| 1 | #include "models.h" |
| 2 | |
| 3 | llm_build_t5_dec::llm_build_t5_dec(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
| 4 | const int64_t n_embd_head = hparams.n_embd_head_v; |
| 5 | //const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); |
| 6 | |
| 7 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
| 8 | |
| 9 | ggml_tensor * cur; |
| 10 | ggml_tensor * inpL; |
| 11 | |
| 12 | inpL = build_inp_embd(tok_embd: model.tok_embd); |
| 13 | |
| 14 | ggml_tensor * embd_enc = build_inp_cross_embd(); |
| 15 | ggml_tensor * pos_bucket_dec = build_inp_pos_bucket_dec(); |
| 16 | |
| 17 | const int64_t n_outputs_enc = embd_enc->ne[1]; |
| 18 | |
| 19 | auto * inp_attn_self = build_attn_inp_kv(); |
| 20 | auto * inp_attn_cross = build_attn_inp_cross(); |
| 21 | |
| 22 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
| 23 | |
| 24 | const int64_t dec_n_layer = hparams.dec_n_layer; |
| 25 | |
| 26 | for (int il = 0; il < dec_n_layer; ++il) { |
| 27 | ggml_tensor * inpSA = inpL; |
| 28 | |
| 29 | // norm |
| 30 | cur = build_norm(cur: inpL, |
| 31 | mw: model.layers[il].attn_norm, NULL, |
| 32 | type: LLM_NORM_RMS, il); |
| 33 | cb(cur, name: "attn_norm" , il); |
| 34 | |
| 35 | // self-attention |
| 36 | { |
| 37 | ggml_tensor * Qcur = build_lora_mm(w: model.layers[il].wq, cur); |
| 38 | cb(cur: Qcur, name: "Qcur" , il); |
| 39 | |
| 40 | ggml_tensor * Kcur = build_lora_mm(w: model.layers[il].wk, cur); |
| 41 | cb(cur: Kcur, name: "Kcur" , il); |
| 42 | |
| 43 | ggml_tensor * Vcur = build_lora_mm(w: model.layers[il].wv, cur); |
| 44 | cb(cur: Vcur, name: "Vcur" , il); |
| 45 | |
| 46 | Qcur = ggml_reshape_3d(ctx: ctx0, a: Qcur, ne0: n_embd_head, ne1: n_head, ne2: n_tokens); |
| 47 | Kcur = ggml_reshape_3d(ctx: ctx0, a: Kcur, ne0: n_embd_head, ne1: n_head_kv, ne2: n_tokens); |
| 48 | Vcur = ggml_reshape_3d(ctx: ctx0, a: Vcur, ne0: n_embd_head, ne1: n_head_kv, ne2: n_tokens); |
| 49 | |
| 50 | ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b; |
| 51 | ggml_tensor * kq_b = build_pos_bias(pos_bucket: pos_bucket_dec, attn_rel_b); |
| 52 | |
| 53 | cur = build_attn(inp: inp_attn_self, |
| 54 | wo: model.layers[il].wo, wo_b: model.layers[il].bo, |
| 55 | q_cur: Qcur, k_cur: Kcur, v_cur: Vcur, kq_b, sinks: nullptr, v_mla: nullptr, kq_scale: 1.0f, il); |
| 56 | cb(cur, name: "kqv_out" , il); |
| 57 | } |
| 58 | cur = ggml_add(ctx: ctx0, a: cur, b: inpSA); |
| 59 | cb(cur, name: "cross_inp" , il); |
| 60 | |
| 61 | ggml_tensor * inpCA = cur; |
| 62 | |
| 63 | // norm |
| 64 | cur = build_norm(cur, |
| 65 | mw: model.layers[il].attn_norm_cross, NULL, |
| 66 | type: LLM_NORM_RMS, il); |
| 67 | cb(cur, name: "attn_norm_cross" , il); |
| 68 | |
| 69 | // cross-attention |
| 70 | { |
| 71 | ggml_tensor * Qcur = build_lora_mm(w: model.layers[il].wq_cross, cur); |
| 72 | cb(cur: Qcur, name: "Qcur" , il); |
| 73 | |
| 74 | ggml_tensor * Kcur = build_lora_mm(w: model.layers[il].wk_cross, cur: embd_enc); |
| 75 | cb(cur: Kcur, name: "Kcur" , il); |
| 76 | |
| 77 | ggml_tensor * Vcur = build_lora_mm(w: model.layers[il].wv_cross, cur: embd_enc); |
| 78 | cb(cur: Vcur, name: "Vcur" , il); |
| 79 | |
| 80 | Qcur = ggml_reshape_3d(ctx: ctx0, a: Qcur, ne0: n_embd_head, ne1: n_head, ne2: n_tokens); |
| 81 | Kcur = ggml_reshape_3d(ctx: ctx0, a: Kcur, ne0: n_embd_head, ne1: n_head_kv, ne2: n_outputs_enc); |
| 82 | Vcur = ggml_reshape_3d(ctx: ctx0, a: Vcur, ne0: n_embd_head, ne1: n_head_kv, ne2: n_outputs_enc); |
| 83 | |
| 84 | cur = build_attn(inp: inp_attn_cross, |
| 85 | wo: model.layers[il].wo_cross, wo_b: nullptr, |
| 86 | q_cur: Qcur, k_cur: Kcur, v_cur: Vcur, kq_b: nullptr, sinks: nullptr, v_mla: nullptr, kq_scale: 1.0f, il); |
| 87 | cb(cur, name: "kqv_out" , il); |
| 88 | |
| 89 | //ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); |
| 90 | //ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3)); |
| 91 | |
| 92 | //ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); |
| 93 | //cb(kq, "kq", il); |
| 94 | |
| 95 | //kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias); |
| 96 | //cb(kq, "kq_soft_max_ext", il); |
| 97 | |
| 98 | //ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc))); |
| 99 | //cb(v, "v", il); |
| 100 | |
| 101 | //ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq); |
| 102 | //cb(kqv, "kqv", il); |
| 103 | |
| 104 | //ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3); |
| 105 | //cb(kqv_merged, "kqv_merged", il); |
| 106 | |
| 107 | //cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens); |
| 108 | //cb(cur, "kqv_merged_cont", il); |
| 109 | |
| 110 | //ggml_build_forward_expand(gf, cur); |
| 111 | |
| 112 | //cur = build_lora_mm(model.layers[il].wo_cross, cur); |
| 113 | //cb(cur, "kqv_out", il); |
| 114 | } |
| 115 | if (il == dec_n_layer - 1 && inp_out_ids) { |
| 116 | cur = ggml_get_rows(ctx: ctx0, a: cur, b: inp_out_ids); |
| 117 | inpCA = ggml_get_rows(ctx: ctx0, a: inpCA, b: inp_out_ids); |
| 118 | } |
| 119 | ggml_tensor * ffn_inp = ggml_add(ctx: ctx0, a: cur, b: inpCA); |
| 120 | cb(cur: ffn_inp, name: "ffn_inp" , il); |
| 121 | |
| 122 | // feed-forward network |
| 123 | { |
| 124 | cur = build_norm(cur: ffn_inp, |
| 125 | mw: model.layers[il].ffn_norm, NULL, |
| 126 | type: LLM_NORM_RMS, il); |
| 127 | cb(cur, name: "ffn_norm" , il); |
| 128 | |
| 129 | // T5 uses relu, flan-T5 uses gelu-gated |
| 130 | cur = build_ffn(cur, |
| 131 | up: model.layers[il].ffn_up, NULL, NULL, |
| 132 | gate: model.layers[il].ffn_gate, NULL, NULL, |
| 133 | down: model.layers[il].ffn_down, NULL, NULL, |
| 134 | NULL, |
| 135 | type_op: model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_RELU, |
| 136 | type_gate: model.layers[il].ffn_gate ? LLM_FFN_PAR : LLM_FFN_SEQ, |
| 137 | il); |
| 138 | cb(cur, name: "ffn_out" , il); |
| 139 | } |
| 140 | cur = ggml_add(ctx: ctx0, a: cur, b: ffn_inp); |
| 141 | cb(cur, name: "ffn_out" , il); |
| 142 | |
| 143 | cur = build_cvec(cur, il); |
| 144 | cb(cur, name: "l_out" , il); |
| 145 | |
| 146 | // input for next layer |
| 147 | inpL = cur; |
| 148 | } |
| 149 | cur = inpL; |
| 150 | cb(cur, name: "result_embd" , il: -1); |
| 151 | |
| 152 | cur = build_norm(cur, |
| 153 | mw: model.output_norm, NULL, |
| 154 | type: LLM_NORM_RMS, il: -1); |
| 155 | |
| 156 | cb(cur, name: "result_norm" , il: -1); |
| 157 | res->t_embd = cur; |
| 158 | |
| 159 | // lm_head |
| 160 | cur = build_lora_mm(w: model.output, cur); |
| 161 | |
| 162 | cb(cur, name: "result_output" , il: -1); |
| 163 | res->t_logits = cur; |
| 164 | |
| 165 | ggml_build_forward_expand(cgraph: gf, tensor: cur); |
| 166 | } |
| 167 | |