| 1 | #include "models.h" |
| 2 | |
| 3 | llm_build_t5_enc::llm_build_t5_enc(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
| 4 | const int64_t n_embd_head = hparams.n_embd_head_v; |
| 5 | |
| 6 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
| 7 | |
| 8 | ggml_tensor * cur; |
| 9 | ggml_tensor * inpL; |
| 10 | |
| 11 | inpL = build_inp_embd(tok_embd: model.tok_embd); |
| 12 | |
| 13 | ggml_tensor * pos_bucket_enc = build_inp_pos_bucket_enc(); |
| 14 | |
| 15 | auto * inp_attn = build_attn_inp_no_cache(); |
| 16 | |
| 17 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
| 18 | |
| 19 | for (int il = 0; il < n_layer; ++il) { |
| 20 | ggml_tensor * inpSA = inpL; |
| 21 | |
| 22 | // norm |
| 23 | cur = build_norm(cur: inpL, |
| 24 | mw: model.layers[il].attn_norm_enc, NULL, |
| 25 | type: LLM_NORM_RMS, il); |
| 26 | cb(cur, name: "attn_norm" , il); |
| 27 | |
| 28 | // self-attention |
| 29 | { |
| 30 | ggml_tensor * Qcur = build_lora_mm(w: model.layers[il].wq_enc, cur); |
| 31 | cb(cur: Qcur, name: "Qcur" , il); |
| 32 | |
| 33 | ggml_tensor * Kcur = build_lora_mm(w: model.layers[il].wk_enc, cur); |
| 34 | cb(cur: Kcur, name: "Kcur" , il); |
| 35 | |
| 36 | ggml_tensor * Vcur = build_lora_mm(w: model.layers[il].wv_enc, cur); |
| 37 | cb(cur: Vcur, name: "Vcur" , il); |
| 38 | |
| 39 | Qcur = ggml_reshape_3d(ctx: ctx0, a: Qcur, ne0: n_embd_head, ne1: n_head, ne2: n_tokens); |
| 40 | Kcur = ggml_reshape_3d(ctx: ctx0, a: Kcur, ne0: n_embd_head, ne1: n_head_kv, ne2: n_tokens); |
| 41 | Vcur = ggml_reshape_3d(ctx: ctx0, a: Vcur, ne0: n_embd_head, ne1: n_head_kv, ne2: n_tokens); |
| 42 | |
| 43 | ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc; |
| 44 | ggml_tensor * kq_b = build_pos_bias(pos_bucket: pos_bucket_enc, attn_rel_b); |
| 45 | |
| 46 | cur = build_attn(inp: inp_attn, |
| 47 | wo: model.layers[il].wo_enc, wo_b: nullptr, |
| 48 | q_cur: Qcur, k_cur: Kcur, v_cur: Vcur, kq_b, sinks: nullptr, v_mla: nullptr, kq_scale: 1.0f, il); |
| 49 | cb(cur, name: "kqv_out" , il); |
| 50 | } |
| 51 | if (il == n_layer - 1 && inp_out_ids) { |
| 52 | cur = ggml_get_rows(ctx: ctx0, a: cur, b: inp_out_ids); |
| 53 | inpSA = ggml_get_rows(ctx: ctx0, a: inpSA, b: inp_out_ids); |
| 54 | } |
| 55 | ggml_tensor * ffn_inp = ggml_add(ctx: ctx0, a: cur, b: inpSA); |
| 56 | cb(cur: ffn_inp, name: "ffn_inp" , il); |
| 57 | |
| 58 | // feed-forward network |
| 59 | { |
| 60 | cur = build_norm(cur: ffn_inp, |
| 61 | mw: model.layers[il].ffn_norm_enc, NULL, |
| 62 | type: LLM_NORM_RMS, il); |
| 63 | cb(cur, name: "ffn_norm" , il); |
| 64 | |
| 65 | // T5 uses relu, flan-T5 uses gelu-gated |
| 66 | cur = build_ffn(cur, |
| 67 | up: model.layers[il].ffn_up_enc, NULL, NULL, |
| 68 | gate: model.layers[il].ffn_gate_enc, NULL, NULL, |
| 69 | down: model.layers[il].ffn_down_enc, NULL, NULL, |
| 70 | NULL, |
| 71 | type_op: model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU, |
| 72 | type_gate: model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ, |
| 73 | il); |
| 74 | cb(cur, name: "ffn_out" , il); |
| 75 | } |
| 76 | cur = ggml_add(ctx: ctx0, a: cur, b: ffn_inp); |
| 77 | cb(cur, name: "ffn_out" , il); |
| 78 | |
| 79 | cur = build_cvec(cur, il); |
| 80 | cb(cur, name: "l_out" , il); |
| 81 | |
| 82 | // input for next layer |
| 83 | inpL = cur; |
| 84 | } |
| 85 | cur = inpL; |
| 86 | cb(cur, name: "result_embd" , il: -1); |
| 87 | |
| 88 | cur = build_norm(cur, |
| 89 | mw: model.output_norm_enc, NULL, |
| 90 | type: LLM_NORM_RMS, il: -1); |
| 91 | |
| 92 | cb(cur, name: "result_norm" , il: -1); |
| 93 | res->t_embd = cur; |
| 94 | |
| 95 | ggml_build_forward_expand(cgraph: gf, tensor: cur); |
| 96 | } |
| 97 | |