| 1 | #include "models.h" |
| 2 | |
| 3 | |
| 4 | template <bool iswa> |
| 5 | llm_build_exaone4<iswa>::llm_build_exaone4(const llama_model & model, const llm_graph_params & params) : |
| 6 | llm_graph_context(params) { |
| 7 | const int64_t n_embd_head = hparams.n_embd_head_k; |
| 8 | |
| 9 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_v); |
| 10 | GGML_ASSERT(n_embd_head == hparams.n_rot); |
| 11 | |
| 12 | ggml_tensor * cur; |
| 13 | ggml_tensor * inpL; |
| 14 | |
| 15 | inpL = build_inp_embd(tok_embd: model.tok_embd); |
| 16 | |
| 17 | // inp_pos - contains the positions |
| 18 | ggml_tensor * inp_pos = build_inp_pos(); |
| 19 | |
| 20 | using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>; |
| 21 | inp_attn_type * inp_attn = nullptr; |
| 22 | |
| 23 | if constexpr (iswa) { |
| 24 | inp_attn = build_attn_inp_kv_iswa(); |
| 25 | } else { |
| 26 | inp_attn = build_attn_inp_kv(); |
| 27 | } |
| 28 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
| 29 | |
| 30 | for (int il = 0; il < n_layer; ++il) { |
| 31 | ggml_tensor * inpSA = inpL; |
| 32 | |
| 33 | // use RoPE for SWA layers or non-SWA models |
| 34 | const bool use_rope = hparams.is_swa(il) || hparams.swa_type == LLAMA_SWA_TYPE_NONE; |
| 35 | |
| 36 | cur = inpL; |
| 37 | |
| 38 | // self-attention |
| 39 | { |
| 40 | ggml_tensor * rope_factors = model.get_rope_factors(cparams, il); |
| 41 | |
| 42 | ggml_tensor * Qcur = build_lora_mm(w: model.layers[il].wq, cur); |
| 43 | cb(cur: Qcur, name: "Qcur" , il); |
| 44 | |
| 45 | ggml_tensor * Kcur = build_lora_mm(w: model.layers[il].wk, cur); |
| 46 | cb(cur: Kcur, name: "Kcur" , il); |
| 47 | |
| 48 | ggml_tensor * Vcur = build_lora_mm(w: model.layers[il].wv, cur); |
| 49 | cb(cur: Vcur, name: "Vcur" , il); |
| 50 | |
| 51 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
| 52 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); |
| 53 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); |
| 54 | |
| 55 | Qcur = build_norm(cur: Qcur, mw: model.layers[il].attn_q_norm, NULL, type: LLM_NORM_RMS, il); |
| 56 | Kcur = build_norm(cur: Kcur, mw: model.layers[il].attn_k_norm, NULL, type: LLM_NORM_RMS, il); |
| 57 | cb(cur: Qcur, name: "Qcur_normed" , il); |
| 58 | cb(cur: Kcur, name: "Kcur_normed" , il); |
| 59 | |
| 60 | if (use_rope) { |
| 61 | Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, |
| 62 | freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); |
| 63 | |
| 64 | Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, |
| 65 | freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); |
| 66 | } |
| 67 | cb(cur: Qcur, name: "Qcur" , il); |
| 68 | cb(cur: Kcur, name: "Kcur" , il); |
| 69 | cb(cur: Vcur, name: "Vcur" , il); |
| 70 | |
| 71 | cur = build_attn(inp_attn, |
| 72 | model.layers[il].wo, NULL, |
| 73 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(x: float(n_embd_head)), il); |
| 74 | cb(cur, name: "attn_out" , il); |
| 75 | } |
| 76 | if (il == n_layer - 1 && inp_out_ids) { |
| 77 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
| 78 | inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); |
| 79 | } |
| 80 | cur = build_norm(cur, mw: model.layers[il].attn_post_norm, NULL, type: LLM_NORM_RMS, il); |
| 81 | cb(cur, name: "attn_post_norm" , il); |
| 82 | |
| 83 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); |
| 84 | cb(cur: ffn_inp, name: "ffn_inp" , il); |
| 85 | |
| 86 | // feed-forward network |
| 87 | cur = build_ffn(cur: ffn_inp, |
| 88 | up: model.layers[il].ffn_up, NULL, NULL, |
| 89 | gate: model.layers[il].ffn_gate, NULL, NULL, |
| 90 | down: model.layers[il].ffn_down, NULL, NULL, NULL, |
| 91 | type_op: LLM_FFN_SILU, type_gate: LLM_FFN_PAR, il); |
| 92 | cb(cur, name: "ffn_out" , il); |
| 93 | |
| 94 | cur = build_norm(cur, mw: model.layers[il].ffn_post_norm, NULL, type: LLM_NORM_RMS, il: -1); |
| 95 | cb(cur, name: "ffn_post_norm" , il: -1); |
| 96 | |
| 97 | cur = ggml_add(ctx0, cur, ffn_inp); |
| 98 | |
| 99 | cur = build_cvec(cur, il); |
| 100 | cb(cur, name: "l_out" , il); |
| 101 | |
| 102 | // input for next layer |
| 103 | inpL = cur; |
| 104 | } |
| 105 | cur = inpL; |
| 106 | |
| 107 | cur = build_norm(cur, mw: model.output_norm, NULL, type: LLM_NORM_RMS, il: -1); |
| 108 | |
| 109 | cb(cur, name: "result_norm" , il: -1); |
| 110 | res->t_embd = cur; |
| 111 | |
| 112 | // lm_head |
| 113 | cur = build_lora_mm(w: model.output, cur); |
| 114 | |
| 115 | cb(cur, name: "result_output" , il: -1); |
| 116 | res->t_logits = cur; |
| 117 | |
| 118 | ggml_build_forward_expand(gf, cur); |
| 119 | } |
| 120 | |
| 121 | // Explicit template instantiations |
| 122 | template struct llm_build_exaone4<false>; |
| 123 | template struct llm_build_exaone4<true>; |
| 124 | |