| 1 | #include "models.h" |
| 2 | |
| 3 | llm_build_plm::llm_build_plm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
| 4 | const float kq_scale = 1.0f/sqrtf(x: float(hparams.n_embd_head_k)); |
| 5 | |
| 6 | const uint32_t n_embd_head_qk_rope = hparams.n_rot; |
| 7 | const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot; |
| 8 | const uint32_t kv_lora_rank = hparams.n_lora_kv; |
| 9 | |
| 10 | ggml_tensor * cur; |
| 11 | ggml_tensor * inpL; |
| 12 | |
| 13 | // {n_embd, n_tokens} |
| 14 | inpL = build_inp_embd(tok_embd: model.tok_embd); |
| 15 | |
| 16 | // inp_pos - contains the positions |
| 17 | ggml_tensor * inp_pos = build_inp_pos(); |
| 18 | |
| 19 | auto * inp_attn = build_attn_inp_kv(); |
| 20 | |
| 21 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
| 22 | |
| 23 | for (int il = 0; il < n_layer; ++il) { |
| 24 | ggml_tensor * inpSA = inpL; |
| 25 | |
| 26 | // norm |
| 27 | cur = build_norm(cur: inpL, |
| 28 | mw: model.layers[il].attn_norm, NULL, |
| 29 | type: LLM_NORM_RMS, il); |
| 30 | cb(cur, name: "attn_norm" , il); |
| 31 | |
| 32 | // self_attention |
| 33 | { |
| 34 | ggml_tensor * q = NULL; |
| 35 | q = ggml_mul_mat(ctx: ctx0, a: model.layers[il].wq, b: cur); |
| 36 | cb(cur: q, name: "q" , il); |
| 37 | |
| 38 | // split into {n_head * n_embd_head_qk_nope, n_tokens} |
| 39 | ggml_tensor * q_nope = ggml_view_3d(ctx: ctx0, a: q, ne0: n_embd_head_qk_nope, ne1: n_head, ne2: n_tokens, |
| 40 | nb1: ggml_row_size(type: q->type, ne: hparams.n_embd_head_k), |
| 41 | nb2: ggml_row_size(type: q->type, ne: hparams.n_embd_head_k * n_head), |
| 42 | offset: 0); |
| 43 | cb(cur: q_nope, name: "q_nope" , il); |
| 44 | |
| 45 | // and {n_head * n_embd_head_qk_rope, n_tokens} |
| 46 | ggml_tensor * q_pe = ggml_view_3d(ctx: ctx0, a: q, ne0: n_embd_head_qk_rope, ne1: n_head, ne2: n_tokens, |
| 47 | nb1: ggml_row_size(type: q->type, ne: hparams.n_embd_head_k), |
| 48 | nb2: ggml_row_size(type: q->type, ne: hparams.n_embd_head_k * n_head), |
| 49 | offset: ggml_row_size(type: q->type, ne: n_embd_head_qk_nope)); |
| 50 | cb(cur: q_pe, name: "q_pe" , il); |
| 51 | |
| 52 | // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens} |
| 53 | ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx: ctx0, a: model.layers[il].wkv_a_mqa, b: cur); |
| 54 | cb(cur: kv_pe_compresseed, name: "kv_pe_compresseed" , il); |
| 55 | |
| 56 | // split into {kv_lora_rank, n_tokens} |
| 57 | ggml_tensor * kv_compressed = ggml_view_2d(ctx: ctx0, a: kv_pe_compresseed, ne0: kv_lora_rank, ne1: n_tokens, |
| 58 | nb1: kv_pe_compresseed->nb[1], |
| 59 | offset: 0); |
| 60 | cb(cur: kv_compressed, name: "kv_compressed" , il); |
| 61 | |
| 62 | // and {n_embd_head_qk_rope, n_tokens} |
| 63 | ggml_tensor * k_pe = ggml_view_3d(ctx: ctx0, a: kv_pe_compresseed, ne0: n_embd_head_qk_rope, ne1: 1, ne2: n_tokens, |
| 64 | nb1: kv_pe_compresseed->nb[1], |
| 65 | nb2: kv_pe_compresseed->nb[1], |
| 66 | offset: ggml_row_size(type: kv_pe_compresseed->type, ne: kv_lora_rank)); |
| 67 | cb(cur: k_pe, name: "k_pe" , il); |
| 68 | |
| 69 | kv_compressed = build_norm(cur: kv_compressed, |
| 70 | mw: model.layers[il].attn_kv_a_norm, NULL, |
| 71 | type: LLM_NORM_RMS, il); |
| 72 | cb(cur: kv_compressed, name: "kv_compressed" , il); |
| 73 | |
| 74 | // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens} |
| 75 | ggml_tensor * kv = ggml_mul_mat(ctx: ctx0, a: model.layers[il].wkv_b, b: kv_compressed); |
| 76 | cb(cur: kv, name: "kv" , il); |
| 77 | |
| 78 | // split into {n_head * n_embd_head_qk_nope, n_tokens} |
| 79 | ggml_tensor * k_nope = ggml_view_3d(ctx: ctx0, a: kv, ne0: n_embd_head_qk_nope, ne1: n_head, ne2: n_tokens, |
| 80 | nb1: ggml_row_size(type: kv->type, ne: n_embd_head_qk_nope + hparams.n_embd_head_v), |
| 81 | nb2: ggml_row_size(type: kv->type, ne: n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)), |
| 82 | offset: 0); |
| 83 | cb(cur: k_nope, name: "k_nope" , il); |
| 84 | |
| 85 | // and {n_head * n_embd_head_v, n_tokens} |
| 86 | ggml_tensor * v_states = ggml_view_3d(ctx: ctx0, a: kv, ne0: hparams.n_embd_head_v, ne1: n_head, ne2: n_tokens, |
| 87 | nb1: ggml_row_size(type: kv->type, ne: (n_embd_head_qk_nope + hparams.n_embd_head_v)), |
| 88 | nb2: ggml_row_size(type: kv->type, ne: (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head), |
| 89 | offset: ggml_row_size(type: kv->type, ne: (n_embd_head_qk_nope))); |
| 90 | cb(cur: v_states, name: "v_states" , il); |
| 91 | |
| 92 | v_states = ggml_cont(ctx: ctx0, a: v_states); |
| 93 | cb(cur: v_states, name: "v_states" , il); |
| 94 | |
| 95 | v_states = ggml_view_2d(ctx: ctx0, a: v_states, ne0: hparams.n_embd_head_v * n_head, ne1: n_tokens, |
| 96 | nb1: ggml_row_size(type: kv->type, ne: hparams.n_embd_head_v * n_head), |
| 97 | offset: 0); |
| 98 | cb(cur: v_states, name: "v_states" , il); |
| 99 | |
| 100 | q_pe = ggml_rope_ext( |
| 101 | ctx: ctx0, a: q_pe, b: inp_pos, c: nullptr, |
| 102 | n_dims: n_rot, mode: rope_type, n_ctx_orig, freq_base, freq_scale, |
| 103 | ext_factor, attn_factor, beta_fast, beta_slow |
| 104 | ); |
| 105 | cb(cur: q_pe, name: "q_pe" , il); |
| 106 | |
| 107 | // shared RoPE key |
| 108 | k_pe = ggml_rope_ext( |
| 109 | ctx: ctx0, a: k_pe, b: inp_pos, c: nullptr, |
| 110 | n_dims: n_rot, mode: rope_type, n_ctx_orig, freq_base, freq_scale, |
| 111 | ext_factor, attn_factor, beta_fast, beta_slow |
| 112 | ); |
| 113 | cb(cur: k_pe, name: "k_pe" , il); |
| 114 | |
| 115 | ggml_tensor * q_states = ggml_concat(ctx: ctx0, a: q_nope, b: q_pe, dim: 0); |
| 116 | cb(cur: q_states, name: "q_states" , il); |
| 117 | |
| 118 | ggml_tensor * k_states = ggml_concat(ctx: ctx0, a: k_nope, b: ggml_repeat(ctx: ctx0, a: k_pe, b: q_pe), dim: 0); |
| 119 | cb(cur: k_states, name: "k_states" , il); |
| 120 | |
| 121 | cur = build_attn(inp: inp_attn, |
| 122 | wo: model.layers[il].wo, NULL, |
| 123 | q_cur: q_states, k_cur: k_states, v_cur: v_states, kq_b: nullptr, sinks: nullptr, v_mla: nullptr, kq_scale, il); |
| 124 | } |
| 125 | if (il == n_layer - 1 && inp_out_ids) { |
| 126 | cur = ggml_get_rows(ctx: ctx0, a: cur, b: inp_out_ids); |
| 127 | inpSA = ggml_get_rows(ctx: ctx0, a: inpSA, b: inp_out_ids); |
| 128 | } |
| 129 | ggml_tensor * ffn_inp = ggml_add(ctx: ctx0, a: cur, b: inpSA); |
| 130 | cb(cur: ffn_inp, name: "ffn_inp" , il); |
| 131 | |
| 132 | cur = build_norm(cur: ffn_inp, |
| 133 | mw: model.layers[il].ffn_norm, NULL, |
| 134 | type: LLM_NORM_RMS, il); |
| 135 | cb(cur, name: "ffn_norm" , il); |
| 136 | |
| 137 | cur = build_ffn(cur, |
| 138 | up: model.layers[il].ffn_up, NULL, NULL, |
| 139 | NULL, NULL, NULL, |
| 140 | down: model.layers[il].ffn_down, NULL, NULL, |
| 141 | NULL, |
| 142 | type_op: LLM_FFN_RELU_SQR, type_gate: LLM_FFN_SEQ, il); |
| 143 | cb(cur, name: "ffn_out" , il); |
| 144 | |
| 145 | cur = ggml_add(ctx: ctx0, a: cur, b: ffn_inp); |
| 146 | |
| 147 | cur = build_cvec(cur, il); |
| 148 | cb(cur, name: "l_out" , il); |
| 149 | |
| 150 | // input for next layer |
| 151 | inpL = cur; |
| 152 | } |
| 153 | cur = inpL; |
| 154 | |
| 155 | cur = build_norm(cur, |
| 156 | mw: model.output_norm, NULL, |
| 157 | type: LLM_NORM_RMS, il: -1); |
| 158 | |
| 159 | cb(cur, name: "result_norm" , il: -1); |
| 160 | res->t_embd = cur; |
| 161 | |
| 162 | cur = build_lora_mm(w: model.output, cur); |
| 163 | |
| 164 | cb(cur, name: "result_output" , il: -1); |
| 165 | res->t_logits = cur; |
| 166 | |
| 167 | ggml_build_forward_expand(cgraph: gf, tensor: cur); |
| 168 | } |
| 169 | |