| 1 | #include "models.h" |
| 2 | |
| 3 | llm_build_jamba::llm_build_jamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) { |
| 4 | const int64_t n_embd_head = hparams.n_embd_head_v; |
| 5 | |
| 6 | ggml_tensor * cur; |
| 7 | ggml_tensor * inpL; |
| 8 | |
| 9 | // {n_embd, n_tokens} |
| 10 | inpL = build_inp_embd(tok_embd: model.tok_embd); |
| 11 | |
| 12 | auto * inp_hybrid = build_inp_mem_hybrid(); |
| 13 | |
| 14 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
| 15 | |
| 16 | for (int il = 0; il < n_layer; ++il) { |
| 17 | const int64_t n_head_kv = hparams.n_head_kv(il); |
| 18 | |
| 19 | cur = build_norm(cur: inpL, mw: model.layers[il].attn_norm, NULL, type: LLM_NORM_RMS, il); |
| 20 | cb(cur, name: "attn_norm" , il); |
| 21 | |
| 22 | if (n_head_kv == 0) { |
| 23 | cur = build_mamba_layer(inp: inp_hybrid->get_recr(), cur, model, ubatch, il); |
| 24 | } else { |
| 25 | // Attention |
| 26 | |
| 27 | struct ggml_tensor * Qcur = build_lora_mm(w: model.layers[il].wq, cur); |
| 28 | struct ggml_tensor * Kcur = build_lora_mm(w: model.layers[il].wk, cur); |
| 29 | struct ggml_tensor * Vcur = build_lora_mm(w: model.layers[il].wv, cur); |
| 30 | |
| 31 | cb(cur: Qcur, name: "Qcur" , il); |
| 32 | cb(cur: Kcur, name: "Kcur" , il); |
| 33 | cb(cur: Vcur, name: "Vcur" , il); |
| 34 | |
| 35 | Qcur = ggml_reshape_3d(ctx: ctx0, a: Qcur, ne0: n_embd_head, ne1: n_head, ne2: n_tokens); |
| 36 | Kcur = ggml_reshape_3d(ctx: ctx0, a: Kcur, ne0: n_embd_head, ne1: n_head_kv, ne2: n_tokens); |
| 37 | Vcur = ggml_reshape_3d(ctx: ctx0, a: Vcur, ne0: n_embd_head, ne1: n_head_kv, ne2: n_tokens); |
| 38 | |
| 39 | cb(cur: Qcur, name: "Qcur" , il); |
| 40 | cb(cur: Kcur, name: "Kcur" , il); |
| 41 | cb(cur: Vcur, name: "Vcur" , il); |
| 42 | |
| 43 | // No RoPE :) |
| 44 | cur = build_attn(inp: inp_hybrid->get_attn(), |
| 45 | wo: model.layers[il].wo, NULL, |
| 46 | q_cur: Qcur, k_cur: Kcur, v_cur: Vcur, NULL, NULL, NULL, kq_scale: 1.0f/sqrtf(x: float(n_embd_head)), il); |
| 47 | } |
| 48 | if (il == n_layer - 1 && inp_out_ids) { |
| 49 | cur = ggml_get_rows(ctx: ctx0, a: cur, b: inp_out_ids); |
| 50 | inpL = ggml_get_rows(ctx: ctx0, a: inpL, b: inp_out_ids); |
| 51 | } |
| 52 | // residual |
| 53 | struct ggml_tensor * ffn_inp = ggml_add(ctx: ctx0, a: inpL, b: cur); |
| 54 | cb(cur, name: "ffn_inp" , il); |
| 55 | |
| 56 | cur = build_norm(cur: ffn_inp, mw: model.layers[il].ffn_norm, NULL, type: LLM_NORM_RMS, il); |
| 57 | cb(cur, name: "ffn_norm" , il); |
| 58 | |
| 59 | // feed-forward network |
| 60 | if (model.layers[il].ffn_gate_inp == nullptr) { |
| 61 | // FFN |
| 62 | cur = build_ffn(cur, |
| 63 | up: model.layers[il].ffn_up, NULL, NULL, |
| 64 | gate: model.layers[il].ffn_gate, NULL, NULL, |
| 65 | down: model.layers[il].ffn_down, NULL, NULL, |
| 66 | NULL, |
| 67 | type_op: LLM_FFN_SILU, type_gate: LLM_FFN_PAR, il); |
| 68 | cb(cur, name: "ffn_out" , il); |
| 69 | } else { |
| 70 | // MoE branch |
| 71 | cur = build_moe_ffn(cur, |
| 72 | gate_inp: model.layers[il].ffn_gate_inp, |
| 73 | up_exps: model.layers[il].ffn_up_exps, |
| 74 | gate_exps: model.layers[il].ffn_gate_exps, |
| 75 | down_exps: model.layers[il].ffn_down_exps, |
| 76 | exp_probs_b: nullptr, |
| 77 | n_expert, n_expert_used, |
| 78 | type_op: LLM_FFN_SILU, norm_w: false, |
| 79 | scale_w: false, w_scale: 0.0, |
| 80 | gating_op: LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, |
| 81 | il); |
| 82 | cb(cur, name: "ffn_moe_out" , il); |
| 83 | } |
| 84 | // residual |
| 85 | cur = ggml_add(ctx: ctx0, a: ffn_inp, b: cur); |
| 86 | |
| 87 | cur = build_cvec(cur, il); |
| 88 | cb(cur, name: "l_out" , il); |
| 89 | |
| 90 | // input for next layer |
| 91 | inpL = cur; |
| 92 | } |
| 93 | // final rmsnorm |
| 94 | cur = build_norm(cur: inpL, mw: model.output_norm, NULL, type: LLM_NORM_RMS, il: -1); |
| 95 | |
| 96 | cb(cur, name: "result_norm" , il: -1); |
| 97 | res->t_embd = cur; |
| 98 | |
| 99 | // lm_head |
| 100 | cur = build_lora_mm(w: model.output, cur); |
| 101 | |
| 102 | cb(cur, name: "result_output" , il: -1); |
| 103 | res->t_logits = cur; |
| 104 | |
| 105 | ggml_build_forward_expand(cgraph: gf, tensor: cur); |
| 106 | } |
| 107 | |