| 1 | #include "models.h" |
| 2 | |
| 3 | llm_build_minicpm3::llm_build_minicpm3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
| 4 | //TODO: if the model varies, these parameters need to be read from the model |
| 5 | const int64_t n_embd_base = 256; |
| 6 | const float scale_embd = 12.0f; |
| 7 | const float scale_depth = 1.4f; |
| 8 | const float kq_scale = 1.0f / sqrtf(x: float(hparams.n_embd_head_k)); |
| 9 | |
| 10 | const uint32_t n_embd_head_qk_rope = hparams.n_rot; |
| 11 | const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot; |
| 12 | const uint32_t kv_lora_rank = hparams.n_lora_kv; |
| 13 | |
| 14 | ggml_tensor * cur; |
| 15 | ggml_tensor * inpL; |
| 16 | |
| 17 | inpL = build_inp_embd(tok_embd: model.tok_embd); |
| 18 | |
| 19 | // scale the input embeddings |
| 20 | inpL = ggml_scale(ctx: ctx0, a: inpL, s: scale_embd); |
| 21 | cb(cur: inpL, name: "inp_scaled" , il: -1); |
| 22 | |
| 23 | // inp_pos - contains the positions |
| 24 | ggml_tensor * inp_pos = build_inp_pos(); |
| 25 | |
| 26 | auto * inp_attn = build_attn_inp_kv(); |
| 27 | |
| 28 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
| 29 | |
| 30 | for (int il = 0; il < n_layer; ++il) { |
| 31 | ggml_tensor * inpSA = inpL; |
| 32 | |
| 33 | ggml_tensor * rope_factors = model.get_rope_factors(cparams, il); |
| 34 | |
| 35 | // norm |
| 36 | cur = build_norm(cur: inpL, |
| 37 | mw: model.layers[il].attn_norm, NULL, |
| 38 | type: LLM_NORM_RMS, il); |
| 39 | cb(cur, name: "attn_norm" , il); |
| 40 | |
| 41 | // self_attention |
| 42 | { |
| 43 | ggml_tensor * q = NULL; |
| 44 | // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens} |
| 45 | q = ggml_mul_mat(ctx: ctx0, a: model.layers[il].wq_a, b: cur); |
| 46 | cb(cur: q, name: "q" , il); |
| 47 | |
| 48 | q = build_norm(cur: q, |
| 49 | mw: model.layers[il].attn_q_a_norm, NULL, |
| 50 | type: LLM_NORM_RMS, il); |
| 51 | cb(cur: q, name: "q" , il); |
| 52 | |
| 53 | // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens} |
| 54 | q = ggml_mul_mat(ctx: ctx0, a: model.layers[il].wq_b, b: q); |
| 55 | cb(cur: q, name: "q" , il); |
| 56 | |
| 57 | // split into {n_head * n_embd_head_qk_nope, n_tokens} |
| 58 | ggml_tensor * q_nope = ggml_view_3d(ctx: ctx0, a: q, ne0: n_embd_head_qk_nope, ne1: n_head, ne2: n_tokens, |
| 59 | nb1: ggml_row_size(type: q->type, ne: hparams.n_embd_head_k), |
| 60 | nb2: ggml_row_size(type: q->type, ne: hparams.n_embd_head_k * n_head), |
| 61 | offset: 0); |
| 62 | cb(cur: q_nope, name: "q_nope" , il); |
| 63 | |
| 64 | // and {n_head * n_embd_head_qk_rope, n_tokens} |
| 65 | ggml_tensor * q_pe = ggml_view_3d(ctx: ctx0, a: q, ne0: n_embd_head_qk_rope, ne1: n_head, ne2: n_tokens, |
| 66 | nb1: ggml_row_size(type: q->type, ne: hparams.n_embd_head_k), |
| 67 | nb2: ggml_row_size(type: q->type, ne: hparams.n_embd_head_k * n_head), |
| 68 | offset: ggml_row_size(type: q->type, ne: n_embd_head_qk_nope)); |
| 69 | cb(cur: q_pe, name: "q_pe" , il); |
| 70 | |
| 71 | // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens} |
| 72 | ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx: ctx0, a: model.layers[il].wkv_a_mqa, b: cur); |
| 73 | cb(cur: kv_pe_compresseed, name: "kv_pe_compresseed" , il); |
| 74 | |
| 75 | // split into {kv_lora_rank, n_tokens} |
| 76 | ggml_tensor * kv_compressed = ggml_view_2d(ctx: ctx0, a: kv_pe_compresseed, ne0: kv_lora_rank, ne1: n_tokens, |
| 77 | nb1: kv_pe_compresseed->nb[1], |
| 78 | offset: 0); |
| 79 | cb(cur: kv_compressed, name: "kv_compressed" , il); |
| 80 | |
| 81 | // and {n_embd_head_qk_rope, n_tokens} |
| 82 | ggml_tensor * k_pe = ggml_view_3d(ctx: ctx0, a: kv_pe_compresseed, ne0: n_embd_head_qk_rope, ne1: 1, ne2: n_tokens, |
| 83 | nb1: kv_pe_compresseed->nb[1], |
| 84 | nb2: kv_pe_compresseed->nb[1], |
| 85 | offset: ggml_row_size(type: kv_pe_compresseed->type, ne: kv_lora_rank)); |
| 86 | cb(cur: k_pe, name: "k_pe" , il); |
| 87 | |
| 88 | kv_compressed = build_norm(cur: kv_compressed, |
| 89 | mw: model.layers[il].attn_kv_a_norm, NULL, |
| 90 | type: LLM_NORM_RMS, il); |
| 91 | cb(cur: kv_compressed, name: "kv_compressed" , il); |
| 92 | |
| 93 | // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens} |
| 94 | ggml_tensor * kv = ggml_mul_mat(ctx: ctx0, a: model.layers[il].wkv_b, b: kv_compressed); |
| 95 | cb(cur: kv, name: "kv" , il); |
| 96 | |
| 97 | // split into {n_head * n_embd_head_qk_nope, n_tokens} |
| 98 | ggml_tensor * k_nope = ggml_view_3d(ctx: ctx0, a: kv, ne0: n_embd_head_qk_nope, ne1: n_head, ne2: n_tokens, |
| 99 | nb1: ggml_row_size(type: kv->type, ne: n_embd_head_qk_nope + hparams.n_embd_head_v), |
| 100 | nb2: ggml_row_size(type: kv->type, ne: n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)), |
| 101 | offset: 0); |
| 102 | cb(cur: k_nope, name: "k_nope" , il); |
| 103 | |
| 104 | // and {n_head * n_embd_head_v, n_tokens} |
| 105 | ggml_tensor * v_states = ggml_view_3d(ctx: ctx0, a: kv, ne0: hparams.n_embd_head_v, ne1: n_head, ne2: n_tokens, |
| 106 | nb1: ggml_row_size(type: kv->type, ne: (n_embd_head_qk_nope + hparams.n_embd_head_v)), |
| 107 | nb2: ggml_row_size(type: kv->type, ne: (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head), |
| 108 | offset: ggml_row_size(type: kv->type, ne: (n_embd_head_qk_nope))); |
| 109 | cb(cur: v_states, name: "v_states" , il); |
| 110 | |
| 111 | v_states = ggml_cont(ctx: ctx0, a: v_states); |
| 112 | cb(cur: v_states, name: "v_states" , il); |
| 113 | |
| 114 | q_pe = ggml_rope_ext( |
| 115 | ctx: ctx0, a: q_pe, b: inp_pos, c: rope_factors, |
| 116 | n_dims: n_rot, mode: rope_type, n_ctx_orig, freq_base, freq_scale, |
| 117 | ext_factor, attn_factor, beta_fast, beta_slow |
| 118 | ); |
| 119 | cb(cur: q_pe, name: "q_pe" , il); |
| 120 | |
| 121 | // shared RoPE key |
| 122 | k_pe = ggml_rope_ext( |
| 123 | ctx: ctx0, a: k_pe, b: inp_pos, c: rope_factors, |
| 124 | n_dims: n_rot, mode: rope_type, n_ctx_orig, freq_base, freq_scale, |
| 125 | ext_factor, attn_factor, beta_fast, beta_slow |
| 126 | ); |
| 127 | cb(cur: k_pe, name: "k_pe" , il); |
| 128 | |
| 129 | ggml_tensor * q_states = ggml_concat(ctx: ctx0, a: q_nope, b: q_pe, dim: 0); |
| 130 | cb(cur: q_states, name: "q_states" , il); |
| 131 | |
| 132 | ggml_tensor * k_states = ggml_concat(ctx: ctx0, a: k_nope, b: ggml_repeat(ctx: ctx0, a: k_pe, b: q_pe), dim: 0); |
| 133 | cb(cur: k_states, name: "k_states" , il); |
| 134 | |
| 135 | cur = build_attn(inp: inp_attn, |
| 136 | wo: model.layers[il].wo, NULL, |
| 137 | q_cur: q_states, k_cur: k_states, v_cur: v_states, kq_b: nullptr, sinks: nullptr, v_mla: nullptr, kq_scale, il); |
| 138 | } |
| 139 | if (il == n_layer - 1 && inp_out_ids) { |
| 140 | cur = ggml_get_rows(ctx: ctx0, a: cur, b: inp_out_ids); |
| 141 | inpSA = ggml_get_rows(ctx: ctx0, a: inpSA, b: inp_out_ids); |
| 142 | } |
| 143 | // scale_res - scale the hidden states for residual connection |
| 144 | const float scale_res = scale_depth/sqrtf(x: float(n_layer)); // TODO: is this correct? |
| 145 | cur = ggml_scale(ctx: ctx0, a: cur, s: scale_res); |
| 146 | cb(cur, name: "hidden_scaled" , il); |
| 147 | |
| 148 | ggml_tensor * ffn_inp = ggml_add(ctx: ctx0, a: cur, b: inpSA); |
| 149 | cb(cur: ffn_inp, name: "ffn_inp" , il); |
| 150 | |
| 151 | // feed-forward network |
| 152 | { |
| 153 | cur = build_norm(cur: ffn_inp, |
| 154 | mw: model.layers[il].ffn_norm, NULL, |
| 155 | type: LLM_NORM_RMS, il); |
| 156 | cb(cur, name: "ffn_norm" , il); |
| 157 | |
| 158 | cur = build_ffn(cur, |
| 159 | up: model.layers[il].ffn_up, NULL, NULL, |
| 160 | gate: model.layers[il].ffn_gate, NULL, NULL, |
| 161 | down: model.layers[il].ffn_down, NULL, NULL, |
| 162 | NULL, |
| 163 | type_op: LLM_FFN_SILU, type_gate: LLM_FFN_PAR, il); |
| 164 | cb(cur, name: "ffn_out" , il); |
| 165 | } |
| 166 | // scale the hidden states for residual connection |
| 167 | cur = ggml_scale(ctx: ctx0, a: cur, s: scale_res); |
| 168 | cb(cur, name: "hidden_scaled_ffn" , il); |
| 169 | |
| 170 | cur = ggml_add(ctx: ctx0, a: cur, b: ffn_inp); |
| 171 | |
| 172 | cur = build_cvec(cur, il); |
| 173 | cb(cur, name: "l_out" , il); |
| 174 | |
| 175 | // input for next layer |
| 176 | inpL = cur; |
| 177 | } |
| 178 | cur = inpL; |
| 179 | |
| 180 | cur = build_norm(cur, |
| 181 | mw: model.output_norm, NULL, |
| 182 | type: LLM_NORM_RMS, il: -1); |
| 183 | |
| 184 | cb(cur, name: "result_norm" , il: -1); |
| 185 | res->t_embd = cur; |
| 186 | |
| 187 | // lm_head scaling |
| 188 | const float scale_lmhead = float(n_embd_base)/float(n_embd); |
| 189 | cur = ggml_scale(ctx: ctx0, a: cur, s: scale_lmhead); |
| 190 | cb(cur, name: "lmhead_scaling" , il: -1); |
| 191 | |
| 192 | // lm_head |
| 193 | cur = build_lora_mm(w: model.output, cur); |
| 194 | |
| 195 | cb(cur, name: "result_output" , il: -1); |
| 196 | res->t_logits = cur; |
| 197 | |
| 198 | ggml_build_forward_expand(cgraph: gf, tensor: cur); |
| 199 | } |
| 200 | |