| 1 | #include "models.h" |
| 2 | |
| 3 | llm_build_rwkv6_base::llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params) : |
| 4 | llm_graph_context(params), |
| 5 | model(model) {} |
| 6 | |
| 7 | ggml_tensor * llm_build_rwkv6_base::build_rwkv6_channel_mix(const llama_layer * layer, |
| 8 | ggml_tensor * cur, |
| 9 | ggml_tensor * x_prev, |
| 10 | llm_arch arch) const { |
| 11 | ggml_tensor * sx = ggml_sub(ctx: ctx0, a: x_prev, b: cur); |
| 12 | switch (arch) { |
| 13 | case LLM_ARCH_RWKV6: |
| 14 | { |
| 15 | ggml_tensor * xk = ggml_add(ctx: ctx0, a: ggml_mul(ctx: ctx0, a: sx, b: layer->channel_mix_lerp_k), b: cur); |
| 16 | ggml_tensor * xr = ggml_add(ctx: ctx0, a: ggml_mul(ctx: ctx0, a: sx, b: layer->channel_mix_lerp_r), b: cur); |
| 17 | |
| 18 | ggml_tensor * r = ggml_sigmoid(ctx: ctx0, a: build_lora_mm(w: layer->channel_mix_receptance, cur: xr)); |
| 19 | ggml_tensor * k = ggml_sqr(ctx: ctx0, a: ggml_relu(ctx: ctx0, a: build_lora_mm(w: layer->channel_mix_key, cur: xk))); |
| 20 | cur = ggml_mul(ctx: ctx0, a: r, b: build_lora_mm(w: layer->channel_mix_value, cur: k)); |
| 21 | } |
| 22 | break; |
| 23 | default: |
| 24 | GGML_ABORT("fatal error" ); |
| 25 | } |
| 26 | return cur; |
| 27 | } |
| 28 | |
| 29 | ggml_tensor * llm_build_rwkv6_base::build_rwkv6_time_mix(llm_graph_input_rs * inp, |
| 30 | ggml_tensor * cur, |
| 31 | ggml_tensor * x_prev, |
| 32 | const llama_ubatch & ubatch, |
| 33 | int il) const { |
| 34 | const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx); |
| 35 | |
| 36 | const auto n_tokens = ubatch.n_tokens; |
| 37 | const auto n_seqs = ubatch.n_seqs; |
| 38 | const auto n_seq_tokens = ubatch.n_seq_tokens; |
| 39 | const auto n_embd = hparams.n_embd; |
| 40 | const auto head_size = hparams.wkv_head_size; |
| 41 | const auto n_head = n_embd / head_size; |
| 42 | const auto n_head_kv = hparams.n_head_kv(il); |
| 43 | |
| 44 | const auto kv_head = mctx_cur->get_head(); |
| 45 | |
| 46 | const auto & layer = model.layers[il]; |
| 47 | |
| 48 | bool is_qrwkv = layer.time_mix_first == nullptr; |
| 49 | |
| 50 | ggml_tensor * sx = ggml_sub(ctx: ctx0, a: x_prev, b: cur); |
| 51 | |
| 52 | sx = ggml_reshape_2d(ctx: ctx0, a: sx, ne0: n_embd, ne1: n_tokens); |
| 53 | cur = ggml_reshape_2d(ctx: ctx0, a: cur, ne0: n_embd, ne1: n_tokens); |
| 54 | |
| 55 | ggml_tensor * xxx = ggml_add(ctx: ctx0, a: ggml_mul(ctx: ctx0, a: sx, b: layer.time_mix_lerp_x), b: cur); |
| 56 | |
| 57 | xxx = ggml_reshape_4d(ctx: ctx0, a: ggml_tanh(ctx: ctx0, a: ggml_mul_mat(ctx: ctx0, a: layer.time_mix_w1, b: xxx)), |
| 58 | ne0: layer.time_mix_w1->ne[1] / 5, ne1: 1, ne2: 5, ne3: n_tokens); |
| 59 | |
| 60 | xxx = ggml_cont(ctx: ctx0, a: ggml_permute(ctx: ctx0, a: xxx, axis0: 0, axis1: 1, axis2: 3, axis3: 2)); |
| 61 | |
| 62 | xxx = ggml_mul_mat( |
| 63 | ctx: ctx0, a: ggml_reshape_4d(ctx: ctx0, a: layer.time_mix_w2, ne0: layer.time_mix_w2->ne[0], ne1: layer.time_mix_w2->ne[1], ne2: 1, ne3: 5), b: xxx); |
| 64 | |
| 65 | ggml_tensor *xw, *xk, *xv, *xr, *xg; |
| 66 | if (layer.time_mix_lerp_fused) { |
| 67 | // fusing these weights makes some performance improvement |
| 68 | sx = ggml_reshape_3d(ctx: ctx0, a: sx, ne0: n_embd, ne1: 1, ne2: n_tokens); |
| 69 | cur = ggml_reshape_3d(ctx: ctx0, a: cur, ne0: n_embd, ne1: 1, ne2: n_tokens); |
| 70 | xxx = ggml_add(ctx: ctx0, a: ggml_mul(ctx: ctx0, a: ggml_add(ctx: ctx0, a: xxx, b: layer.time_mix_lerp_fused), b: sx), b: cur); |
| 71 | xw = ggml_view_2d(ctx: ctx0, a: xxx, ne0: n_embd, ne1: n_tokens, nb1: xxx->nb[1], offset: 0); |
| 72 | xk = ggml_view_2d(ctx: ctx0, a: xxx, ne0: n_embd, ne1: n_tokens, nb1: xxx->nb[1], offset: n_embd * n_tokens * sizeof(float)); |
| 73 | xv = ggml_view_2d(ctx: ctx0, a: xxx, ne0: n_embd, ne1: n_tokens, nb1: xxx->nb[1], offset: n_embd * n_tokens * 2 * sizeof(float)); |
| 74 | xr = ggml_view_2d(ctx: ctx0, a: xxx, ne0: n_embd, ne1: n_tokens, nb1: xxx->nb[1], offset: n_embd * n_tokens * 3 * sizeof(float)); |
| 75 | xg = ggml_view_2d(ctx: ctx0, a: xxx, ne0: n_embd, ne1: n_tokens, nb1: xxx->nb[1], offset: n_embd * n_tokens * 4 * sizeof(float)); |
| 76 | } else { |
| 77 | // for backward compatibility |
| 78 | xw = ggml_view_2d(ctx: ctx0, a: xxx, ne0: n_embd, ne1: n_tokens, nb1: xxx->nb[1], offset: 0); |
| 79 | xk = ggml_view_2d(ctx: ctx0, a: xxx, ne0: n_embd, ne1: n_tokens, nb1: xxx->nb[1], offset: n_embd * n_tokens * sizeof(float)); |
| 80 | xv = ggml_view_2d(ctx: ctx0, a: xxx, ne0: n_embd, ne1: n_tokens, nb1: xxx->nb[1], offset: n_embd * n_tokens * 2 * sizeof(float)); |
| 81 | xr = ggml_view_2d(ctx: ctx0, a: xxx, ne0: n_embd, ne1: n_tokens, nb1: xxx->nb[1], offset: n_embd * n_tokens * 3 * sizeof(float)); |
| 82 | xg = ggml_view_2d(ctx: ctx0, a: xxx, ne0: n_embd, ne1: n_tokens, nb1: xxx->nb[1], offset: n_embd * n_tokens * 4 * sizeof(float)); |
| 83 | |
| 84 | xw = ggml_add(ctx: ctx0, a: ggml_mul(ctx: ctx0, a: ggml_add(ctx: ctx0, a: xw, b: layer.time_mix_lerp_w), b: sx), b: cur); |
| 85 | xk = ggml_add(ctx: ctx0, a: ggml_mul(ctx: ctx0, a: ggml_add(ctx: ctx0, a: xk, b: layer.time_mix_lerp_k), b: sx), b: cur); |
| 86 | xv = ggml_add(ctx: ctx0, a: ggml_mul(ctx: ctx0, a: ggml_add(ctx: ctx0, a: xv, b: layer.time_mix_lerp_v), b: sx), b: cur); |
| 87 | xr = ggml_add(ctx: ctx0, a: ggml_mul(ctx: ctx0, a: ggml_add(ctx: ctx0, a: xr, b: layer.time_mix_lerp_r), b: sx), b: cur); |
| 88 | xg = ggml_add(ctx: ctx0, a: ggml_mul(ctx: ctx0, a: ggml_add(ctx: ctx0, a: xg, b: layer.time_mix_lerp_g), b: sx), b: cur); |
| 89 | } |
| 90 | ggml_tensor * r = build_lora_mm(w: layer.time_mix_receptance, cur: xr); |
| 91 | ggml_tensor * k = build_lora_mm(w: layer.time_mix_key, cur: xk); |
| 92 | ggml_tensor * v = build_lora_mm(w: layer.time_mix_value, cur: xv); |
| 93 | if (layer.time_mix_receptance_b) { |
| 94 | r = ggml_add(ctx: ctx0, a: r, b: layer.time_mix_receptance_b); |
| 95 | } |
| 96 | if (layer.time_mix_key_b) { |
| 97 | k = ggml_add(ctx: ctx0, a: k, b: layer.time_mix_key_b); |
| 98 | } |
| 99 | if (layer.time_mix_value_b) { |
| 100 | v = ggml_add(ctx: ctx0, a: v, b: layer.time_mix_value_b); |
| 101 | } |
| 102 | ggml_tensor * g = build_lora_mm(w: layer.time_mix_gate, cur: xg); |
| 103 | if (is_qrwkv) { |
| 104 | g = ggml_sigmoid(ctx: ctx0, a: g); |
| 105 | } else { |
| 106 | g = ggml_silu(ctx: ctx0, a: g); |
| 107 | } |
| 108 | if (n_head_kv != 0 && n_head_kv != n_head) { |
| 109 | GGML_ASSERT(n_head % n_head_kv == 0); |
| 110 | k = ggml_reshape_4d(ctx: ctx0, a: k, ne0: head_size, ne1: 1, ne2: n_head_kv, ne3: n_tokens); |
| 111 | v = ggml_reshape_4d(ctx: ctx0, a: v, ne0: head_size, ne1: 1, ne2: n_head_kv, ne3: n_tokens); |
| 112 | ggml_tensor * tmp = ggml_new_tensor_4d(ctx: ctx0, type: GGML_TYPE_F32, ne0: head_size, ne1: n_head / n_head_kv, ne2: n_head_kv, ne3: n_tokens); |
| 113 | k = ggml_repeat(ctx: ctx0, a: k, b: tmp); |
| 114 | v = ggml_repeat(ctx: ctx0, a: v, b: tmp); |
| 115 | } |
| 116 | k = ggml_reshape_3d(ctx: ctx0, a: k, ne0: head_size, ne1: n_head, ne2: n_tokens); |
| 117 | v = ggml_reshape_3d(ctx: ctx0, a: v, ne0: head_size, ne1: n_head, ne2: n_tokens); |
| 118 | r = ggml_reshape_3d(ctx: ctx0, a: r, ne0: head_size, ne1: n_head, ne2: n_tokens); |
| 119 | |
| 120 | ggml_tensor * w = |
| 121 | ggml_mul_mat(ctx: ctx0, a: layer.time_mix_decay_w2, b: ggml_tanh(ctx: ctx0, a: ggml_mul_mat(ctx: ctx0, a: layer.time_mix_decay_w1, b: xw))); |
| 122 | |
| 123 | w = ggml_add(ctx: ctx0, a: w, b: layer.time_mix_decay); |
| 124 | w = ggml_exp(ctx: ctx0, a: ggml_neg(ctx: ctx0, a: ggml_exp(ctx: ctx0, a: w))); |
| 125 | w = ggml_reshape_3d(ctx: ctx0, a: w, ne0: head_size, ne1: n_head, ne2: n_tokens); |
| 126 | |
| 127 | if (is_qrwkv) { |
| 128 | // k = k * (1 - w) |
| 129 | k = ggml_sub(ctx: ctx0, a: k, b: ggml_mul(ctx: ctx0, a: k, b: w)); |
| 130 | } |
| 131 | ggml_tensor * wkv_state = build_rs(inp, s: mctx_cur->get_s_l(il), state_size: hparams.n_embd_s(), n_seqs); |
| 132 | |
| 133 | ggml_tensor * wkv_output; |
| 134 | if (is_qrwkv) { |
| 135 | wkv_output = ggml_gated_linear_attn(ctx: ctx0, k, v, q: r, g: w, state: wkv_state, scale: pow(x: head_size, y: -0.5f)); |
| 136 | } else { |
| 137 | wkv_output = ggml_rwkv_wkv6(ctx: ctx0, k, v, r, tf: layer.time_mix_first, td: w, state: wkv_state); |
| 138 | } |
| 139 | cur = ggml_view_1d(ctx: ctx0, a: wkv_output, ne0: n_embd * n_tokens, offset: 0); |
| 140 | wkv_state = ggml_view_1d(ctx: ctx0, a: wkv_output, ne0: n_embd * head_size * n_seqs, offset: n_embd * n_tokens * sizeof(float)); |
| 141 | |
| 142 | ggml_build_forward_expand( |
| 143 | cgraph: gf, tensor: ggml_cpy(ctx: ctx0, a: wkv_state, |
| 144 | b: ggml_view_1d(ctx: ctx0, a: mctx_cur->get_s_l(il), ne0: hparams.n_embd_s() * n_seqs, |
| 145 | offset: hparams.n_embd_s() * kv_head * ggml_element_size(tensor: mctx_cur->get_s_l(il))))); |
| 146 | |
| 147 | if (!is_qrwkv) { |
| 148 | // group norm with head_count groups |
| 149 | cur = ggml_reshape_3d(ctx: ctx0, a: cur, ne0: n_embd / n_head, ne1: n_head, ne2: n_tokens); |
| 150 | cur = ggml_norm(ctx: ctx0, a: cur, eps: 64e-5f); |
| 151 | |
| 152 | // Convert back to regular vectors. |
| 153 | cur = ggml_reshape_2d(ctx: ctx0, a: cur, ne0: n_embd, ne1: n_tokens); |
| 154 | cur = ggml_add(ctx: ctx0, a: ggml_mul(ctx: ctx0, a: cur, b: layer.time_mix_ln), b: layer.time_mix_ln_b); |
| 155 | } else { |
| 156 | cur = ggml_reshape_2d(ctx: ctx0, a: cur, ne0: n_embd, ne1: n_tokens); |
| 157 | } |
| 158 | cur = ggml_mul(ctx: ctx0, a: cur, b: g); |
| 159 | cur = build_lora_mm(w: layer.time_mix_output, cur); |
| 160 | |
| 161 | return ggml_reshape_3d(ctx: ctx0, a: cur, ne0: n_embd, ne1: n_seq_tokens, ne2: n_seqs); |
| 162 | } |
| 163 | |