| 1 | #include "models.h" |
| 2 | |
| 3 | llm_build_neo_bert::llm_build_neo_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
| 4 | const int64_t n_embd_head = hparams.n_embd_head_v; |
| 5 | const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); |
| 6 | |
| 7 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
| 8 | |
| 9 | ggml_tensor * cur; |
| 10 | ggml_tensor * inpL; |
| 11 | ggml_tensor * inp_pos = build_inp_pos(); |
| 12 | |
| 13 | // construct input embeddings (token, type, position) |
| 14 | inpL = build_inp_embd(tok_embd: model.tok_embd); |
| 15 | cb(cur: inpL, name: "inp_embd" , il: -1); |
| 16 | |
| 17 | auto * inp_attn = build_attn_inp_no_cache(); |
| 18 | |
| 19 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
| 20 | |
| 21 | for (int il = 0; il < n_layer; ++il) { |
| 22 | ggml_tensor * cur = inpL; |
| 23 | |
| 24 | // pre-norm |
| 25 | cur = build_norm(cur: inpL, |
| 26 | mw: model.layers[il].attn_norm, NULL, |
| 27 | type: LLM_NORM_RMS, il); |
| 28 | |
| 29 | { |
| 30 | ggml_tensor * Qcur; |
| 31 | ggml_tensor * Kcur; |
| 32 | ggml_tensor * Vcur; |
| 33 | |
| 34 | // self-attention |
| 35 | cur = build_lora_mm(w: model.layers[il].wqkv, cur); |
| 36 | cb(cur, name: "wqkv" , il); |
| 37 | |
| 38 | Qcur = ggml_view_3d(ctx: ctx0, a: cur, ne0: n_embd_head, ne1: n_head, ne2: n_tokens, nb1: n_embd_head*sizeof(float), nb2: cur->nb[1], offset: 0*sizeof(float)*(n_embd)); |
| 39 | Kcur = ggml_view_3d(ctx: ctx0, a: cur, ne0: n_embd_head, ne1: n_head_kv, ne2: n_tokens, nb1: n_embd_head*sizeof(float), nb2: cur->nb[1], offset: 1*sizeof(float)*(n_embd)); |
| 40 | Vcur = ggml_view_3d(ctx: ctx0, a: cur, ne0: n_embd_head, ne1: n_head_kv, ne2: n_tokens, nb1: n_embd_head*sizeof(float), nb2: cur->nb[1], offset: 1*sizeof(float)*(n_embd + n_embd_gqa)); |
| 41 | |
| 42 | // RoPE |
| 43 | Qcur = ggml_rope_ext( |
| 44 | ctx: ctx0, a: Qcur, b: inp_pos, c: nullptr, |
| 45 | n_dims: n_rot, mode: rope_type, n_ctx_orig, freq_base, freq_scale, |
| 46 | ext_factor, attn_factor, beta_fast, beta_slow |
| 47 | ); |
| 48 | |
| 49 | Kcur = ggml_rope_ext( |
| 50 | ctx: ctx0, a: Kcur, b: inp_pos, c: nullptr, |
| 51 | n_dims: n_rot, mode: rope_type, n_ctx_orig, freq_base, freq_scale, |
| 52 | ext_factor, attn_factor, beta_fast, beta_slow |
| 53 | ); |
| 54 | |
| 55 | cb(cur: Qcur, name: "Qcur" , il); |
| 56 | cb(cur: Kcur, name: "Kcur" , il); |
| 57 | cb(cur: Vcur, name: "Vcur" , il); |
| 58 | |
| 59 | cur = build_attn(inp: inp_attn, |
| 60 | wo: model.layers[il].wo, wo_b: nullptr, |
| 61 | q_cur: Qcur, k_cur: Kcur, v_cur: Vcur, kq_b: nullptr, sinks: nullptr, v_mla: nullptr, kq_scale: 1.0f/sqrtf(x: float(n_embd_head)), il); |
| 62 | cb(cur, name: "kqv_out" , il); |
| 63 | } |
| 64 | if (il == n_layer - 1 && inp_out_ids) { |
| 65 | cur = ggml_get_rows(ctx: ctx0, a: cur, b: inp_out_ids); |
| 66 | inpL = ggml_get_rows(ctx: ctx0, a: inpL, b: inp_out_ids); |
| 67 | } |
| 68 | // re-add the layer input |
| 69 | cur = ggml_add(ctx: ctx0, a: cur, b: inpL); |
| 70 | |
| 71 | ggml_tensor * ffn_inp = cur; |
| 72 | cb(cur: ffn_inp, name: "ffn_inp" , il); |
| 73 | |
| 74 | // pre-norm |
| 75 | cur = build_norm(cur: ffn_inp, |
| 76 | mw: model.layers[il].ffn_norm, NULL, |
| 77 | type: LLM_NORM_RMS, il); |
| 78 | cb(cur, name: "ffn_norm" , il); |
| 79 | |
| 80 | // feed-forward network |
| 81 | cur = build_ffn(cur, |
| 82 | up: model.layers[il].ffn_up, |
| 83 | NULL, NULL, NULL, NULL, NULL, |
| 84 | down: model.layers[il].ffn_down, |
| 85 | NULL, NULL, NULL, |
| 86 | type_op: LLM_FFN_SWIGLU, type_gate: LLM_FFN_SEQ, il); |
| 87 | |
| 88 | // attentions bypass the intermediate layer |
| 89 | cur = ggml_add(ctx: ctx0, a: cur, b: ffn_inp); |
| 90 | |
| 91 | // input for next layer |
| 92 | inpL = cur; |
| 93 | } |
| 94 | cur = inpL; |
| 95 | |
| 96 | cur = build_norm(cur, |
| 97 | mw: model.output_norm_enc, NULL, |
| 98 | type: LLM_NORM_RMS, il: -1); |
| 99 | |
| 100 | cb(cur, name: "result_embd" , il: -1); |
| 101 | res->t_embd = cur; |
| 102 | |
| 103 | ggml_build_forward_expand(cgraph: gf, tensor: cur); |
| 104 | } |
| 105 | |