| 1 | #include "models.h" |
| 2 | |
| 3 | llm_build_wavtokenizer_dec::llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
| 4 | ggml_tensor * cur; |
| 5 | ggml_tensor * inpL; |
| 6 | |
| 7 | inpL = build_inp_embd(tok_embd: model.tok_embd); |
| 8 | |
| 9 | cur = ggml_cont(ctx: ctx0, a: ggml_transpose(ctx: ctx0, a: inpL)); |
| 10 | |
| 11 | cur = ggml_conv_1d_ph(ctx: ctx0, a: model.conv1d, b: cur, s: 1, d: 1); |
| 12 | cur = ggml_add(ctx: ctx0, a: cur, b: model.conv1d_b); |
| 13 | |
| 14 | // posnet |
| 15 | for (uint32_t il = 0; il < hparams.posnet.n_layer; ++il) { |
| 16 | const auto & layer = model.layers[il].posnet; |
| 17 | |
| 18 | inpL = cur; |
| 19 | |
| 20 | switch (il) { |
| 21 | case 0: |
| 22 | case 1: |
| 23 | case 3: |
| 24 | case 4: |
| 25 | { |
| 26 | cur = build_norm(cur, |
| 27 | mw: layer.norm1, |
| 28 | mb: layer.norm1_b, |
| 29 | type: LLM_NORM_GROUP, il: 0); |
| 30 | |
| 31 | cur = ggml_mul(ctx: ctx0, a: ggml_sigmoid(ctx: ctx0, a: cur), b: cur); |
| 32 | |
| 33 | cur = ggml_conv_1d_ph(ctx: ctx0, a: layer.conv1, b: cur, s: 1, d: 1); |
| 34 | cur = ggml_add(ctx: ctx0, a: cur, b: layer.conv1_b); |
| 35 | |
| 36 | cur = build_norm(cur, |
| 37 | mw: layer.norm2, |
| 38 | mb: layer.norm2_b, |
| 39 | type: LLM_NORM_GROUP, il: 0); |
| 40 | |
| 41 | cur = ggml_mul(ctx: ctx0, a: ggml_sigmoid(ctx: ctx0, a: cur), b: cur); |
| 42 | |
| 43 | cur = ggml_conv_1d_ph(ctx: ctx0, a: layer.conv2, b: cur, s: 1, d: 1); |
| 44 | cur = ggml_add(ctx: ctx0, a: cur, b: layer.conv2_b); |
| 45 | |
| 46 | cur = ggml_add(ctx: ctx0, a: cur, b: inpL); |
| 47 | } break; |
| 48 | case 2: |
| 49 | { |
| 50 | cur = build_norm(cur, |
| 51 | mw: layer.attn_norm, |
| 52 | mb: layer.attn_norm_b, |
| 53 | type: LLM_NORM_GROUP, il: 0); |
| 54 | |
| 55 | ggml_tensor * q; |
| 56 | ggml_tensor * k; |
| 57 | ggml_tensor * v; |
| 58 | |
| 59 | q = ggml_conv_1d_ph(ctx: ctx0, a: layer.attn_q, b: cur, s: 1, d: 1); |
| 60 | k = ggml_conv_1d_ph(ctx: ctx0, a: layer.attn_k, b: cur, s: 1, d: 1); |
| 61 | v = ggml_conv_1d_ph(ctx: ctx0, a: layer.attn_v, b: cur, s: 1, d: 1); |
| 62 | |
| 63 | q = ggml_add(ctx: ctx0, a: q, b: layer.attn_q_b); |
| 64 | k = ggml_add(ctx: ctx0, a: k, b: layer.attn_k_b); |
| 65 | v = ggml_add(ctx: ctx0, a: v, b: layer.attn_v_b); |
| 66 | |
| 67 | q = ggml_cont(ctx: ctx0, a: ggml_transpose(ctx: ctx0, a: q)); |
| 68 | k = ggml_cont(ctx: ctx0, a: ggml_transpose(ctx: ctx0, a: k)); |
| 69 | |
| 70 | ggml_tensor * kq = ggml_mul_mat(ctx: ctx0, a: k, b: q); |
| 71 | |
| 72 | kq = ggml_soft_max_ext(ctx: ctx0, a: kq, mask: nullptr, scale: 1.0f/sqrtf(x: float(hparams.posnet.n_embd)), max_bias: 0.0f); |
| 73 | |
| 74 | cur = ggml_mul_mat(ctx: ctx0, a: kq, b: v); |
| 75 | |
| 76 | cur = ggml_conv_1d_ph(ctx: ctx0, a: layer.attn_o, b: cur, s: 1, d: 1); |
| 77 | cur = ggml_add(ctx: ctx0, a: cur, b: layer.attn_o_b); |
| 78 | |
| 79 | cur = ggml_add(ctx: ctx0, a: cur, b: inpL); |
| 80 | } break; |
| 81 | case 5: |
| 82 | { |
| 83 | cur = build_norm(cur, |
| 84 | mw: layer.norm, |
| 85 | mb: layer.norm_b, |
| 86 | type: LLM_NORM_GROUP, il: 0); |
| 87 | } break; |
| 88 | default: GGML_ABORT("unknown posnet layer" ); |
| 89 | }; |
| 90 | } |
| 91 | cur = ggml_cont(ctx: ctx0, a: ggml_transpose(ctx: ctx0, a: cur)); |
| 92 | |
| 93 | cur = build_norm(cur, |
| 94 | mw: model.tok_norm, |
| 95 | mb: model.tok_norm_b, |
| 96 | type: LLM_NORM, il: -1); |
| 97 | |
| 98 | cur = ggml_cont(ctx: ctx0, a: ggml_transpose(ctx: ctx0, a: cur)); |
| 99 | |
| 100 | inpL = cur; |
| 101 | |
| 102 | // convnext |
| 103 | for (uint32_t il = 0; il < hparams.convnext.n_layer; ++il) { |
| 104 | const auto & layer = model.layers[il].convnext; |
| 105 | |
| 106 | cur = inpL; |
| 107 | |
| 108 | cur = ggml_conv_1d_dw_ph(ctx: ctx0, a: layer.dw, b: cur, s0: 1, d0: 1); |
| 109 | cur = ggml_add(ctx: ctx0, a: cur, b: layer.dw_b); |
| 110 | |
| 111 | cur = ggml_cont(ctx: ctx0, a: ggml_transpose(ctx: ctx0, a: cur)); |
| 112 | |
| 113 | cur = build_norm(cur, |
| 114 | mw: layer.norm, |
| 115 | mb: layer.norm_b, |
| 116 | type: LLM_NORM, il: -1); |
| 117 | |
| 118 | cur = build_ffn(cur, |
| 119 | up: layer.pw1, up_b: layer.pw1_b, NULL, |
| 120 | NULL, NULL, NULL, |
| 121 | down: layer.pw2, down_b: layer.pw2_b, NULL, |
| 122 | NULL, |
| 123 | type_op: LLM_FFN_GELU, type_gate: LLM_FFN_SEQ, il); |
| 124 | |
| 125 | cur = ggml_mul(ctx: ctx0, a: cur, b: layer.gamma); |
| 126 | |
| 127 | cur = ggml_cont(ctx: ctx0, a: ggml_transpose(ctx: ctx0, a: cur)); |
| 128 | |
| 129 | inpL = ggml_add(ctx: ctx0, a: cur, b: inpL); |
| 130 | } |
| 131 | cur = inpL; |
| 132 | |
| 133 | cur = ggml_cont(ctx: ctx0, a: ggml_transpose(ctx: ctx0, a: cur)); |
| 134 | |
| 135 | cur = build_norm(cur, |
| 136 | mw: model.output_norm, |
| 137 | mb: model.output_norm_b, |
| 138 | type: LLM_NORM, il: -1); |
| 139 | |
| 140 | // lm_head |
| 141 | cur = build_lora_mm(w: model.output, cur); |
| 142 | |
| 143 | cur = ggml_add(ctx: ctx0, a: cur, b: model.output_b); |
| 144 | |
| 145 | cb(cur, name: "result_embd" , il: -1); |
| 146 | res->t_embd = cur; |
| 147 | |
| 148 | ggml_build_forward_expand(cgraph: gf, tensor: cur); |
| 149 | } |
| 150 | |