| 1 | #include "models.h" |
| 2 | |
| 3 | |
| 4 | llm_build_granite_hybrid::llm_build_granite_hybrid(const llama_model & model, const llm_graph_params & params) : |
| 5 | llm_graph_context_mamba(params) { |
| 6 | const int64_t n_embd_head = hparams.n_embd_head_v; |
| 7 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
| 8 | |
| 9 | ggml_tensor * cur; |
| 10 | ggml_tensor * inpL; |
| 11 | |
| 12 | inpL = build_inp_embd(tok_embd: model.tok_embd); |
| 13 | |
| 14 | auto * inp = build_inp_mem_hybrid(); |
| 15 | |
| 16 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
| 17 | |
| 18 | // Positional embeddings populated if rope enabled |
| 19 | ggml_tensor * inp_pos = nullptr; |
| 20 | if (hparams.rope_finetuned) { |
| 21 | inp_pos = build_inp_pos(); |
| 22 | } |
| 23 | |
| 24 | for (int il = 0; il < n_layer; ++il) { |
| 25 | struct ggml_tensor * inpSA = inpL; |
| 26 | |
| 27 | // norm |
| 28 | cur = build_norm(cur: inpL, mw: model.layers[il].attn_norm, NULL, type: LLM_NORM_RMS, il); |
| 29 | cb(cur, name: "attn_norm" , il); |
| 30 | |
| 31 | if (hparams.is_recurrent(il)) { |
| 32 | // ssm layer // |
| 33 | cur = build_mamba2_layer(inp: inp->get_recr(), cur, model, ubatch, il); |
| 34 | } else { |
| 35 | // attention layer // |
| 36 | cur = build_attention_layer(cur, inp_pos, inp_attn: inp->get_attn(), model, n_embd_head, il); |
| 37 | } |
| 38 | |
| 39 | if (il == n_layer - 1 && inp_out_ids) { |
| 40 | cur = ggml_get_rows(ctx: ctx0, a: cur, b: inp_out_ids); |
| 41 | inpSA = ggml_get_rows(ctx: ctx0, a: inpSA, b: inp_out_ids); |
| 42 | } |
| 43 | |
| 44 | // ffn |
| 45 | cur = build_layer_ffn(cur, inpSA, model, il); |
| 46 | |
| 47 | // input for next layer |
| 48 | inpL = cur; |
| 49 | } |
| 50 | |
| 51 | cur = inpL; |
| 52 | |
| 53 | cur = build_norm(cur, mw: model.output_norm, NULL, type: LLM_NORM_RMS, il: -1); |
| 54 | |
| 55 | cb(cur, name: "result_norm" , il: -1); |
| 56 | res->t_embd = cur; |
| 57 | |
| 58 | // lm_head |
| 59 | cur = build_lora_mm(w: model.output, cur); |
| 60 | |
| 61 | // For Granite architectures - scale logits |
| 62 | if (hparams.f_logit_scale) { |
| 63 | cur = ggml_scale(ctx: ctx0, a: cur, s: 1.0f / hparams.f_logit_scale); |
| 64 | } |
| 65 | cb(cur, name: "result_output" , il: -1); |
| 66 | res->t_logits = cur; |
| 67 | |
| 68 | ggml_build_forward_expand(cgraph: gf, tensor: cur); |
| 69 | } |
| 70 | |
| 71 | ggml_tensor * llm_build_granite_hybrid::build_attention_layer(ggml_tensor * cur, |
| 72 | ggml_tensor * inp_pos, |
| 73 | llm_graph_input_attn_kv * inp_attn, |
| 74 | const llama_model & model, |
| 75 | const int64_t n_embd_head, |
| 76 | const int il) { |
| 77 | // compute Q and K and (optionally) RoPE them |
| 78 | ggml_tensor * Qcur = build_lora_mm(w: model.layers[il].wq, cur); |
| 79 | cb(cur: Qcur, name: "Qcur" , il); |
| 80 | if (model.layers[il].bq) { |
| 81 | Qcur = ggml_add(ctx: ctx0, a: Qcur, b: model.layers[il].bq); |
| 82 | cb(cur: Qcur, name: "Qcur" , il); |
| 83 | } |
| 84 | |
| 85 | ggml_tensor * Kcur = build_lora_mm(w: model.layers[il].wk, cur); |
| 86 | cb(cur: Kcur, name: "Kcur" , il); |
| 87 | if (model.layers[il].bk) { |
| 88 | Kcur = ggml_add(ctx: ctx0, a: Kcur, b: model.layers[il].bk); |
| 89 | cb(cur: Kcur, name: "Kcur" , il); |
| 90 | } |
| 91 | |
| 92 | ggml_tensor * Vcur = build_lora_mm(w: model.layers[il].wv, cur); |
| 93 | cb(cur: Vcur, name: "Vcur" , il); |
| 94 | if (model.layers[il].bv) { |
| 95 | Vcur = ggml_add(ctx: ctx0, a: Vcur, b: model.layers[il].bv); |
| 96 | cb(cur: Vcur, name: "Vcur" , il); |
| 97 | } |
| 98 | |
| 99 | Qcur = ggml_reshape_3d(ctx: ctx0, a: Qcur, ne0: n_embd_head, ne1: hparams.n_head(il), ne2: n_tokens); |
| 100 | Kcur = ggml_reshape_3d(ctx: ctx0, a: Kcur, ne0: n_embd_head, ne1: hparams.n_head_kv(il), ne2: n_tokens); |
| 101 | Vcur = ggml_reshape_3d(ctx: ctx0, a: Vcur, ne0: n_embd_head, ne1: hparams.n_head_kv(il), ne2: n_tokens); |
| 102 | |
| 103 | const bool use_rope = hparams.rope_finetuned; |
| 104 | if (use_rope) { |
| 105 | ggml_tensor * rope_factors = model.get_rope_factors(cparams, il); |
| 106 | Qcur = ggml_rope_ext(ctx: ctx0, a: Qcur, b: inp_pos, c: rope_factors, n_dims: n_rot, mode: rope_type, n_ctx_orig, freq_base, freq_scale, |
| 107 | ext_factor, attn_factor, beta_fast, beta_slow); |
| 108 | |
| 109 | Kcur = ggml_rope_ext(ctx: ctx0, a: Kcur, b: inp_pos, c: rope_factors, n_dims: n_rot, mode: rope_type, n_ctx_orig, freq_base, freq_scale, |
| 110 | ext_factor, attn_factor, beta_fast, beta_slow); |
| 111 | } |
| 112 | |
| 113 | cb(cur: Qcur, name: "Qcur" , il); |
| 114 | cb(cur: Kcur, name: "Kcur" , il); |
| 115 | cb(cur: Vcur, name: "Vcur" , il); |
| 116 | |
| 117 | const float kq_scale = |
| 118 | hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(x: float(n_embd_head)) : hparams.f_attention_scale; |
| 119 | cur = build_attn(inp: inp_attn, |
| 120 | wo: model.layers[il].wo, wo_b: model.layers[il].bo, |
| 121 | q_cur: Qcur, k_cur: Kcur, v_cur: Vcur, kq_b: nullptr, sinks: nullptr, v_mla: nullptr, kq_scale, il); |
| 122 | cb(cur, name: "attn_out" , il); |
| 123 | return cur; |
| 124 | } |
| 125 | |
| 126 | ggml_tensor * llm_build_granite_hybrid::build_layer_ffn(ggml_tensor * cur, |
| 127 | ggml_tensor * inpSA, |
| 128 | const llama_model & model, |
| 129 | const int il) { |
| 130 | // For Granite architectures - scale residual |
| 131 | if (hparams.f_residual_scale) { |
| 132 | cur = ggml_scale(ctx: ctx0, a: cur, s: hparams.f_residual_scale); |
| 133 | } |
| 134 | ggml_tensor * ffn_inp = ggml_add(ctx: ctx0, a: cur, b: inpSA); |
| 135 | cb(cur: ffn_inp, name: "ffn_inp" , il); |
| 136 | |
| 137 | // feed-forward network (non-MoE) |
| 138 | if (model.layers[il].ffn_gate_inp == nullptr) { |
| 139 | cur = build_norm(cur: ffn_inp, mw: model.layers[il].ffn_norm, NULL, type: LLM_NORM_RMS, il); |
| 140 | cb(cur, name: "ffn_norm" , il); |
| 141 | |
| 142 | cur = build_ffn(cur, |
| 143 | up: model.layers[il].ffn_up, up_b: model.layers[il].ffn_up_b, NULL, |
| 144 | gate: model.layers[il].ffn_gate, gate_b: model.layers[il].ffn_gate_b, NULL, |
| 145 | down: model.layers[il].ffn_down, down_b: model.layers[il].ffn_down_b, NULL, |
| 146 | NULL, type_op: LLM_FFN_SILU, type_gate: LLM_FFN_PAR, il); |
| 147 | cb(cur, name: "ffn_out" , il); |
| 148 | |
| 149 | } else { |
| 150 | // MoE branch |
| 151 | cur = build_norm(cur: ffn_inp, mw: model.layers[il].ffn_norm, NULL, type: LLM_NORM_RMS, il); |
| 152 | cb(cur, name: "ffn_norm" , il); |
| 153 | |
| 154 | ggml_tensor * moe_out = |
| 155 | build_moe_ffn(cur, |
| 156 | gate_inp: model.layers[il].ffn_gate_inp, |
| 157 | up_exps: model.layers[il].ffn_up_exps, |
| 158 | gate_exps: model.layers[il].ffn_gate_exps, |
| 159 | down_exps: model.layers[il].ffn_down_exps, |
| 160 | exp_probs_b: nullptr, |
| 161 | n_expert, n_expert_used, |
| 162 | type_op: LLM_FFN_SILU, norm_w: true, |
| 163 | scale_w: false, w_scale: 0.0, |
| 164 | gating_op: LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, |
| 165 | il); |
| 166 | cb(cur: moe_out, name: "ffn_moe_out" , il); |
| 167 | |
| 168 | // For Granite MoE Shared |
| 169 | if (hparams.n_ff_shexp > 0) { |
| 170 | ggml_tensor * ffn_shexp = |
| 171 | build_ffn(cur, |
| 172 | up: model.layers[il].ffn_up_shexp, NULL, NULL, |
| 173 | gate: model.layers[il].ffn_gate_shexp, NULL, NULL, |
| 174 | down: model.layers[il].ffn_down_shexp, NULL, NULL, |
| 175 | NULL, type_op: LLM_FFN_SILU, type_gate: LLM_FFN_PAR, il); |
| 176 | cb(cur: ffn_shexp, name: "ffn_shexp" , il); |
| 177 | |
| 178 | cur = ggml_add(ctx: ctx0, a: moe_out, b: ffn_shexp); |
| 179 | cb(cur, name: "ffn_out" , il); |
| 180 | } else { |
| 181 | cur = moe_out; |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | // For Granite architectures - scale residual |
| 186 | if (hparams.f_residual_scale) { |
| 187 | cur = ggml_scale(ctx: ctx0, a: cur, s: hparams.f_residual_scale); |
| 188 | } |
| 189 | cur = ggml_add(ctx: ctx0, a: cur, b: ffn_inp); |
| 190 | cb(cur, name: "ffn_out" , il); |
| 191 | |
| 192 | cur = build_cvec(cur, il); |
| 193 | cb(cur, name: "l_out" , il); |
| 194 | |
| 195 | return cur; |
| 196 | } |
| 197 | |