il) { |
| 24 | ggml_tensor * inpSA = inpL; |
| 25 | |
| 26 | // norm |
| 27 | if (hparams.swin_norm) { |
| 28 | cur = inpL; |
| 29 | } else { |
| 30 | cur = build_norm(cur: inpL, |
| 31 | mw: model.layers[il].attn_norm, NULL, |
| 32 | type: LLM_NORM_RMS, il); |
| 33 | cb(cur, name: "attn_norm" , il); |
| 34 | } |
| 35 | |
| 36 | // self-attention |
| 37 | { |
| 38 | // compute Q and K and RoPE them |
| 39 | ggml_tensor * Qcur = build_lora_mm(w: model.layers[il].wq, cur); |
| 40 | cb(cur: Qcur, name: "Qcur" , il); |
| 41 | |
| 42 | ggml_tensor * Kcur = build_lora_mm(w: model.layers[il].wk, cur); |
| 43 | cb(cur: Kcur, name: "Kcur" , il); |
| 44 | |
| 45 | ggml_tensor * Vcur = build_lora_mm(w: model.layers[il].wv, cur); |
| 46 | cb(cur: Vcur, name: "Vcur" , il); |
| 47 | |
| 48 | if (model.layers[il].attn_q_norm) { |
| 49 | Qcur = ggml_view_3d(ctx: ctx0, a: Qcur, ne0: n_embd_head, ne1: n_head, ne2: n_tokens, |
| 50 | nb1: ggml_element_size(tensor: Qcur) * n_embd_head, |
| 51 | nb2: ggml_element_size(tensor: Qcur) * n_embd_head * n_head, |
| 52 | offset: 0); |
| 53 | cb(cur: Qcur, name: "Qcur" , il); |
| 54 | |
| 55 | Qcur = build_norm(cur: Qcur, |
| 56 | mw: model.layers[il].attn_q_norm, |
| 57 | mb: model.layers[il].attn_q_norm_b, |
| 58 | type: LLM_NORM, il); |
| 59 | cb(cur: Qcur, name: "Qcur" , il); |
| 60 | } |
| 61 | |
| 62 | if (model.layers[il].attn_k_norm) { |
| 63 | Kcur = ggml_view_3d(ctx: ctx0, a: Kcur, ne0: n_embd_head, ne1: n_head_kv, ne2: n_tokens, |
| 64 | nb1: ggml_element_size(tensor: Kcur) * n_embd_head, |
| 65 | nb2: ggml_element_size(tensor: Kcur) * n_embd_head * n_head_kv, |
| 66 | offset: 0); |
| 67 | cb(cur: Kcur, name: "Kcur" , il); |
| 68 | |
| 69 | Kcur = build_norm(cur: Kcur, |
| 70 | mw: model.layers[il].attn_k_norm, |
| 71 | mb: model.layers[il].attn_k_norm_b, |
| 72 | type: LLM_NORM, il); |
| 73 | cb(cur: Kcur, name: "Kcur" , il); |
| 74 | } |
| 75 | |
| 76 | Qcur = ggml_reshape_3d(ctx: ctx0, a: Qcur, ne0: n_embd_head, ne1: n_head, ne2: n_tokens); |
| 77 | Kcur = ggml_reshape_3d(ctx: ctx0, a: Kcur, ne0: n_embd_head, ne1: n_head_kv, ne2: n_tokens); |
| 78 | Vcur = ggml_reshape_3d(ctx: ctx0, a: Vcur, ne0: n_embd_head, ne1: n_head_kv, ne2: n_tokens); |
| 79 | |
| 80 | Qcur = ggml_rope_ext( |
| 81 | ctx: ctx0, a: Qcur, b: inp_pos, c: nullptr, |
| 82 | n_dims: n_rot, mode: rope_type, n_ctx_orig, freq_base, freq_scale, |
| 83 | ext_factor, attn_factor, beta_fast, beta_slow |
| 84 | ); |
| 85 | |
| 86 | Kcur = ggml_rope_ext( |
| 87 | ctx: ctx0, a: Kcur, b: inp_pos, c: nullptr, |
| 88 | n_dims: n_rot, mode: rope_type, n_ctx_orig, freq_base, freq_scale, |
| 89 | ext_factor, attn_factor, beta_fast, beta_slow |
| 90 | ); |
| 91 | |
| 92 | cb(cur: Qcur, name: "Qcur" , il); |
| 93 | cb(cur: Kcur, name: "Kcur" , il); |
| 94 | cb(cur: Vcur, name: "Vcur" , il); |
| 95 | |
| 96 | cur = build_attn(inp: inp_attn, |
| 97 | wo: model.layers[il].wo, wo_b: nullptr, |
| 98 | q_cur: Qcur, k_cur: Kcur, v_cur: Vcur, kq_b: nullptr, sinks: nullptr, v_mla: nullptr, kq_scale: 1.0f/sqrtf(x: float(n_embd_head)), il); |
| 99 | } |
| 100 | |
| 101 | if (il == n_layer - 1 && inp_out_ids) { |
| 102 | cur = ggml_get_rows(ctx: ctx0, a: cur, b: inp_out_ids); |
| 103 | inpSA = ggml_get_rows(ctx: ctx0, a: inpSA, b: inp_out_ids); |
| 104 | } |
| 105 | |
| 106 | if (hparams.swin_norm) { |
| 107 | cur = build_norm(cur, |
| 108 | mw: model.layers[il].attn_norm, NULL, |
| 109 | type: LLM_NORM_RMS, il); |
| 110 | } |
| 111 | |
| 112 | ggml_tensor * ffn_inp = ggml_add(ctx: ctx0, a: cur, b: inpSA); |
| 113 | cb(cur: ffn_inp, name: "ffn_inp" , il); |
| 114 | |
| 115 | // feed-forward network |
| 116 | if (!hparams.swin_norm) { |
| 117 | cur = build_norm(cur: ffn_inp, |
| 118 | mw: model.layers[il].ffn_norm, NULL, |
| 119 | type: LLM_NORM_RMS, il); |
| 120 | cb(cur, name: "ffn_norm" , il); |
| 121 | } |
| 122 | |
| 123 | cur = build_ffn(cur, |
| 124 | up: model.layers[il].ffn_up, NULL, NULL, |
| 125 | gate: model.layers[il].ffn_gate, NULL, NULL, |
| 126 | down: model.layers[il].ffn_down, NULL, NULL, |
| 127 | NULL, |
| 128 | type_op: LLM_FFN_SILU, type_gate: LLM_FFN_PAR, il); |
| 129 | cb(cur, name: "ffn_out" , il); |
| 130 | |
| 131 | if (hparams.swin_norm) { |
| 132 | cur = build_norm(cur, |
| 133 | mw: model.layers[il].ffn_norm, NULL, |
| 134 | type: LLM_NORM_RMS, il); |
| 135 | cb(cur, name: "ffn_norm" , il); |
| 136 | } |
| 137 | |
| 138 | cur = ggml_add(ctx: ctx0, a: cur, b: ffn_inp); |
| 139 | cb(cur, name: "ffn_out" , il); |
| 140 | |
| 141 | cur = build_cvec(cur, il); |
| 142 | cb(cur, name: "l_out" , il); |
| 143 | |
| 144 | // input for next layer |
| 145 | inpL = cur; |
| 146 | } |
| 147 | |
| 148 | cur = inpL; |
| 149 | |
| 150 | cur = build_norm(cur, |
| 151 | mw: model.output_norm, NULL, |
| 152 | type: LLM_NORM_RMS, il: -1); |
| 153 | |
| 154 | cb(cur, name: "result_norm" , il: -1); |
| 155 | res->t_embd = cur; |
| 156 | |
| 157 | // lm_head |
| 158 | cur = build_lora_mm(w: model.output, cur); |
| 159 | cb(cur, name: "result_output_with_img_logits" , il: -1); |
| 160 | |
| 161 | // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs. |
| 162 | // Needs to be removed once image outputs are supported. |
| 163 | int img_token_end_idx = 8196; |
| 164 | int img_token_start_idx = 4; |
| 165 | int num_img_tokens = img_token_end_idx - img_token_start_idx; |
| 166 | // creates 1d tensor of size num_img_tokens and values -FLT_MAX, |
| 167 | // which ensures that text token values are always at least larger than image token values |
| 168 | ggml_tensor * img_logits = ggml_new_tensor_1d(ctx: ctx0, type: GGML_TYPE_F32, ne0: num_img_tokens); |
| 169 | img_logits = ggml_clamp(ctx: ctx0, a: img_logits, min: -FLT_MAX, max: -FLT_MAX); |
| 170 | cb(cur: img_logits, name: "img_logits" , il: -1); |
| 171 | |
| 172 | cur = ggml_set_1d(ctx: ctx0, a: cur, b: img_logits, offset: ggml_element_size(tensor: cur) * img_token_start_idx); |
| 173 | |
| 174 | cb(cur, name: "result_output" , il: -1); |
| 175 | res->t_logits = cur; |
| 176 | |
| 177 | ggml_build_forward_expand(cgraph: gf, tensor: cur); |
| 178 | } |
| 179 | |