| 1 | #include "models.h" |
| 2 | |
| 3 | llm_build_rwkv6::llm_build_rwkv6(const llama_model & model, const llm_graph_params & params) : |
| 4 | llm_build_rwkv6_base(model, params) { |
| 5 | GGML_ASSERT(hparams.token_shift_count == 2); |
| 6 | |
| 7 | ggml_tensor * cur; |
| 8 | ggml_tensor * inpL; |
| 9 | |
| 10 | inpL = build_inp_embd(tok_embd: model.tok_embd); |
| 11 | inpL = build_norm(cur: inpL, mw: model.tok_norm, mb: model.tok_norm_b, type: LLM_NORM, il: -1); |
| 12 | |
| 13 | auto * rs_inp = build_rs_inp(); |
| 14 | |
| 15 | const auto n_embd = hparams.n_embd; |
| 16 | const auto n_seq_tokens = ubatch.n_seq_tokens; |
| 17 | const auto n_seqs = ubatch.n_seqs; |
| 18 | |
| 19 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
| 20 | |
| 21 | for (int il = 0; il < n_layer; ++il) { |
| 22 | const llama_layer * layer = &model.layers[il]; |
| 23 | inpL = ggml_reshape_3d(ctx: ctx0, a: inpL, ne0: n_embd, ne1: n_seq_tokens, ne2: n_seqs); |
| 24 | |
| 25 | ggml_tensor * token_shift = build_rwkv_token_shift_load(inp: rs_inp, ubatch, il); |
| 26 | |
| 27 | ggml_tensor * att_shift = |
| 28 | ggml_view_3d(ctx: ctx0, a: token_shift, ne0: n_embd, ne1: 1, ne2: n_seqs, nb1: token_shift->nb[1], nb2: token_shift->nb[2], offset: 0); |
| 29 | ggml_tensor * ffn_shift = ggml_view_3d(ctx: ctx0, a: token_shift, ne0: n_embd, ne1: 1, ne2: n_seqs, nb1: token_shift->nb[1], |
| 30 | nb2: token_shift->nb[2], offset: n_embd * ggml_element_size(tensor: token_shift)); |
| 31 | |
| 32 | ggml_tensor * att_norm = build_norm(cur: inpL, mw: layer->attn_norm, mb: layer->attn_norm_b, type: LLM_NORM, il); |
| 33 | cb(cur: att_norm, name: "attn_norm" , il); |
| 34 | |
| 35 | ggml_tensor * x_prev = ggml_concat( |
| 36 | ctx: ctx0, a: att_shift, |
| 37 | b: ggml_view_3d(ctx: ctx0, a: att_norm, ne0: n_embd, ne1: n_seq_tokens - 1, ne2: n_seqs, nb1: att_norm->nb[1], nb2: att_norm->nb[2], offset: 0), dim: 1); |
| 38 | |
| 39 | cur = build_rwkv6_time_mix(inp: rs_inp, cur: att_norm, x_prev, ubatch, il); |
| 40 | |
| 41 | ggml_tensor * ffn_inp = ggml_add(ctx: ctx0, a: cur, b: inpL); |
| 42 | cb(cur: ffn_inp, name: "ffn_inp" , il); |
| 43 | |
| 44 | ggml_tensor * ffn_norm = build_norm(cur: ffn_inp, mw: layer->attn_norm_2, mb: layer->attn_norm_2_b, type: LLM_NORM, il); |
| 45 | cb(cur: ffn_norm, name: "ffn_norm" , il); |
| 46 | |
| 47 | x_prev = ggml_concat( |
| 48 | ctx: ctx0, a: ffn_shift, |
| 49 | b: ggml_view_3d(ctx: ctx0, a: ffn_norm, ne0: n_embd, ne1: n_seq_tokens - 1, ne2: n_seqs, nb1: ffn_norm->nb[1], nb2: ffn_norm->nb[2], offset: 0), dim: 1); |
| 50 | |
| 51 | token_shift = ggml_concat(ctx: ctx0, |
| 52 | a: ggml_view_3d(ctx: ctx0, a: att_norm, ne0: n_embd, ne1: 1, ne2: n_seqs, nb1: att_norm->nb[1], nb2: att_norm->nb[2], |
| 53 | offset: (n_seq_tokens - 1) * n_embd * ggml_element_size(tensor: att_norm)), |
| 54 | b: ggml_view_3d(ctx: ctx0, a: ffn_norm, ne0: n_embd, ne1: 1, ne2: n_seqs, nb1: ffn_norm->nb[1], nb2: ffn_norm->nb[2], |
| 55 | offset: (n_seq_tokens - 1) * n_embd * ggml_element_size(tensor: ffn_norm)), |
| 56 | dim: 1); |
| 57 | ggml_build_forward_expand(cgraph: gf, tensor: build_rwkv_token_shift_store(token_shift, ubatch, il)); |
| 58 | |
| 59 | ffn_inp = ggml_reshape_2d(ctx: ctx0, a: ffn_inp, ne0: n_embd, ne1: n_tokens); |
| 60 | ffn_norm = ggml_reshape_2d(ctx: ctx0, a: ffn_norm, ne0: n_embd, ne1: n_tokens); |
| 61 | x_prev = ggml_reshape_2d(ctx: ctx0, a: x_prev, ne0: n_embd, ne1: n_tokens); |
| 62 | cur = ggml_reshape_2d(ctx: ctx0, a: cur, ne0: n_embd, ne1: n_tokens); |
| 63 | |
| 64 | if (il == n_layer - 1 && inp_out_ids) { |
| 65 | ffn_inp = ggml_get_rows(ctx: ctx0, a: ffn_inp, b: inp_out_ids); |
| 66 | ffn_norm = ggml_get_rows(ctx: ctx0, a: ffn_norm, b: inp_out_ids); |
| 67 | x_prev = ggml_get_rows(ctx: ctx0, a: x_prev, b: inp_out_ids); |
| 68 | cur = ggml_get_rows(ctx: ctx0, a: cur, b: inp_out_ids); |
| 69 | } |
| 70 | cur = build_rwkv6_channel_mix(layer, cur: ffn_norm, x_prev, arch: LLM_ARCH_RWKV6); |
| 71 | cur = ggml_add(ctx: ctx0, a: cur, b: ffn_inp); |
| 72 | |
| 73 | if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) { |
| 74 | cur = ggml_scale(ctx: ctx0, a: cur, s: 0.5F); |
| 75 | } |
| 76 | cur = build_cvec(cur, il); |
| 77 | cb(cur, name: "l_out" , il); |
| 78 | |
| 79 | // input for next layer |
| 80 | inpL = cur; |
| 81 | } |
| 82 | cur = inpL; |
| 83 | cur = build_norm(cur, mw: model.output_norm, mb: model.output_norm_b, type: LLM_NORM, il: -1); |
| 84 | |
| 85 | cb(cur, name: "result_norm" , il: -1); |
| 86 | res->t_embd = cur; |
| 87 | |
| 88 | cur = build_lora_mm(w: model.output, cur); |
| 89 | |
| 90 | cb(cur, name: "result_output" , il: -1); |
| 91 | res->t_logits = cur; |
| 92 | |
| 93 | ggml_build_forward_expand(cgraph: gf, tensor: cur); |
| 94 | } |
| 95 | |